Mathematics and Information, Exercise sheet 8

Problem 1: (5 points)
You want to build a universal portfolio for two stocks with a fixed horizon of two periods.
a) Which part of the available capital do you invest in each of the two stocks?
b) Suppose, the first stock gains 40% in each period whereas the second on looses 20%. What is your gain or loss, and how does it compare to the a posteriori best fixed portfolio?
c) Now suppose, during the first period the first stock gains 40% and the second looses 20%, but in the second period, it is the other way round. What is your gain or loss now, and how does it compare to the a posteriori best fixed portfolio?

Problem 2: (5 points)
a) Some collection contains six documents, in which the following words occur:
D_{1} : Shannon, Entropy, Information
D_{2} : Boltzmann, Entropy, Clausius, Heat
D_{3} : Information, Shannon, Code, Cryptanalysis, Key
D_{4} : Kelly. Shannon, Bet, Portfolio, Information
D_{5} : Las Vegas, Shannon, Kelly
D_{6} : Shannon, Juggling, Robot, Unicycle
Construct a term-document-matrix for this collection in which all column vectors have length one!
b) Code the query Information Shannon by a unit vector and compute the cosine of the angle between this vector and each of the six document vectors!

Problem 3: (5 points)
a) Let $\left(t_{i}, x_{i}\right), i=1, \ldots, 100$ be data points for which a relation of the form $x_{i}=a \sin t_{i}+$ $b \sin 2 t_{i}+c \sin 3 t_{i}+d \sin 4 t_{i}$ is supposed to hold. Which system of linear equations gives the best values for the coefficients a, b, c, d in the sense of least squares?
b) How can you proceed if a connection of the form $x_{i}=a \cos \left(t_{i}+c\right)$ with unknown parameters a, c is suspected?

Problem 4: (5 points)
Determine parameters $a, b, c \in \mathbb{R}$ such that the relation $z=a+b x+c y$ holds approximately for the following points $P_{i}=(x, y, z) \in \mathbb{R}^{3}$:

$$
P_{1}=(1,1,1), \quad P_{2}=(1,2,3), \quad P_{3}=(1,3,2), \quad P_{4}=(2,3,4), \quad P_{5}=(0,4,5), \quad P_{6}=(1,-1,3)
$$

