9. Februar 2004

15. Übungsblatt Höhere Mathematik II

Gleichzeitig Themenvorschläge für die kleinen Übungen am 12. Februar 2004

Fragen: (je ein Punkt)

Die Antworten auf die nachfolgenden Fragen sollten nicht länger als etwa zwei Zeilen sein und lediglich eine kurze Begründung enthalten. Antworten ohne Begründung werden nicht gewertet.

- 1) Richtig oder falsch: $f: \mathbb{R}^n \to \mathbb{R}$ sei differenzierbar. Falls f in einem Punkt x des Würfels $-1 \le x_i \le 1$ für i = 1, ..., n ein Maximum annimmt, ist dort grad $f = \vec{0}$.
- 2) Richtig oder falsch: f sei auf $D = \{x \in \mathbb{R}^n \mid ||x|| < 2\}$ definiert und ∇f sei dort nirgends gleich dem Nullvektor. Dann nimmt f sowohl sein Maximum als auch sein Minimum in $M = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ auf der Einheitssphäre $\{x \in \mathbb{R}^n \mid ||x|| = 1\}$ an.
- 3) Richtig oder falsch: Falls die stetig differenzierbare Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ nirgends ein Maximum hat, ist sie unbeschränkt.
- 4) Konstruieren Sie eine mindestens zweifach differenzierbare Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, für die keine der beiden partiellen Ableitungen überall verschwindet, aber $\nabla f(0,0) = \vec{0}$ ist, ohne daß der Nullpunkt Maximum, Minimum oder Sattelpunkt wäre!
- 5) Richtig oder falsch: Die Matrix $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ ist positiv definit.
- 6) Richtig oder falsch: Verdoppelt man alle Werte einer Meßreihe, verdoppelt sich dadurch auch die Standardabweichung.
- 7) Nach dem Brechungsgesetz gilt für die Winkel α des einfallenden und β des gebrochenen Strahls die Beziehung $\frac{\sin \alpha}{\sin \beta} = n$, wobei n der (relative) Brechungsindex ist. Wie wirken sich Fehler bei der Bestimmung von α und β auf n aus?
- 8) Zehn Dämonen seien nach den Regeln des LAPLACEschen Fehlermodells damit beschäftigt, Ihre Meßergebnisse zu verfälschen. Wie groß ist die Wahrscheinlichkeit, daß das Ergebnis trotzdem richtig ist?
- 9) Eine Meßreihe habe Mittelwert 3,8 und Standardabweichung 0,1. Mit welcher Wahrscheinlichkeit ist der dritte Meßwert größer als vier?
- 10)Zur Bestimmung des wahren Werts einer physikalischen Meßgröße werde diese fünfzigmal gemessen; die entsprechende Meßreihe habe einen Mittelwert von 3,145 und eine Standardabweichung von 0,07. Mit welcher Wahrscheinlichkeit liegt der wahre Wert zwischen 3,14 und 3,145?
- 11)Bestimmen Sie ein Intervall, in dem der wahre Wert mit 99%-iger Wahrscheinlichkeit liegt!
- 12) Die Zufallsvariable X habe Mittelwert \overline{x} und Standardabweichung σ . Bestimmen Sie den Mittelwert und die Standardabweichung der Zufallsvariablen U = 2X + 1!

Aufgabe 1: (5 Punkte)

- a) Bestimmen Sie alle (lokalen) Maxima und Minima sowie die Sattelpunkte der Funktion $f(x,y) = y^4 3xy^2 + x^3$ in \mathbb{R}^2 !
- b) Ein Produkt werde aus drei Resourcen hergestellt, die jeweils 80 DM, 12 DM bzw. 10 DM pro Einheit kosten. Aus x Einheiten der ersten, y Einheiten der zweiten und z Einheiten der dritten lassen sich $50x^{2/5}y^{1/5}z^{1/5}$ Einheiten des Produkts fertigen. Wie viele Einheiten können für 24 000 DM maximal gefertigt werden?

Aufgabe 2: (5 Punkte)

a) Beschreiben Sie die Menge

$$M = \left\{ (x, y) \in \mathbb{R}^2 \mid \frac{x^2}{4} + \frac{y^2}{9} \le 1 \right\}$$

geometrisch!

b) Bestimmen Sie die Maxima und Minima von $f(x, y) = x^2 + y^2 - 2y$ in M!

Aufgabe 3: (5 Punkte)

a) Bestimmen Sie den größten Quader mit achsenparallelen Kanten, der im Ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

liegt!

b) Die Quadrik $Q \subset \mathbb{R}^2$ sei gegeben durch die Gleichung

$$(x,y)A\begin{pmatrix} x \\ y \end{pmatrix} = 1$$
,

wobei die Determinante der symmetrischen 2×2 -Matrix A von Null verschieden sei. Bestimmen Sie jene Punkte der Quadrik, in denen der Abstand zum Punkt (0,0) ein relatives Minimum annimmt! Lassen sich diese Punkte auch geometrisch interpretieren?

Aufgabe 4: (5 Punkte)

Zwischen 1911 und 1960 wurden jedes Jahr die mittleren Oktobertemperaturen in München gemessen; der Mittelwert der 50 Werte ist 7,974 und die Standardabweichung 1,416. Wir nehmen an, die Meßwerte seien normalverteilt.

- a) Wie groß ist die Wahrscheinlichkeit dafür, daß die mittlere Temperatur in einem bestimmten Jahr zwischen sieben und acht Grad liegt?
- b) Wie groß ist die Wahrscheinlichkeit dafür, daß sie unter sechs Grad sinkt?
- c) Wie groß ist die Wahrscheinlichkeit dafür, daß sie auf über zehn Grad steigt?
- d) Wie warm muß es werden, daß man von einem "Jahrhundertherbst", reden kann, d.h. einen Oktober, der so warm ist, wie es nur einmal alle hundert Jahre vorkommt?

Aufgabe 5: (5 Punkte)

- a) Der jährliche Höchststand des Pegels Haltern des Flusses Stever ist mit ziemlich guter Genauigkeit normalverteilt mit Mittelwert 4 m und Standardabweichung 2 m. Wie groß ist die Wahrscheinlichkeit dafür, daß er 2005 zwischen zwei und drei Metern liegt?
- b) Wie groß ist die Wahrscheinlichkeit dafür, daß der Fluß nächstes Jahr irgendwann einen Pegelstand von mehr als sieben Meter erreicht?
- c) Was können Sie über die entsprechende Wahrscheinlichkeit für letztes Jahr sagen?
- d) Ab welchem Pegelstand kann man von einem Jahrhunderthochwasser reden?
- e) Können Sie auch sagen, ab welchem Pegelstand man von einem Jahrhhunderttiefststand reden kann?

Die Verteilungsfunktion der Standardnormalverteilung

	Die	Vertei	llungsfunk	tion de	r Standar	dnorma	lverteilun	\mathbf{g}	
z	F(z)	z	F(z)	z	F(z)	z	F(z)	z	F(z)
0,00	0,500000	0,01	0,503989	0,02	0,507978	0,03	0,511966	0,04	0,515953
0,05	0,519939	0,06	0,523922	0,07	0,527903	0,08	0,531881	0,09	0,535856
0,10	0,539828	0,11	0,543795	0,12	0,547758	0,13	0,551717	0,14	0,555670
0,15	0,559618	0,16	0,563559	0,17	0,567495	0,18	0,571424	0,19	0,575345
0,20	0,579260	0,21	0,583166	0,22	0,587064	0,23	0,590954	0,24	0,594835
0,25	0,598706	0,26	0,602568	0,27	0,606420	0,28	0,610261	0,29	0,614092
0,20	0,617911	0,20	0,621720	0,32	0,625516	0,23	0,629300	0,29	0,633072
	•		•		0,644309		•		
0,35	0,636831	0,36	0,640576	0,37	•	0,38	0,648027	0,39	0,651732
0,40	0,655422	0,41	0,659097	0,42	0,662757	0,43	0,666402	0,44	0,670031
0,45	0,673645	0,46	0,677242	0,47	0,680822	0,48	0,684386	0,49	0,687933
0,50	0,691462	0,51	0,694974	0,52	0,698468	0,53	0,701944	0,54	0,705401
0,55	0,708840	0,56	0,712260	0,57	0,715661	0,58	0,719043	0,59	0,722405
0,60	0,725747	0,61	0,729069	0,62	0,732371	0,63	0,735653	0,64	0,738914
0,65	0,742154	0,66	0,745373	0,67	0,748571	0,68	0,751748	0,69	0,754903
0,70	0,758036	0,71	0,761148	0,72	0,764238	0,73	0,767305	0,74	0,770350
0,75	0,773373	0,76	0,776373	0,77	0,779350	0,78	0,782305	0,79	0,785236
0,80	0,788145	0,81	0,791030	0,82	0,793892	0,83	0,796731	0,84	0,799546
0,85	0,802337	0,86	0,805105	0,87	0,807850	0,88	0,810570	0,89	0,813267
0,90	0,815940	0,91	0,818589	0,92	0,821214	0,93	0,823814	0,94	0,826391
0,95	0,828944	0,96	0,831472	0,97	0,833977	0,98	0,836457	0,99	0,838913
1,00	0,841345	1,01	0,843752	1,02	0,846136	1,03	0,848495	1,04	0,850830
1,05	0,853141	1,06	0,855428	1,07	0,857690	1,08	0,859929	1,09	0,862143
1,10	0,864334	1,11	0,866500	1,12	0,868643	1,13	0,870762	1,14	0,872857
	•		0,876976	•	•		•		•
1,15	0,874928	1,16	•	1,17	0,879000	1,18	0,881000	1,19	0,882977
1,20	0,884930	1,21	0,886861	1,22	0,888768	1,23	0,890651	1,24	0,892512
1,25	0,894350	1,26	0,896165	1,27	0,897958	1,28	0,899727	1,29	0,901475
1,30	0,903200	1,31	0,904902	1,32	0,906582	1,33	0,908241	1,34	0,909877
1,35	0,911492	1,36	0,913085	1,37	0,914657	1,38	0,916207	1,39	0,917736
1,40	0,919243	1,41	0,920730	1,42	0,922196	1,43	0,923641	1,44	0,925066
1,45	0,926471	1,46	0,927855	1,47	0,929219	1,48	0,930563	1,49	0,931888
1,50	0,933193	1,51	0,934478	1,52	0,935745	1,53	0,936992	1,54	0,938220
1,55	0,939429	1,56	0,940620	1,57	0,941792	1,58	0,942947	1,59	0,944083
1,60	0,945201	1,61	0,946301	1,62	0,947384	1,63	0,948449	1,64	0,949497
1,65	0,950529	1,66	0,951543	1,67	0,952540	1,68	0,953521	1,69	0,954486
1,70	0,955435	1,71	0,956367	1,72	0,957284	1,73	0,958185	1,74	0,959070
1,75	0,959941	1,76	0,960796	1,77	0,961636	1,78	0,962462	1,79	0,963273
1,80	0,964070	1,81	0,964852	1,82	0,965620	1,83	0,966375	1,84	0,967116
1,85	0,967843	1,86	0,968557	1,87	0,969258	1,88	0,969946	1,89	0,970621
1,90	0,971283	1,91	0,971933	1,92	0,972571	1,93	0,973197	1,94	0,973810
1,95	0,974412	1,96	0,975002	1,97	0,975581	1,98	0,976148	1,99	0,976705
2,00	0,977250	2,01	0,977784	2,02	0,978308	2,03	0,978822	2,04	0,979325
2,05	0,979818	2,06	0,980301	2,07	0,980774	2,08	0,981237	2,09	0,981691
2,10	0,982136	2,11	0,982571	2,12	0,982997	2,13	0,983414	2,14	0,983823
2,15	0,984222	2,16	0,984614	2,17	0,984997	2,18	0,985371	2,19	0,985738
2,10	0,986097	2,10	0,986447	2,22	0,986791	2,23	0,987126	2,24	0,987455
	0,987776	2,21	0,988089		0,988396		0,988696		0,987433
2,25				2,27		2,28		2,29	
2,30	0,989276	2,31	0,989556	2,32	0,989830	2,33	0,990097	2,34	0,990358
2,35	0,990613	2,36	0,990863	2,37	0,991106	2,38	0,991344	2,39	0,991576
2,40	0,991802	2,41	0,992024	2,42	0,992240	2,43	0,992451	2,44	0,992656
2,45	0,992857	2,46	0,993053	2,47	0,993244	2,48	0,993431	2,49	0,993613
2,50	0,993790	2,51	0,993963	2,52	0,994132	2,53	0,994297	2,54	0,994457
2,55	0,994614	2,56	0,994766	2,57	0,994915	2,58	0,995060	2,59	0,995201
2,60	0,995339	2,61	0,995473	2,62	0,995604	2,63	0,995731	2,64	0,995855
2,65	0,995975	2,66	0,996093	2,67	0,996207	2,68	0,996319	2,69	0,996427
2,70	0,996533	2,71	0,996636	2,72	0,996736	2,73	0,996833	2,74	0,996928
2,75	0,997020	2,76	0,997110	2,77	0,997197	2,78	0,997282	2,79	0,997365
2,80	0,997445	2,81	0,997523	2,82	0,997599	2,83	0,997673	2,84	0,997744
2,85	0,997814	2,86	0,997882	2,87	0,997948	2,88	0,998012	2,89	0,998074
2,90	0,998134	2,91	0,998193	2,92	0,998250	2,93	0,998305	2,94	0,998359
2,95	0,998411	2,96	0,998462	2,97	0,998511	2,98	0,998559	2,99	0,998605
3,00	0,998650	3,01	0,998694	3,02	0,998736	3,03	0,998777	3,04	0,998817
5,50	0,00000	5,51	5,55005 1	0,02	5,555750	0,00	0,000111	0,04	0,000011