WOLFGANG K. SEILER *Tel.* 2515

September 21, 2023

Mathematics and Information, Exercise sheet 2

Problem 1: (6 points)

Let $\mathcal{X} = X_1, X_2, \ldots$ be a stationary time invariant MARKOV chain with transition matrix $A = \begin{pmatrix} p & 1-p \\ 1-q & q \end{pmatrix}$, where $p, q \in [0, 1]$.

- a) Determine the probability distribution and the entropy for each of the random variables X_i !
- b) Compute the entropy rate of \mathcal{X} !
- c) For which values of p and q is this entropy rate minimal respectively maximal?

Problem 2: (7 points)

- a) Let X be a random variable with values in an alphabet $A = \{a_1, \ldots, a_n\}$ with probability distribution (p_1, \ldots, p_n) . Show that the entropy of X decreases, if for two subscript $i \neq j$ the probability of a_i is set to $p_i + p_j$ and that of a_j to zero!
- b) Now let $f: A \to B$ a map from A to a second alphabet B, and let Y = f(X) be the random variable with values in B which takes value f(a) whenever X takes the value a. Show that $H(Y) \le H(X)!$
- c) When ist H(X) = H(Y)?
- d) Give an example where H(Y) < H(X)!

Problem 3: (7 points)

a) Each of the following cryptograms represents a German word, encrypted with a CAESAR cypher. Which of these cryptograms have a unique decryption?

 $c_1 = \texttt{xgas}, \qquad c_2 = \texttt{xql}, \qquad c_3 = \texttt{iold}, \qquad c_4 = \texttt{ma}, \qquad c_5 = \texttt{qh}$

- b) The first 21 letters on the current page of your one time pad are KRYPTOLOGIEVORLESUNGHS. Decrypt the message IFFHCURXTVTNVWZLKVILV!
- c) How would that page begin, if the message were BRINGEBLUMENFUERMUTTI? Hint: Even though cryptographers solved such problem for centuries without any modern utilities, you will probably save much time by writing a short computer program.