Mathematics and Information, Exercise sheet 5

Problem 1: (8 points)
Let $\mathcal{X}=\left(X_{t}\right)_{t \in \mathbb{N}}$ be a sequence of random variables with values in an alphabet A with m elements, and for $a \in A^{n}$ let $p(a)=p\left(X_{1}=a_{1}, \ldots, X_{n}=a_{n}\right)$. The uncertainty of \mathcal{X} is

$$
\mathcal{U}=\lim _{n \rightarrow \infty}-\frac{\sum_{a \in \mathcal{A}^{n}} p(a) \log _{2} p(a)}{n \log _{2} m}
$$

and the redundancy is $\mathcal{R}=1-\mathcal{U}$.
a) Show that $0 \leq \mathcal{R} \leq 1$.
b) If we model the english language by a sequence of independent random variables, its entropy per letter is about 4.22295 . Compute the redundancy of this process!
c) If we model it by a MARKOV chain, the entropy rate is about 3.62773 . What's the redundancy now?
d) It is commonly believed that the redundancy of the english language is about 70%. What does this mean for the entropy per letter?

Problem 2: (5 points)
For each of the three processes in problem 1, compute the probability that a given sequence of hundred letters lies in the set O of frequent blocks!

Problem 3: (5 points)
Let $\mathcal{X}=\left(X_{t}\right)_{t \in \mathbb{N}}$ be e sequence of independent random variables with values in $A=\{a, b\}$, where each X_{i} takes a with a probability of $2 / 3$. Determine for $\varepsilon=\frac{1}{2}$ and $\varepsilon=\frac{1}{4}$ which percentage of the elements of A^{10} lies in A_{ε}^{10} !

Problem 4: (2 points)
Show that for every positive real number $a, \lim _{k \rightarrow \infty} \sqrt[k]{a k}=1$!

