WOLFGANG K. SEILER *Tel.* 2515

October 12, 2018

Mathematics and Information, Exercise sheet 6

Problem 1: (8 points)

Based on a letter count of OSCAR WILDE'S Importance of being Earnest, the frequencies of letters in english plain text are as follows:

\mathbf{E}	А	Т	0	Ν	Ι	R	S	\mathbf{L}	Η	D	U	Y
.1182	.0833	.0803	.0771	.0740	.0708	.0609	.0578	.0508	.0452	.0340	.0332	.0327
С	Μ	G	W	F	В	Р	K	V	J	Х	Q	Z
					_	-		•	•		-0	—

Construct a binary HUFFMAN code for this alphabet!

Problem 2: (5 points)

Let A be an alphabet consisting of n letters occuring with equal probability, Compute the average length of a binary HUFFMAN code for

a) n = 3 b) n = 24 c) $n = 2^k - 1$ for $k \ge 2$

Problem 3: (2 points)

Transmitting a message usually involves three coding steps:

- Source coding in order to adapt the message to the medium and possibly also compressing ist
- Channel coding uses error correcting codes to safeguard against transmission errors
- Cryptographic codes safe against intelligent adversaries.

In which order should those three steps be applied for best results?

Problem 4: (5 points)

Let X, Y be random variables with values in a subset of \mathbb{R} . Both X and Y have expectation μ and variance σ^2 ; their correlation is ρ . Find unit vectors $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ and $\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ such that the random variables $U = a_1 X + a_2 Y$ and $V = b_1 X + b_2 Y$ are uncorrelated, und determine expectation and variance of U and V!