10. Oktober 2024

6. Übungsblatt Topologie und Gleichgewichte

Aufgabe 1:

Entscheiden Sie, welche der folgenden topologischen Räume zueinander homöomorph sind: Der Kreisring $\{(x,y) \in \mathbb{R}^2 \mid 1 \le x^2 + y^2 \le 4\}$, die Würfel $W_n = (0,1)^n$, die Sphäre \mathbb{S}^2 , die Räume \mathbb{R}^n und der Torus!

Aufgabe 2:

Zeigen Sie, daß jede Karte auf einem Torus mit höchstens sieben Farben so gefärbt werden kann, daß keine zwei benachbarten Gebiete die gleiche Farbe haben!

Aufgabe 3:

- a) Zeigen Sie, daß $A=\left\{(a+3b,2a-b)\;\middle|\; a,b\in\mathbb{Z}\right\}$ eine Untergruppe vom Rang zwei von \mathbb{Z}^2 ist!
- b) Der Homomorphismus $f: A \to A$ bilde den Punkt (1,2) ab auf (4,1) und (3,-1) auf (-1,-6). Berechnen Sie die Spur von f!
- c) Welchen Rang hat die Gruppe $B = \{(6a + 3b, 4a + 2b) \mid a, b \in \mathbb{Z}\}$?
- d) Welche Spur hat die Abbildung, die jeden Punkt (x,y) auf (2x,2y) abbildet, als Homomorphismus $A \to A$ bzw. als Homomorphismus $B \to B$?

Aufgabe 4:

Berechnen Sie für die folgenden Abbildungen der Kreislinie $\mathbb{S}^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ auf sich selbst die Lefschetz-Zahlen:

- a) Drehung um 90°
- b) Spiegelung an der x-Achse
- c) Spiegelung am Nullpunkt
- d) Die Abbildung, die den Punkt (cost, sint) abbildet auf (cos 2t, sin 2t).
- e) Was ändert sich, wenn Sie die genannten Abbildungen auf der Kreisscheibe betrachten?

Aufgabe 5:

- a) Zeigen Sie elementar, daß jede stetige Abbildung eines abgeschlossenen Intervalls auf sich selbst einen Fixpunkt hat!
- b) Gilt das auch für offene Intervalle?
- c) X sei eine kompakte konvexe Teilmenge eines \mathbb{R}^n . Zeigen Sie, daß jede stetige Abbildung f: $X \to X$ einen Fixpunkt hat!