Mathematics and Information, Exercise sheet 1

Problem 1: (5 points)
a) A message source produces signs form an alphabet A consisting of six letters with respective probabilities $1 / 2,1 / 4,1 / 8,1 / 16$, and twice $1 / 32$. Compute its Shannon entropy!
b) Construct a binary encoding of these letters such that any sequence of letters from A has a unique encoding, and the expected value of the code length is as small as possible!
c) What changes in a) and b), if all elements of A have equal probability?

Problem 2: (2 points)
a) Show that the intersection of two convex sets $A, B \subseteq \mathbb{R}^{n}$ is again convex!
b) What about their union $U \cup B$ und there symmetric difference $A \Delta B$?

Problem 3: (4 points)
a) An alphabet A contains n letters; the probability of each letter is at least $1 / 2 n$. Compute the minimum and the maximum for the entropy of a source using such an alphabet!
b) What happens, if instead we know that each letter occurs with a probability $p \leq 2 / n$?

Problem 4: (5 points)
Let X, Y be random variables with values in $A=\{0,1\}$ and joint probability distribution $p(0,0)=\frac{1}{2}, p(0,1)=p(1,1)=\frac{1}{4}$ and $p(1,0)=0$.
a) Find the probability distributions p_{X}, p_{Y} of X and Y !
b) Determine $H(X), H(Y), H(X, Y), H(X \mid Y), H(Y \mid X)$ and $I(X ; Y)$!
c) Compute the KuLLback-Leibler distances $d\left(p_{X} \| p_{Y}\right)$ and $d\left(p_{Y} \| p_{X}\right)$!

Problem 5: (4 points)
a) A fair dice is thrown; the random variable X, Y, Z with values in $\{1,2,3,4,5,6\}$ give the numbers on top, at the bottom and on the front side. Compute the mutual informations $I(X ; Y), I(X ; Z)$ and $I(Z ; Y)!$
Hint: The numbers on opposite sides of a dice always add up to seven.
b) Determine the conditional mutual informations $I(X ; Y \mid Z)$ and $I(X ; Z \mid Y)$!

