11. Mai 2020

9. Übungsblatt Elliptische Kurven

Aufgabe 1: (5 Punkte)

Beim Verschlüsselungsverfahren nach Elgamal gibt es bekanntlich Probleme, wenn der Absender für mehrere Blöcke die gleiche Zufallszahl verwendet. Gibt es diese Probleme auch bei Unterschriften nach Elgamal?

Aufgabe 2: (5 Punkte)

VAN Duin hat folgende Variante des Unterschriftenalgorithmus von Elgamal vorgeschlagen: Der Unterschreibende wählt einen Körper \mathbb{F}_p , eine elliptische Kurve E darüber, einen Punkt $A \in E(\mathbb{F}_p)$ mit primer Ordnung q sowie als privaten Schlüssel eine Zahl $a \in \{1,2,\ldots,q-1\}$; er berechnet B=aA und veröffentlicht p,E,q,A und B. Zum Unterschreiben einer Nachricht $m \in \{1,2,\ldots,q-1\}$ wählt er ein zufälliges $k \in \{1,2,\ldots,q-1\}$, berechnet R=kA und t=mk+a mod q; die Unterschrift unter m ist (R,t).

- a) Wie läßt sich diese Unterschrift verifizieren?
- b) Vergleichen Sie die Variante mit der klassischen Elgamal Unterschrift!

Aufgabe 3: (5 Punkte)

 $p=2^{16}+3=65\,539$ ist eine Primzahl, und die Gleichung $y^2=x^3+3x+5$ definiert eine elliptische Kurve über \mathbb{F}_p .

- a) Welche Zahlen lassen sich nach der Methode von Koblitz als Punkte dieser Kurve kodieren?
- b) Finden Sie einen Punkt für die Nachricht m = 100.
- c) Welche Nachricht wird durch den Punkt (12345, 29272) kodiert?

Aufgabe 4: (5 Punkte)

Wir arbeiten mit der elliptische Kurve E von Aufgabe 1c) des letzten Übungsblatts mit Basispunkt (0,1) für Elgamal-Unterschriften.

- a) Ein Teilnehmer A verwendet den geheimen Schlüssel sechs. Was ist sein öffentlicher Schlüssel?
- b) Wie kann er die Nachricht "3" unterschreiben?
- c) Zeigen Sie mit der öffentlich verfügbaren Information, daß diese Unterschrift korrekt ist!