Algebraic Statistics, Exercise sheet 1

Problem 1: (12 points)
a) Write $S=V\left(X^{2}-Y^{2}, X^{2}-1\right) \subset \mathbb{R}^{2}$ as a finite set of points!
b) Show that it is not possible to determine all the coefficents if the most general quadratic model

$$
P=a X^{2}+b X Y+c Y^{2}+d X+e Y+f
$$

if only the values of P in the points of S are known!
c) Identify those types of quadratic models that can be identified by their values on S !
d) Now let $T=\{(0,0),(0,1),(0,-1),(1,1)(-1,-1)\} \subset \mathbb{R}^{2}$ be a given sample. Find (by trial and error) two polynomials $f, g \in \mathbb{R}[X, Y]$ such that $T=V(f, g)$!
e) Can the coefficents of P from b) be computed from the values of P on T ?
f) If not, find those simpler quadratic models for which this is possible!

Problem 2: (2 points)
a) Let R be a commutative ring. Show that the intersection of arbitrarily many ideals of R ist again an ideal!
b) Does the same hold for their union?

Problem 3: (6 points)
An ideal I in a domain R is called a principal ideal, if there exists an $f \in R$ such that $I=\{f g \mid g \in R\}$ consists of all multiples of f. If every ideal in a ring R is a principal ideal, R is called a principal ideal domain.
a) Let $R=\mathbb{Z}$ and $a, b \in \mathbb{Z}$. Find numbers $c, d \in \mathbb{Z}$ such that $(a) \cap(b)=(c)$ and $(a, b)=(d)$!
b) Show that \mathbb{Z} is a principal ideal domain!
c) Now let $R=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ and $f_{1}, \ldots, f_{m} \in R$. Show that $V\left(f_{1}, \ldots, f_{m}\right)=V\left(f_{1}^{2}+\cdots+f_{m}^{2}\right)$!
d) Is $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ a principal ideal domain?

