23. Oktober 2008

7. Übungsblatt Computeralgebra

Aufgabe 1: (5 Punkte)

Das Gitter $\Gamma \subset \mathbb{R}^5$ sei erzeugt von den Vektoren

$$\vec{b}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \vec{b}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \vec{b}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \vec{b}_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \text{und} \quad \vec{b}_5 = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

- a) Was ist $d(\Gamma)$?
- b) Berechnen Sie nach Gram-Schmidt die zugehörige Orthogonalbasis von \mathbb{R}^5 , und zeigen Sie, daß obige Basis LLL-reduziert ist!
- c) Zeigen Sie: Γ enthält fünf linear unabhängige Vektoren der Länge eins.
- d) Bestimmen Sie alle Vektoren der Länge eins in Γ und zeigen Sie, daß es keine Gitterbasis aus Vektoren der Länge eins gibt!
- e) Zeigen Sie: Das Gitter Γ hat keine Orthogonalbasis.

Aufgabe 2: (5 Punkte)

 $\Gamma=\mathbb{Z}\vec{v}\oplus\mathbb{Z}\vec{w}$ sei ein Gitter in \mathbb{R}^2 . Wir reduzieren diese Basis mit folgendem Algorithmus à la Euklid:

- 1. Schritt: Wähle $k \in \mathbb{Z}$ so, daß $-\frac{1}{2} |\vec{v}|^2 < (\vec{w} k\vec{v}) \cdot \vec{v} \le \frac{1}{2} |\vec{w}|^2$ ist.
- 2. Schritt: Ersetze \vec{w} durch $\vec{w} k\vec{\bar{v}}$.
- 3. Schritt: Falls $|\vec{v}| \leq |\vec{w}|$ endet der Algorithmus; andernfalls werden \vec{v} und \vec{w} vertauscht und wir gehen zurück zum ersten Schritt.
- a) Führen Sie diesen Algorithmus durch für die Gitter $\mathbb{Z}\binom{1}{0} \oplus \mathbb{Z}\binom{\sqrt{2}}{1}$ und $\mathbb{Z}\binom{17}{19} \oplus \mathbb{Z}\binom{8}{9}$!
- b) Zeigen Sie allgemein: Der Algorithmus endet nach endlich vielen Iterationen. Am Ende ist \vec{v} ein kürzester Vektor aus Γ und \vec{w} ein kürzester Vektor aus $\Gamma \setminus \mathbb{R}\vec{v}$.
- c) Die Gitterbasis \vec{v} , \vec{w} , die der Algorithmus liefert, ist LLL-reduziert.

Aufgabe 3: (10 Punkte)

Finden Sie eine LLL-reduzierte Basis des von

$$\vec{\mathbf{b}}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{\mathbf{b}}_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad \text{und} \quad \vec{\mathbf{b}}_3 = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$$

aufgespannten Gitters $\Gamma \subset \mathbb{R}^3$!