21. Februar 2024

2. Übungsblatt Algebraische Statistik

Aufgabe 1: (5 Punkte)

- a) Zeigen Sie, daß man in der Definition einer Monomordnung die dritte Bedingung, die Wohlordnungseigenschaft also, ersetzen kann durch die Bedingung, daß $(0, ..., 0) \in \mathbb{N}_0^n$ kleiner sein muß als jedes andere Element! (*Hinweis:* Verwenden Sie das Lemma von Dickson in der folgenden Form: Ist A eine Menge von Monomen, so gibt es eine endliche Teilmenge $A' \subseteq A$, so daß (A) = (A') ist.)
- b) Zeigen Sie: Diese Bedingung ist auch äquivalent dazu, daß jeder der n Koordinateneinheitsvektor (0, ..., 1, ..., 0) größer sein muß als (0, ..., 0)!
- c) Geben Sie ein Beispiel einer Ordnungsrelation auf \mathbb{N}_0^n an, die zwar die ersten beiden Forderungen an eine Monomordnung erfüllt, nicht aber die dritte!

Aufgabe 2: (4 Punkte)

Zeigen Sie, daß ein Tupel $e=(e_1,\ldots,e_n)\in\mathbb{N}_0^n$ bezüglich der graduierten lexikographischen Ordnung genau dann kleiner ist als $f=(f_1,\ldots,f_n)\in\mathbb{N}_0^n$, wenn

$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ \vdots \\ e_n \end{pmatrix} <_{\text{lex}} \begin{pmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ \vdots \\ f_n \end{pmatrix}$$

gilt, wobei $<_{lex}$ die lexikographische Ordnung auf \mathbb{N}_0^n (in Spaltenschreibweise) bezeichnet!

Aufgabe 3: (5 Punkte)

Analog zur lexikographischen Ordnung auf \mathbb{N}_0^n können wir auch auf \mathbb{Z}^n eine Relation $<_{\text{lex}}$ definieren durch die Festlegung $(w_1,\ldots,w_n)<_{\text{lex}}(z_1,\ldots,z_n)$ genau dann wenn die erste von Null verschiedene Differenz w_i-z_i negativ ist.

- a) A sei eine nichtsinguläre $n \times n$ -Matrix mit rationalen Zahlen als Einträgen; außerdem sei in jeder Spalte der erste von Null verschiedene Eintrag positiv. Zeigen Sie, daß durch $x <_A y$ genau dann, wenn $Ax <_{lex} Ay$ eine Monomordnung auf \mathbb{N}_0^n definiert wird! (Die Elemente von \mathbb{N}_0^n werden auch hier als Spaltenvektoren geschrieben.)

 Hinweis: Verwenden Sie Aufgabe 1!
- b) Welche Probleme gibt es, wenn die Matrix singulär ist?
- c) Welche Probleme gibt es, wenn der erste nichtverschwindende Eintrag einer der Spalten negativ ist?

Aufgabe 4: (6 Punkte)

- a) Wenden Sie den Divisionsalgorithmus an auf die Division von $f = X^3Y^2 + XY^4 + Y^5$ durch $f_1 = XY 2$ und $f_2 = Y^3 1$ bezüglich der lexikographischen Ordnung!
- b) Dividieren Sie f durch f2 und f1 bezüglich der graduiert-lexikographischen Ordnung!