28. Oktober 2022

8. Übungsblatt Kryptologie

Aufgabe 1:

- a) Zeigen Sie, daß das Polynom $f(x) = (x [\sqrt{N}])^2 N$ die Diskriminante N hat!
- b) Berechnen Sie dieses Polynom für N = 31 123 153 explizit!
- c) Bestimmen Sie alle einstelligen Primzahlen p mit der Eigenschaft, daß es ganze Zahlen x gibt, für die f(x) durch p teilbar ist, und geben Sie die Menge dieser Zahlen x jeweils an!

Aufgabe 2:

Faktorisieren Sie die Zahl N=851 mit dem quadratischen Sieb mit Hilfe der Faktorbasis $\mathcal{B}=\{2,5,11,17,23\}$ und dem Siebintervall [1,40]!

Aufgabe 3:

Der Rechenaufwand von Faktorisierungsalgorithmen sowie von Algorithmen zur Berechnung diskreter Logarithmen für eine Zahl n ist oft ungefähr von der Form

$$L_n(\alpha,c) = e^{c(\log n)^{\alpha}(\log\log n)^{1-\alpha}}$$

mit $\alpha \in [0, 1]$ und c > 0.

- a) Wie sieht diese Funktion in den Grenzfällen $\alpha = 0$ und $\alpha = 1$ aus?
- b) Zeigen Sie: Für $\alpha < \beta$ ist $L_n(\alpha, c) < L_n(\beta, c)$!
- c) Der Aufwand für das Zahlkörpersieb ist ungefähr $L_n(\frac{1}{3},c)$ mit $c=\sqrt[3]{\frac{64}{9}}$, der für eine gute Implementierung des quadratischen Siebs liegt bei $L_n(\frac{1}{2},1)$. Ab welcher Größe von n ist das Zahlkörpersieb schneller?

Aufgabe 4:

- a) Bestimmen Sie für g=2,3 und 5 die Menge aller $x\in\mathbb{Z}/23$, die einen diskreten Logarithmus zur Basis g modulo 23 haben!
- b) Berechnen Sie jeweils eine Tabelle dieser Logarithmen!