14. Oktober 2019

6. Übungsblatt Kryptologie

Aufgabe 1: (9 Punkte)

Der private Schlüssel d zum öffentlichen RSA-Schlüssel (N,e) wird über den erweiterten Euklidischen Algorithmus so bestimmt, daß d $e-k\phi(N)=1$ ist, wobei N=pq ist und $\phi(N)=(p-1)(q-1)$.

- a) Angenommen, Sie kennen e und d. Wie können Sie dann $\varphi(N)$ bestimmen?
- b) Wie lassen sich die beiden Primzahlen p und q aus N und $\varphi(N)$ bestimmen?
- c) Für den RSA-Schlüssel $(N, e) = (13\,342\,081, 7)$ führt obige Vorgehensweise auf den privaten Exponenten $d = 3\,809\,847$. Was ist $\phi(N)$?
- d) Bestimmen Sie, ohne N zu faktorisieren, die privaten Exponenten für die RSA-Schlüssel (N,3) und (N,5)!
- e) Berechnen Sie p und q sowie das kleinste gemeinsame Vielfache λ von p 1 und q 1!
- f) Auf welchen privaten Exponenten für (N,7) kommt man, wenn man den erweiterten Euklidischen Algorithmus auf e und λ anwendet? Würden c) bis e) einfacher oder schwieriger, wenn man von (N,7) und dem so berechneten d ausgeht?

Aufgabe 2: (8 Punkte)

a) Schreiben Sie

$$x = 1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{5}}}}$$

als gewöhnlichen Bruch!

- b) Berechnen Sie die Kettenbruchentwicklung von $\sqrt{15}$!
- c) Welche Zahl wird durch den periodischen Kettenbruch

$$y = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}}$$

dargestellt? (Hinweis: Betrachten Sie z = 1 + 1/y.)

Aufgabe 3: (3 Punkte)

Finden Sie einen Bruch mit höchstens zweistelligem Nenner, der den Bruch $\frac{13579}{24680}$ mit einem Fehler von höchstens einem Tausendstel approximiert!

Abgabe bis zum Freitag, dem 18. Oktober 2019, um 11.55 Uhr