24. November 2017

10. Übungsblatt Computeralgebra

Aufgabe 1: (15 Punkte)

- a) Bestimmen Sie eine Größner-Basis des von $P_1 = X^2 + Y^2 + 2X 4Y 27$ und $P_2 = X^2 Y^2 5$ erzeugten Ideals I von $\mathbb{Q}[X,Y]$ bezüglich der lexikographischen Ordnung!
- b) Zeigen Sie, daß die Funktion u = Y separierend ist!
- c) Berechnen Sie die Funktion χ_Y nach der in der Vorlesung angegebenen Methode!
- d) χ_Y hat eine ganzzahlige Nullstelle y_0 . Bestimmen Sie diese!
- e) Finden Sie das $x_0 \in \mathbb{C}$, für das $(x_0, y_0) \in V_{\mathbb{C}}(I)$ liegt!
- f) Zeigen Sie, daß χ_Y zwischen -3 und 6 noch drei weitere Nullstellen hat, und geben Sie zu jeder ein Intervall der Länge eins an, das genau diese Nullstelle enthält!
- g) Berechnen Sie alle zur Bestimmung von $g_Y(X,T)$ notwendigen Spuren von Elementen der Form XY^j über den Maxima-Befehl poly_normal_form unter Verwendung des in e) gefundenen Punkts!
- h) Geben Sie für die Elemente $(x,y) \in V_C(I)$ die Komponente x via g_Y als rationale Funktion von y an!
- i) Zeigen Sie, daß $g_Y(1,Y)$ in $\mathbb{Q}[X,Y]/I$ invertierbar ist und ersetzen Sie die rationale Funktion aus h) durch eine Polynomfunktion! Vergleichen Sie mit der in a) berechneten Gröbner-Basis!
- j) Zeigen Sie, daß $V_{\mathbb{C}}(I)$ aus vier reellen Punkten besteht, und interpretieren Sie diese geometrisch!

Aufgabe 2: (5 Punkte)

Berechnen Sie mit Hilfe des Satzes von Viète die Nullstellen der folgenden Polynome:

- a) $f = X^5 2X^4 11X^3 + 40X^2 44X + 16$
- b) $g = X^5 + 2X^4 4X^3 8X^2 + 3X + 6$