26. September 2024

4. Übungsblatt Topologie und Gleichgewichte

Aufgabe 1:

Zerlegen Sie das Dreiecksprisma mit Ecken $P_i = (0,0,i)$, $Q_i = (1,0,i)$ und $R_i = (0,1,i)$ mit $i \in \{0,1\}$ in (offene) Simplizes! Wie viele Simplizes der Dimensionen 0,1,2,3 brauchen Sie? Was ist die alternierende Summe der Ecken, Kanten, Flächen und Körper?

Aufgabe 2:

Der simpliziale Komplex K bestehe aus dem Punkten $P_0=(0,0)$ sowie $n\geq 3$ Punkten P_1,\ldots,P_n , die im Gegenuhrzeigersinn auf einem Kreis um P_0 liegen. Seine Kanten seien $k_i=\overline{P_iP_{i+1}}$ für $i=1,\ldots,n-1$, $k_n=\overline{P_nP_1}$ und $\ell_i=\overline{P_0P_i}$ für $i=1,\ldots,n$. Die Dreiecke sind $\triangle_i=\triangle P_0P_iP_{i+1}$ für $i=1,\ldots,n-1$ und $\triangle_n=\triangle P_0P_nP_1$.

- a) Skizzieren Sie K für n = 6!
- b) Orientieren Sie die Kanten so, daß P_0 der Anfangspunkt aller ℓ_i ist und P_i der von k_i . Die Dreiecke seien im Uhrzeigersinn orientiert. Berechnen Sie damit die Ränder der Ketten $\sum_{i=1}^{n} k_i, \sum_{i=1}^{n} \ell_i, \sum_{i=1}^{n} i k_i, \sum_{i=1}^{n} \Delta_i$!
- c) Bestimmen Sie die Ränge aller Ketten-, Zykel- und Rändergruppen!
- d) Berechnen Sie die Homologiegruppen von K!

Aufgabe 3:

Der abstrakte simpliziale Komplex $\mathfrak K$ bestehe aus $n\geq 3$ Ecken P_1,\ldots,P_n , den Kanten $k_i=\{P_i,P_{i+1}\}$ für $i=1,\ldots,n-1$ und $\ell_i=\{P_1,P_i\}$ für $i=3,\ldots,n$, sowie den Dreiecken $\triangle_i=\{P_1,P_i,P_{i+1}\}$ für $i=2,\ldots,n-1$.

- a) Skizzieren Sie für n=6 eine geometrische Realisierung dieses Komplexes in \mathbb{R}^2 !
- b) Orientieren Sie alle Dreiecke im Uhrzeigersinn und die Kanten so, daß P_i der Anfangspunkt von k_i ist, P_n der von ℓ_n und P_1 der der übrigen ℓ_i . Berechnen Sie damit die Ränder der Ketten $\sum_{i=1}^{n-1} k_i$, $\sum_{i=3}^{n-1} \ell_i$, $\sum_{i=1}^{n} (-1)^i i k_i$ und $\sum_{i=2}^{n-1} \Delta_i$!
- c) Bestimmen Sie die Ränge aller Ketten-, Zykel- und Rändergruppen!
- d) Berechnen Sie die Homologiegruppen von £!

Aufgabe 4:

Finden Sie einen geometrischen simplizialen Komplex K, für den |K| homöomorph zum Kreisring $\{(x,y) \in \mathbb{R}^2 \mid 1 \le x^2 + y^2 \le 4\}$ ist, und berechnen Sie dessen Homologiegruppen!

Aufgabe 5:

- a) Ein (geometrischer) simplizialer Komplex K heißt zusammenhängend, wenn je zwei Ecken von K durch einen Kantenzug verbunden werden können. Zeigen Sie: K ist genau dann zusammenhängend, wenn der topologische Raum |K| zusammenhängend ist.
- b) Der Kronecker-Index einer 0-Kette $\sum_{i=1}^{r} \alpha_i P_i$ aus K mit Ecken P_i ist $\sum_{i=1}^{r} \alpha_i$. Zeigen Sie: Ist K zusammenhängend, so ist eine 0-Kette genau dann ein Rand, wenn ihr Kronecker-Index verschwindet.
- c) Zwei 0-Zykeln eines zusammenhängenden simplizialen Komplexes liegen genau dann in derselben Homologieklasse, wenn sie denselben Kronecker-Index haben.
- d) Für einen zusammenhängenden simplizialen Komplex K ist $H_0(K) \cong \mathbb{Z}$.
- e) Finden Sie ein Beispiel eines simplizialen Komplexes K mit $H_0(K)\cong \mathbb{Z}^2$ und $H_1(K)\cong \mathbb{Z}!$

Abgabe am Mittwoch, dem 2. Oktober 2024, bis 15.30 Uhr im Hörsaal