September 20, 2018

Mathematics and Information, Exercise sheet 3

Problem 1: (5 points)

Let X, Y be random variables with values in $A = \{0, 1\}$ and joint probability distribution $p(0,0) = \frac{1}{2}$, $p(0,1) = p(1,1) = \frac{1}{4}$ and p(1,0) = 0.

- a) Find the probability distributions p_X, p_Y of X and Y!
- b) Determine H(X), H(Y), H(X,Y), H(X|Y), H(Y|X) and I(X;Y)!
- c) Compute the Kullback-Leibler distances $d(p_X||p_Y)$ and $d(p_Y||p_X)$!

Problem 2: (4 points)

a) A fair dice is thrown; the random variable X, Y, Z with values in $\{1, 2, 3, 4, 5, 6\}$ give the numbers on top, at the bottom and on the front side. Compute the mutual informations I(X; Y), I(X; Z) and I(Z; Y)!

Hint: The numbers on opposite sides of a dice always add up to seven.

b) Determine the conditional mutual informations I(X; Y|Z) and I(X; Z|Y)!

Problem 3: (5 points)

a) Let X be a random variable with values in a finite Alphabet A, and let $f: A \to B$ be any mapping. Show that the entropy of the random variable Y = f(X) cannot be greater than H(X)!

Hint: Compute H(X, f(X)) in two ways using the chain rule!

- b) Find an example where H(f(X)) < H(X)!
- c) Now let Y be any random variable with values in an alphabet B such that H(Y|X) = 0, and assume that both X and Y take each letter from their alphabet with a positive probability. Shot that there is a mapping $f: A \to B$ such that Y = f(X)!

Problem 4: (6 points)

Let $\mathcal{X}=X_1,X_2,\ldots$ be a stationary time invariant Markov chain with transition matrix $A=\begin{pmatrix}p&1-p\\1-q&q\end{pmatrix}$.

- a) Determine the probability distribution and the entropy of each of the random variables Xi!
- b) Compute the entropy rate of \mathcal{X} !
- c) For which values of p and q ist this entropy rate minimal respectively maximal?