WOLFGANG K. SEILER Tel. 2515

October 5, 2018

Mathematics and Information, Exercise sheet 5

Problem 1: (8 points)

Let $\mathcal{X} = (X_t)_{t \in \mathbb{N}}$ be a sequence of random variables with values in an alphabet A with m elements, and for $a \in A^n$ let $p(a) = p(X_1 = a_1, \dots, X_n = a_n)$. The uncertainty of \mathcal{X} is

$$\mathcal{U} = \lim_{n \to \infty} -\frac{\sum_{a \in A^n} p(a) \log_2 p(a)}{n \log_2 m}$$

and the redundancy is $\mathcal{R} = 1 - \mathcal{U}$.

- a) Show that $0 \leq \mathcal{R} \leq 1$.
- b) If we model the english language by a sequence of independent random variables, its entropy per letter is about 4.22295. Compute the redundancy of this process!
- c) If we model it by a MARKOV chain, the entropy rate is about 3.62773. What's the redundancy now?
- d) It is commonly believed that the redundancy of the english language is about 70%. What does this mean for the entropy per letter?

Problem 2: (5 points)

For each of the three processes in problem 1, compute the probability that a given sequence of hundred letters lies in the set O of frequent blocks!

Problem 3: (5 points)

Let $\mathcal{X} = (X_t)_{t \in \mathbb{N}}$ be e sequence of independent random variables with values in $A = \{a, b\}$, where each X_i takes a with a probability of 2/3. Determine for $\varepsilon = \frac{1}{2}$ and $\varepsilon = \frac{1}{4}$ which percentage of the elements of A^{10} lies in A_{ε}^{10} !

Problem 4: (2 points) Show that for every positive real number a, $\lim_{k \to \infty} \sqrt[k]{ak} = 1!$