16. Oktober 2025

7. Übungsblatt Computeralgebra

Aufgabe 1:

- a) R sei ein faktorieller Ring. Zeigen Sie: Für zwei Polynome f, $g \in R[X]$ ist $I(fg) = I(f) \cdot I(g)$!
- b) Bestimmen Sie die Inhalte der beiden Polynome $f = 12X^5 + 90X^4 + 78X^2 + 18X + 36$ und g = (15X 5)(12X 24) aus $\mathbb{Z}[X]$!
- c) Was sind die primitiven Anteile f^* und g^* von f und g?
- d) Bestimmen Sie $ggT(f^*, g^*)$ und ggT(f, g)!

Aufgabe 2:

- a) Betrachten Sie $f = X^3Y^2 X^3 + X^2Y + XY^2 X^2 + Y^2 XY 3Y + 2$ als Polynom in Y über $\mathbb{Z}[X]$ und berechnen Sie den Inhalt und den primitiven Anteil von f!
- b) Betrachten Sie f nun als Polynom in X über $\mathbb{Z}[Y]$, und berechnen Sie wieder Inhalt und primitiven Anteil!

Aufgabe 3:

Wir betrachten die Polynome $f = 2X^4 - X^3 + 24X^2 - 46X + 17$ und $g = 4X^3 - 46X^2 + 74X - 26$ aus $\mathbb{Z}[X]$.

- a) Finden Sie nach CAUCHY eine obere Schranke für die Nullstellen von f!
- b) Modulo welcher Schranke müssen Sie $ggT(f,g) \in \mathbb{Z}[X]$ kennen um ihn eindeutig bestimmen zu können?
- c) Für welche Primzahlen p könnte $ggT(f^{(p)}, g^{(p)})$ einen kleineren Grad als ggT(f, g) haben?
- d) Berechnen Sie die modularen ggTs für diese Primzahlen!
- e) Wenden Sie den modularen Algorithmus an, zunächst nur mit p=17 und p=19. Bestimmen Sie jeweils den ggT mit führendem Koeffizienten eins!
- f) Finden Sie ein Polynom aus $\mathbb{Z}[X]$, das modulo 17 und 19 gleich diesen Polynomen ist!
- g) Warum ist auch ohne Probedivisionen klar, daß dieses Polynom nicht ggT(f, g) sein kann?
- h) Finden Sie ein anderes Polynom aus $\mathbb{Z}[X]$, das zu den modularen Ergebnissen paßt, und zeigen Sie, daß es der ggT von f und q ist!
- i) Für welche Primzahlen p hat $ggT(f^{(p)}, g^{(p)})$ einen größeren Grad als ggT(f, g)?
- j) Berechnen Sie (mit CAS) die modularen ggTs für diese Primzahlen!

Aufgabe 4:

Wir betrachten die Polynome $f = X^3 - XY^2 + X - Y$ und $g = Y^3 - X^2Y + Y - X$ aus $\mathbb{Z}[X, Y]$.

- a) Finden Sie eine obere Schranke für den X-Grad und für den Y-Grad von ggT(f,q)!
- b) Modulo wie vieler Spezialisierungen für X müssen Sie ggT(f,g) kennen, um ihn zu rekonstruieren?
- c) Für welche $x \in \mathbb{C}$ könnte deg ggT $(f(x, Y), g(x, Y)) < deg_Y ggT(f, g)$ sein?
- d) Berechnen Sie ggT(f(x, Y), g(x, Y)) für x = 1, 0, -1!
- e) Was ist ggT(f, g)?
- f) Für welche Spezialisierungen $x \in \mathbb{C}$ hat ggT(f(x,Y),g(x,Y)) einen größeren Grad als $deg_Y ggT(f,g)$?