23. März 2022

6. Übungsblatt Topologie und Gleichgewichte

Aufgabe 1:

Eine stetige Abbildung $f: X \to Y$ heißt nullhomotop, wenn es einen Punkt $z \in Y$ gibt, so daß f homotop ist zur Abbildung, die jeden Punkt $x \in X$ auf z abbildet. Zeigen Sie:

- a) Jede stetige Abbildung eines topologischen Raums in eine konvexe Teilmenge eines \mathbb{R}^n ist nullhomotop.
- b) Ein topologischer Raum X ist genau dann zusammenziehbar, wenn die identische Abbildung id: $X \to X$ nullhomotop ist.
- c) Jede konvexe Teilmenge eines \mathbb{R}^n ist zusammenziehbar.
- d) \mathbb{R}^n ist zusammenziehbar
- e) Trotzdem gibt es fixpunktfreie Abbildungen $\mathbb{R}^n \to \mathbb{R}^n$, z.B. die Translationen. Warum widerspricht dies nicht der Verallgemeinerung des Brouwerschen Fixpunktsatzes?

Aufgabe 2:

Zeigen Sie, daß Homotopie von Abbildungen sowie Homotopie von topologischen Räumen Äquivalenzrelationen sind!

Aufgabe 3:

Für zwei Korrespondenzen $f: X \longrightarrow Y$ und $g: Y \longrightarrow Z$ sei die Hintereinanderausführung definiert als

$$g \circ f: \left\{ \begin{array}{l} X \longrightarrow Z \\ x \mapsto \bigcup_{y \in f(x)} g(y) \end{array} \right.$$

Zeigen Sie:

- a) $(g \circ f)^+(U) = f^+(g^+(U))$ für alle Teilmengen $U \subseteq Z$.
- b) $(g \circ f)^-(U) = f^-(g^-(U))$ für alle Teilmengen $U \subseteq Z$.
- c) Sind f und q halbstetig nach oben, so auch $g \circ f$.
- d) Sind f und g halbstetig nach unten, so auch $g \circ f$.