Mathematics and Information, Exercise sheet 2

Problem 1: (6 points)
Let $\mathcal{X}=X_{1}, X_{2}, \ldots$ be a stationary time invariant MARKOV chain with transition matrix $A=\left(\begin{array}{cc}p & 1-\mathrm{p} \\ 1-\mathrm{q} & \mathrm{q}\end{array}\right)$, where $\mathrm{p}, \mathrm{q} \in[0,1]$.
a) Determine the probability distribution and the entropy for each of the random variables X_{i} !
b) Compute the entropy rate of \mathcal{X} !
c) For which values of p and q is this entropy rate minimal respectively maximal?

Problem 2: (7 points)
a) Let X be a random variable with values in an alphabet $A=\left\{a_{1}, \ldots, a_{n}\right\}$ with probability distribution $\left(p_{1}, \ldots, p_{n}\right)$. Show that the entropy of X decreases, if for two subscript $i \neq j$ the probability of a_{i} is set to $p_{i}+p_{j}$ and that of a_{j} to zero!
b) Now let $f: A \rightarrow B$ a map from A to a second alphabet B, and let $Y=f(X)$ be the random variable with values in B which takes value $f(a)$ whenever X takes the value a. Show that $H(Y) \leq H(X)!$
c) When ist $\mathrm{H}(\mathrm{X})=\mathrm{H}(\mathrm{Y})$?
d) Give an example where $\mathrm{H}(\mathrm{Y})<\mathrm{H}(\mathrm{X})$!

Problem 3: (7 points)
a) Each of the following cryptograms represents a German word, encrypted with a CAESAR cypher. Which of these cryptograms have a unique decryption?

$$
\mathrm{c}_{1}=\mathrm{xgas}, \quad \mathrm{c}_{2}=\mathrm{xql}, \quad \mathrm{c}_{3}=\mathrm{iold}, \quad \mathrm{c}_{4}=\mathrm{ma}, \quad \mathrm{c}_{5}=\mathrm{qh}
$$

b) The first 21 letters on the current page of your one time pad are KRYPTOLOGIEVORLESUNGHS. Decrypt the message IFFHCURXTVTNVWZLKVILV!
c) How would that page begin, if the message were BRINGEBLUMENFUERMUTTI?

Hint: Even though cryptographers solved such problem for centuries without any modern utilities, you will probably save much time by writing a short computer program.

