8. März 2019

3. Übungsblatt Topologie und Gleichgewichte

Aufgabe 1: (4 Punkte)

Zerlegen Sie das Dreiecksprisma mit Ecken $P_i = (0,0,i), \ Q_i = (1,0,i)$ und $R_i = (0,1,i)$ mit $i \in \{0,1\}$ in (offene) Simplizes! Wie viele Simplizes der Dimensionen 0,1,2,3 brauchen Sie? Was ist die alternierende Summe der Ecken, Kanten, Flächen und Körper?

Aufgabe 2: (4 Punkte)

Der abstrakte simpliziale Komplex $\mathfrak R$ bestehe aus n Ecken P_1,\ldots,P_n , den Kanten $\overline{P_iP_{i+1}}$ für $i=1,\ldots,n-1$ und $\overline{P_1P_i}$ für $i=2,\ldots,n$, sowie den Dreiecken $\triangle P_1P_iP_{i+1}$ für $i=2,\ldots,n-1$.

- a) Skizzieren Sie für n=6 eine geometrische Realisierung dieses Komplexes in \mathbb{R}^2 !
- b) Bestimmen Sie die Ränge aller Ketten-, Zykel- und Rändergruppen!
- c) Berechnen Sie die Homologiegruppen von £!

Aufgabe 3: (4 Punkte)

Finden Sie einen simplizialen Komplex K, für den |K| homöomorph zum Kreisrint $\{(x,y)\in\mathbb{R}^2|1\leq x^2+y^2\leq 4\}$ ist und berechnen Sie dessen Homologiegruppen!

Aufgabe 4: (3 Punkte)

Ein simplizialer Komplex K heißt zusammenhängend, wenn je zwei Ecken von K durch einen Kantenzug verbunden werden können. Zeigen Sie: K ist genau dann zusammenhängend, wenn der topologische Raum |K| zusammenhängend ist.

Aufgabe 5: (5 Punkte)

Der Kronecker-Index einer 0-Kette $\sum_{i=1}^{r} a_i e_i$ eines simplizialen Komplexes K mit Ecken e_i ist $\sum_{i=1}^{r} a_i$. Zeigen Sie:

- a) Ist K zusammenhängend, so ist eine 0-Kette genau dann ein Rand, wenn ihr Kronecker-Index verschwindet.
- b) Zwei 0-Zykeln eines zusammenhängenden simplizialen Komplexes liegen genau dann in derselben Homologieklasse, wenn sie denselben Kronecker-Index haben.
- c) Für einen zusammenhängenden simplizialen Komplex K ist $H_0(K) \cong \mathbb{Z}$.