Mathematics and Information, Exercise sheet 1

Problem 1: (8 points)
a) A message source produces signs form an alphabet A consisting of six letters with respective probabilities $1 / 2,1 / 4$, and four times $1 / 16$. Compute its entropy! (All logarithms should be taken to base two.)
b) Construct a binary encoding of these letters such that any sequence of letters from A has a unique encoding and the expectation value of the code length is as small as possible!
c) What changes in a) and b), if all elements of A have equal probability?

Problem 2: (6 points)
A letter produced by a message source is more surprising if it has lower probability. If we want to describe this by a function $\operatorname{Sur}(\mathfrak{p})$, we should therefor demand that $\operatorname{Sur}(p)$ is continuous and strictly decreasing. We also demand that surprises add up, i.e.

$$
\operatorname{Sur}(p q)=\operatorname{Sur}(p) \cdot \operatorname{Sur}(q) .
$$

a) Show that for every such function $\operatorname{Sur}(p)$ there exists an $a>0$ such that $\operatorname{Sur}(p)=\log _{a} p$!
b) Shannon's function $H\left(p_{1}, \ldots, p_{n}\right)$ is the expectation of $\operatorname{Sur}(p)$.

Problem 3: (6 points)
A message source with alphabet $A=\{0,1,2, \ldots, 10\}$ produces letters according to the following rule: It throws a fair coin at most ten times, but stops, if the coin shows head. If this happens in the $i^{\text {th }}$ experiment, $i \leq 10$, the letter i is sent; if it never happens, 0 is transmitted. Compute its entropy!
Hint: $\sum_{i=0}^{N} i q^{i}=\frac{n q^{n+2}-(n+1) q^{n+1}+q}{(1-q)^{2}}$

