Mathematics and Information, Exercise sheet 2

Problem 1: (4 points)
a) Show that the intersection of two convex sets $A, B \subseteq \mathbb{R}^{n}$ is convex!
b) What about their union $A \cup B$ and their symmetric difference $A \Delta B$?

Problem 2: (3 points)
Some message uses an alphabet A consisting of n letters; their probabilities are

$$
\mathrm{p}_{1}<\mathrm{p}_{2}<\cdots<\mathrm{p}_{\mathrm{n}}
$$

Show that the entropy stricty increases, if the probabilities of $m \geq 2$ letters are replaced be the average probability of these m letters!

Problem 3: (6 points)
a) An alphabet A contains n letters; the probability of each letter is at least $1 / 2 n$. Compute the minimum and the maximum for the entropy of a source using such an alphabet!
b) What happens, if instead we know that each letter occurs with a probability $p \leq 2 / n$?

Problem 4: (7 points)
a) Suppose there are eleven balls of which at least ten have the same weight. How can you determine by three weighings with a balance scale if there is a ball with a different weight and if so, if it is heavier or lighter than the rest?
b) What is the maximal number of balls for which two weighings suffice?
c) What is the maximal number if it is known that exactly one ball has a different weight?
d) What is the maximal number it it is known that one ball is heavier than the rest?

