11. Mai 2022

11. Übungsblatt Topologie und Gleichgewichte

Aufgabe 1:

- a) $X, Y \subset \mathbb{R}^n$ seien zwei konvexe Mengen. Sind dann auch $X \cap Y$ und $X \cup Y$ konvex?
- b) $X \subset \mathbb{R}^n$ und $Y \subset \mathbb{R}^m$ seien konvexe Mengen. Ist dann auch $X \times Y$ konvex?
- c) $X \subset \mathbb{R}^n$ sei abgeschlossen, und für alle $x,y \in X$ sei auch $\frac{1}{2}(x+y) \in X$. Zeigen Sie, daß X dann konvex sein muß! *Hinweis:* Betrachten Sie zunächst konvexe Linearkombinationen, bei denen λ ein Bruch mit einer Zweierpotenz im Nenner ist!

Aufgabe 2:

- a) Zeigen Sie, daß jede konvexe Teilmenge von \mathbb{R}^n als topologischer Raum zusammenziehbar ist!
- b) Zeigen Sie: Sind X, Y zueinander homotope topologische Räume und ist X zusammenhängend, so auch Y!
- c) Folgern Sie, daß jeder zusammenziehbare topologischer Raum zusammenhängend ist!

Aufgabe 3:

- a) $S \subset \mathbb{R}^n$ sei ein abgeschlossenes Simplex, und $f: S \to \mathbb{R}$ sei eine stetige Abbildung. Zeigen Sie, daß f(S) ein abgeschlossenes Intervall [a, b] ist!
- b) Wird dann das Innere von S in jedem Fall auf das offene Intervall (a, b) abgebildet?
- c) Zeigen Sie, daß es im Fall einer linearen Abbildung f Ecken e_1 und e_2 von S gibt mit $f(e_1) = a$ und $f(e_2) = b$!
- d) Angenommen, es gibt auch einen inneren Punkt des Simplex, der auf a oder b abgebildet wird, Was können Sie dann über die lineare Abbildung f aussagen?