Vorlesung Computeralgebra

Vorlesung im Herbstsemester 2011

Computeralgebra

Wolfgang K. Seiler

Ort und Zeit: Montag 10.15 - 11.45 und Donnerstag 13.45 - 15.15, C014
Übungen dazu: Donnerstag 15.30 - 17.00, C014


Die Computeralgebra ist die algorithmische Seite der Algebra; im Vordergrund stehen also Lösungsverfahren für konkrete algebraische Probleme. In der diesjährigen Vorlesung soll es dabei vor allem um die Lösung von algebraischen Gleichungen und Gleichungssystemen gehen.

Mit diesem Thema befaßt sich bekanntlich auch die Numerische Mathematik; im Unterschied zu dieser ist die Computeralgebra nicht an Näherungslösungen interessiert, sondern möchte die Lösungen in exakter Form darstellen, also zum Beispiel durch Wurzelausdrücke. Die entsprechenden Formeln für Gleichungen dritten und vierten Grades werden selbstverständlich behandelt, vor allem aber auch Methoden für die Fälle, in denen es keine solchen Formeln gibt.

Für allgemeine Gleichungen n-ten Grades hat man nur die Möglichkeit, die reellen Lösungen zu spezifizieren durch ein Intervall von (exakt darstellbaren) rationalen Zahlen sowie ein Polynom kleinstmöglichen Grades, das diese Lösung als Nullstelle hat. Wie sich zeigen wird, kann man mit solchen Darstellungen aber deutlich einfacher rechnen als mit Wurzelausdrücken.

Auch für Systeme nichtlinearer Gleichungen gibt es Algorithmen, beispielsweise eine geschickte Kombination der Ideen hinter dem {\caps Gauß}schen Eliminationsverfahren für lineare Gleichungen und dem {\caps Euklid}ischen Algorithmus. Spätestens ab hier verdient die Computeralgebra wirklich ihren Namen, denn oft ist man hier schon bei relativ kleinen Systemen ohne Computer chancenlos.

In den Übungen soll es auch darum gehen, wie man die in der Vorlesung behandelten Algorithmen mit einem Computeralgebrasystem praktisch umsetzen kann; wo möglich, soll auch gezeigt werden, wie man sie mit Hilfe der Graphikkomponenten eines solchen Systems veranschaulichen kann. Lehramtskandidaten können den Übungsschein als Nachweis für die geforderte Übung am Rechner verwenden.


Voraussetzungen: Grundkenntnisse der linearen Algebra und Analysis. Die Algebra-Vorlesung wird nicht vorausgesetzt; sie ist auch fast völlig disjunkt zu dieser Vorlesung.

Hörerkreis: Alle mathematischen Studiengänge; für Wirtschaftsmathematiker zählt die Vorlesung zur Gruppe B.


Literatur: Parallel zur Vorlesung soll ein Skriptum erscheinen. Eine kommentierte Liste mit weiterführender Literatur ist hier zu finden.