Mathematics and Information, Exercise sheet 4

Problem 1: (5 points)
Let $A=\{a, b, c, d, e, f, g, h\}$ with $p(a)=p(b)=p(c)=\frac{1}{15}, p(d)=p(e)=p(f)=\frac{2}{15}$, and $p(g)=p(h)=\frac{1}{5}$.
a) What is the entropy of this source?
b) Construct a binary Huffman code for it!
c) What is the average length of a code word?
d) Find a ternary Huffman code and compare the averave code length to the entropy to base three!

Problem 2: (10 points)
Based on a letter count of Jean Paul's Dr. Katzenbeisers Badereise, the frequencies of letters in german plain text are as follows:

E	N	I	R	S	A	T	H	D	U	L	C	G
0,185	0,103	0,0735	0,0695	0,0681	0,0575	0,0546	0,0525	0,0481	0,0435	0,0369	0,0327	0,0279
O	M	B	W	F	K	Z	V	P	J	Y	X	Q

Construct a binary Huffman code for this alphabet!

Problem 3: (4 points)
Let A be an alphabet consisting of n letters occuring with equal probability each.
a) Construct a binary Huffman code for $n=3,5,6,7$, and compare its average length with the entropy!
b) Determine the average length of a binary Huffman code for $n=2^{k}+1$ and $n=2^{k}-1$ for $k \geq 2$!
c) True of false? If $C: A \rightarrow \mathcal{D}$ is a code with D different symbols, and if $\sum_{a \in \mathcal{A}} D^{-\ell(a)}=1$, then C is optimal.

Problem 4: (1 points)
Transmitting a message usually involves three coding steps:

- Source coding in order to adapt the message to the medium and possibly also compressing it
- Channel coding uses error correcting codes to safeguard against transmission errors
- Cryptographic codes prevent intelligent adversaries from reading or manipulating the message.
In which order should those three steps be applied for best results?

