8. November 2017

8. Übungsblatt Computeralgebra

Aufgabe 1: (5 Punkte)

 $f_1, \ldots, f_n \in k[X_1, \ldots, X_n]$ seien Polynome mit der Eigenschaft, daß f_i keine Variable außer X_i enthält. Zeigen Sie: $\{f_1, \ldots, f_n\}$ ist bezüglich jeder Monomordnung eine Gröbner-Basis von $I = (f_1, \ldots, f_n)$!

 $\textit{Hinweis:} \ \ \text{Betrachten Sie} \ \ V_K(I) \ \ \text{und den Vektorraum} \ \ k[X_1, \dots, X_n]/I \, !$

Aufgabe 2: (5 Punkte)

- a) Sei $f = X^2Y^2 X^3 + Y$ und $g = Y^2 X^3 + XY^2$. Zeigen Sie: $V_{\mathbb{C}}(f,g)$ hat acht Elemente, von denen sieben die Vielfachheit eins haben und eines die Vielfachheit drei!
- b) Bestimmen Sie ohne den Umweg über die Spurmatrix das Radikal von (f, g)!

Aufgabe 3: (10 Punkte)
Sei
$$f = 4X^2 - Y^2$$
 und $g = X^2 + 4Y$.

- a) Bestimmen sie die Größner-Basis des Ideals I=(f,g) in $\mathbb{Q}[X,Y]$ bezüglich der lexikographischen Ordnung!
- b) Nehmen Sie die Standardmonome dazu als Basis von $A=\mathbb{Q}[X,Y]/I$ und stellen Sie die Spurmatrix auf!
- c) Berechnen Sie daraus \sqrt{I} !
- d) Bestimmen Sie $V_{\mathbb{C}}(I)$, und geben Sie für jedes Element sowohl des Vielfachheit in $V_{\mathbb{C}}(I)$ an als auch die in $V_{\mathbb{C}}(\sqrt{I})$!