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Dieses Skriptum entstand parallel zur Vorlesung und kureadia mit
dem Ziel, daf? es mit dglichst geringer Vergerung veifigbar sein
soll. Es ist in seiner Qualit auf keinen Fall mit einem Lehrbuch zu
vergleichen; insbesondere sind Fehler bei dieser Entssgegse nicht
nur moglich, sonderrsicher. Dabei handelt es sich garantiert nicht
immer nur um harmlose Tippfehler, sondern auch um Fehledéei
mathematischen Aussagen.

Im Augenblick entlt das Skriptum um hinteren Teil auch noch teil-
weise sehr vodufige Fragmente, die noch nicht mit dem Rest des Texts
abgestimmt sind; bei diesen kann es auch zu Bezeichnuraysisten-
zen und Schlimmerem kommten.

Das Skriptum sollte daher mit Sorgfalt und einem gewissedtidiuen
gegen seinen Inhalt gelesen werden; falls Sie Fehler fineliéem Sie mir
dies bitte perdnlich oder per e-mail (seiler@math.uni-mannheim.de)
mit. Auch wenn Sie Teile des Skriptums unvérstlich finden, bin ich,
auch im Namen deriknftigen Studenten der Kryptologie-Vorlesuniy, f
entsprechende Hinweise dankbar.
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Kapitel 1
Aufgaben und Umfeld der Kryptologie

81: Einsatzgebiete der Kryptographie

Kryptologie ist zusammengesetzt aus den beiden griectms@ortern
KpuTog = verborgen, versteckt uniidyog = Rede, Darlegung, Ver-
nunft; sie ist also die Wissenschaft vom Geheimen. Sie beates der
Kryptographie (vorypa¢r) = Das Schreiben), die Geheimschriften ent-
wickelt, und der Kryptanalyse (vaivaAOeiv = auflosen, zerlegen), die
versucht, letztere zu analysieren mit dem Ziel, sie zu keack

Die Grundsituation ist also die folgende:

Co—

A mochte eine Nachricht: anB Uibermitteln, jedoch besteht die Gefahr,
dal’ alles, was er @ schickt, auf dem Weg dorthin vcn gelesen und
vielleicht auch vedindert wird; aul3erdendkinte eventuell versuchen,
sich gegeiiberB als A ausgeben oder umgekehrt.

Die Kryptographie versucht, dies zu verhindern, indeanstelle vonn

eine versclilsselte Nachricht schickt, aus der zwds, nicht aber die
Nachrichtm und gegebenenfalls weitere Informationen rekonstruieren
kann.



Kap. 1: Aufgaben und Umfeld der Kryptologie 2

Aufgabe der Kryptographie ist es, in solchen Situationere®ioder
mehrere der Ziele aus folgender Liste (und manchmal audnweitere)
zu erreichen; Aufgabe der Kryptanalyse ist es, dies zu mddn.

a)

b)

c)

d)

f)

9)

h)

GEHEIMHALTUNG: Sie mul3 sicherstellen, dafld zwy nicht aber
in der Lage ist, die Originalnachricht ausc zu rekonstruieren.

VERFALSCHUNGSSICHERHEIT Sie mufR sicherstellen, dal® den
Ubertragenen Text nicht unbemerkt durch einen Text ersetzen
kann, derB dann als eine Nachricht’ rekonstruiert.

SICHERHEIT GEGEN ERNEUTESEINSPIELEN. Sie mul3 sicherstellen,
dalRC denlibertragenen Text nicht unbemerkt ein zweites Mal in
die Ubertragung einspielen kann, so dafjlaubt,A habe ihm die
Nachricht/n zweimal geschickt.

AUTHENTIZITAT: B muR sicher sein, daR die Nachrichtatsachlich
von A kam und nicht vori_. Gelegentlich ist das sogar die einzige
wesentliche Aufgabe der Kryptographiamlich dann, wenn sie et-
wa bei Bankkarten oder Zugangskontrollsystemen spezielben-
tifikation berechtigter Personen eingesetzt wird.

BEWEISBARKEIT. B mul3 einem Dritten gegéiber beweisendnnen,
dal? die Nachrichtn von A kam und nicht vori_ oder ihm selbst
geschrieben wurde.

URHEBERRECHTSSCHUTZA mul3 einem Dritten gegéiber beweisen
konnen, dal3 die Nachricht urspiinglich von ihm kommt und nicht
von C, der sie spter kopiert hat.

KOPIERSCHUTZ B soll zwar in der Lage sein, die Nachrichtausc

zu rekonstruieren; je nach Anwendung soll er aber entweidét n
in der Lage seimn an einen Dritten weiterzugeben oder aber jede
von ihm weitergegebene Kopie soll sich (z.B. durch ein digg
»Wasserzeichen®) zu ihm ziickverfolgen lassen.

DOKUMENTATION DES WISSENSSTANDS Gelegentlich sollB gar
nicht in der Lage sein, die Nachricht zu rekonstruieren, aber
A mochte zu einem sjieren Zeitpunkt beweiserbknen, dald er
zum Zeitpunkt des Absendens vodie Nachrichtn kannte.

RECHNEN MIT VERSCHIUSSELTEN DATEN: Hier soll B fir A eine

Rechnung ausihren, ohne die verwendeten Daten oder das Ergebnis
kennenzulernen.
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Betrachten wir diese Aufgaben etwas genauer.

a) Geheimhaltung

Dies ist diealteste unter den Aufgaben der Kryptographie und zugleich
auch die, @ir die die meisten Verfahren entwickelt wurden.

Heute unterscheiden wir vor allem zwei Arten von Versisselungs-
verfahren:

e Bei der klassischen, symmetrischen Kryptographie ist dieriknis
des Verschisselungsalgorithm@uivalent zu der des Entséiske-
lungsalgorithmus.

e Bei der erst seit knapp einem halben Jahrhundert existeren
asymmetrisches Kryptographie kann der Ent$sbélungsalgorith-
mus nicht mit einem als realistisch betrachteten Aufwarsldem
Verschlisselungsalgorithmus abgeleitet werden, so dal3 letzterer
offentlich bekannt sein darf.

Was das im einzelnen bedeutet und welche Vor- und Nachteilbed-
den An&tze haben, wird uns im Laufe der Vorlesung noch eingehend
besclaftigen.

b) Verfalschungssicherheit

Im elektronischen Zahlungsverkehr zwischen Banken legsiiriich
alle Beteiligten gol3ten Wert auf Geheimhaltung; noch wichtiger ist
aber, dal3 diébertragenen Nachrichten nicht v@dcht werden, dal3 al-
So aus einem Zahlungsauftralger zehn Euro keinétber zehn Tausend
Euro werden kann. Da alles weitgehend automatisclawuérlimissen
alle ibertragenen Nachrichten in einem starr vorgegebenenieiem
Formatabgefaldt sein, und dieses For@@at sich schon wegen derdide
des Bankennetzwerks nicht geheimhalten. Ohnatzlishe Sicherungs-
malRnahmen irde selbst eine zaflige Veranderung dieses Felds erhe-
blichen Schaden anrichten. Eine gewisse &sdhungssicherheitist ge-
geben, wenn das verwendete Versisiskelungsverfahren bei Manipulati-
onen des Chiffretexts bei Entsdiskselung mit hoher Wahrscheinlichkeit
keinen verfinftigen Klartext liefert, allerdings nur dann, wenn aul3er
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Sender und Emgihger niemand in der Lage ist, einen Text zu ver-
schlisseln. Bei Verwendung eines asymmetrischen Kryptovesfeh
braucht man auf jeden Fall zuzliche MalRnahmen wie etwa kryp-
tographisch sichere Bisummen odeahnliches.

c) Sicherheit gegen erneutes Einspielen

Speziell der elektronische Zahlungsverkehr bietet auahBasispiel
dafur, dafl3 eine Nachricht weder verstanden nochaecht werden muf3,
um damit Schaden anzurichten: Wenn etwa eine Zahlungsanmgzu-
gunsten des Lauschers von einer Clearingstelle an dess&mgBschickt
wird, kann dieser sie anhand von Zeitpunkt und Absenderfenyer

mit relativ hoher Wahrscheinlichkeit identifizieren. [Sa#r sie unbe-
merkt sgater noch einmal einspielt, muf3 verhindert werden, daf3 ihm
die Bank das Geld ein zweites Mal gutschreibt. Dazu mul3 diehNa
richt beispielsweise eine eindeutige und nicht &sthbare Transak-
tionsnummer enthalten, anhand derer Dubletten erkanmtemer

d) Authentizitat

Nicht nur bei Zahlungsanweisungen ist es oft von entschelieleBe-
deutung, wer der Absender der Nachricht ist. Bei einem sytmsoben
Kryptoverfahren, bei dem die genaue Ver- und Entisssélungsfunktion
nur dem Absender und dem Erapiger bekannt sind und bei dem nur
ein vernachdssigbarer Bruchteil aller theoretisclbgtichen Chiffre-
Nachrichten auf eine sinnvolle Entsdbkkelung dihrt, kann sich der
Empfanger einer sinnvollen Nachricht ziemlich sicher sein, dafe
nicht von ihm selbst produzierte Chiffre vom Absender stanei
asymmetrischen Kryptoverfahrenissen andere Wege gefunden wer-
den.

e) Beweisbarkeit

Gelegentlich mul3 der Emghger nicht nur selbsiberzeugt sein, daf}
eine Nachricht wirklich vom angegebenen Absender stanontexn er
mul3 dies auch gegaher einem Dritten beweisei®inen, beispielswei-
se wenn der Absender eine eingegangene Verpflichtung mitiltes
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will. Hier bietet der gerade skizzierte Einsatz eines symnisehen Kryp-
toverfahrens keinen Schutz, denn der Absender kann jazeitlidre-
haupten, der Emphger habe die Nachricht selbst geschrieben. Wie wir
sehen werden, kann man aber beispielsweise durch Vertmggcter
Rollen von Ver- und Entschbselungsfunktion eines asymmetrischen
Kryptosystems sogenanngdektronische Unterschriftearzeugen (die

in Deutschland rechtsdfig sind).

f) Urheberrechtsschutz

Manchmal nibchte der Absender afer beweisendnnen, dafd der Inhalt
der Nachricht (etwa die Ide@rfein neues Produktionsverfahren oder ein
Musikstick) von ihm stammt; insbesonderéamte er den Emghger
daran hindern, es als eigene Leistung auszugeben odeugnhhkafver-
breiten. Dazu dienen meist sogenang\i¢éasserzeichen“, d.h. Zusatz-
informationen, die unsichtbar mit der Nachricht veikft sind. Die
Techniken dazu stammen oft aus der sogenarnsteganographianit
der wir uns im achsten Paragraphen kurz beiftigen werden.

g) Kopierschutz

Fruher gab es spezielle Farbstifte, deren Schiift $chwarz/Weil3-
Kopierer nicht lesbar war; heute haben Farbkopierer sje8eftware,
die dafir sorgt, dal3 keine Geldscheine kopiert werden. Eine Comput
erdatei dagegen kann beliebig oft kopiert und an anderemeijeben
werden. Die einzige Kglichkeit fur einen effizienten Kopierschutz be-
steht daher darin, die Informationen nur in versislselter Form zur
Verfigung zu stellen. Da auch jedes Entsiglskelungsprogramm prob-
lemlos kopiert werdendnnte, mufl3 die Entsaisselung durch Spezial-
hardware erfolgen. Diese mul3 auch gegen Logikanalysatesstent
sein, beispielsweise weil kritische Sakkel in auslesesicheren Regis-
tern gespeichert sind. Da dies viel Aufwand erfordert, sirede real
existierende Kopierschutzschemata nicht sonderlictkkffestattdes-
sen haben die Rechteinhaber zumindest hier in Deutschlaruthge-
setzt, dal3 das Umgehen eines egal wie ineffizienten Kopietzes ein
Straftatbestand ist.
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Teilweise geht es allerdings gar nicht darum, das Kopierendglich
zu machen, sondern nur darum, bei illegalen Kopien dererehénh
identifizierbar zu machen. So soll etwa die ehemalige bhesPre-
mierministerin MARGARET THATCHER in den achtziger Jahren ange-
ordnet haben, die Word Prozessoren ihrer Minister und engisti-
tarbeiten so umzuprogrammieren, dal} jeder durch geémyngeé Vari-
ationen im Zeilenvorschub einem Fachmann dérkchluld auf den
Autor gestattete. (Word Prozessoren waren elektrischeefbrhaschi-
nen mit einem Mikroprozessor und einem Speichermediumeitien
Teil jener Grundfunktionen beherrschten, die heute innedextverar-
beitungsprogramm selbstveastllich sind.) Nairlich funktionierte die
Identifikation des Autors nur, wenn das Original vorlag,rabe meisten
Zeitungen druckten solche Dokumente im Faksimile ab um myenre
dafl’ wirklich alles echt war. Heute tippen Plattformen wikM&aks
alle geheimen Dokument neu, um solche atze zu unterlaufen.

Alternativ kdnnen die Verfasser zumindest bei manchen Dokumenten
auch leichte semantisch&nderungen vornehmen; beispielsweise ist
von derosterreichischen Telephongesellschaft bekannt, dafh ge |
des Telephonbuch auch einen nicht existierenden Teilneaufieimmt,

um so Plagiate zu enttarnen. Eine entsprechende Taktiknbenen
Handkichern mit in jedem Exemplar verschiedenem Zusatztérhie
wieder zur Enttarnung von Leckaliren.

Heute verwendet man sogenannte digitdMasserzeichen”. Gute Was-
serzeichen risssenrobust sein, d.h. sie sollen auch noch nach gagngf
gen Veanderungen des Originals nachweisbar sein. Das Wasd&greic
in einem digitalen Musiksick sollte also beispielsweise im Idealfall
auch in einer analogen Kopie noch nachweisbar sein. Moderye-
toverfahren Bnnen das gehrleisten.

h) Dokumentation des Wissensstands

Wer ein Patent anmeldet, mul3 sein Verfahren offenlegerit hahe
Gehihren, und s@testens nach siebzehn Jahren kann es jeder frei nutzen.
Wer allerdings kein Patentanmeldet, mul3 damit rechnereida®hderer
dieselbe Idee hat, diese patentier@dt] woraufhin er selbst dann sein
Verfahren nicht mehr oder nur noch nach Zahlen von Lizensigein
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anwenden darf. Ein solches Patent wird dem Konkurrentendatigs
nicht erteilt, wenn jemand nachweisen kann, dal’ dieset dexherste
war, der die ldee hatte. Das sogenartitee stampingst das digitale
Analogon einer Stechuhr: Sie kann ein Dokument beweisbhanei
Zeitpunkt zuordnen, ohne dalf3 es einem Dritten bekanntgegeérden
mulf3.

1) Rechnen mit verschltisselten Daten

Die meisten Computer haben die meiste Zeit fast nichts zunun
selten fallen umfangreiche Rechnungen an, mit denen sie dier-
dings eheriiberfordert sind. Daher liegt es nahe, alle Rechner eines
Unternehmens zu einem sogenanrged zusammenzufassen und an-
fallende Aufgaben jeweils auf solche Rechner zu verteilis® gerade
sonst nichts zu tun haben. Dabei mul3 man sich nicht unbedurgt
ein Unternehmen besdmken; beintloud computingtellt ein externer
Anbieter verschiedenen Unternehmen und Privatpersordariserien-
tiert Rechnerkapa#t zur Verfigung. Zumindest sensible Daten sollten
dabeli, wenn sié@berhaupt in decloudverarbeitet werden, vor dem An-
bieter gesciitzt werden. Dazudnnte beispielsweise elmomomorphes
Verschiisselungsverfahremerwendet werden, das mit allen Rechen-
operationen kompatibel ist. Solche Verfahren gibt es bkersie sind
allerdings deutlich aufwendiger als die meisten Rechnonde man
anschlie3end mit den Daten durghfen ndchte, so daf3 dies heute noch
nicht praktikabel ist.

§2: Alternativen zur Kryptographie

Am einfachstendl3t sich eine Nachricht geheim halten, wenn es gelingt,
schon ihre blo3e Existenz zu verschleiern. Entsprecheaciaiiken be-
zeichnet man alSteganographigon oteyavog = schitzend, verdeckt.

Uber die beiden woliltesten bekannten Anwendungen der Steganogra-
phie berichtet HRODOT(~484 v.Chr.~424 v.Chr.) in seinehlistorien.

Die erste Episode ist aus der Zeit des ionischen Aufstar@® (& hr.)

der kleinasiatischen und der zyprischen Griechen gegepeatssche
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Oberherrschaft. Zur Vorbereitung schickte der ExtyranmMdet, His-
TIAIOS (vor 520 v.Chr.—493 v.Chr.), der am persischen Hof in Susa lebte,
eine Nachricht an seinem Nachfolger und SchwiegersahaTAGORAS
(gefallen497). HERoDOT schreibt dazu (Buch 'V, 35):

Gerade damals kamamlich auch jener Bote mit dem beschrie-
benen Kopf aus Susa an, densiAlos geschickt hatte, um
ARISTAGORAS zum Abfall von dem Knig zu bewegen. Denn
HisTialos fand, weil alle Stral3en bewacht wurden, kein anderes
sicheres Mittel, RISTAGORASzuUm Abfall zu ermutigen, als sei-
nem getreuesten Sklaven das Haar zu scheren, Zeichenrari sei
Kopf zu schreiben, das Haar wieder wachsen zu lassen und ihn
dann nach Milet zu schicken. Der Sklave hatte blo3 den Auf-
trag, ARISTAGORASIN Milet zu bitten, ihm das Haar zu scheren
und seinen Kopf zu betrachten. Die Zeichen auf dem Kopf aber
mahnten, wie ich schon sagte, zum Abfall.

Die zweite Episode ist im siebten Buch der Historien zu findaer
491 v.Chr. von seinem Mitknig KLEOMENES abgesetzte und im per-
sischen Exil lebende Ex-#hig DEMARATOS von Lakedaimon (Sparta)
erfuhr von einer geplanten Aiifstung der Perseiif einen Feldzug
gegen Griechenland.ggoboTschreibt (Buch VII, 239):

DEMARATOS, der Sohn des RISTON, der nach Persien entflo-
hen war, war den Lakedaimoniern, wie ich glaube und wie die
Umstnde nahelegen, nicht eben wohlgesinnt; man kann da-
her auch annehmen, dal3 er nicht aus Wohlwollen, sondern aus
Schadenfreude gehandelt hat. GenugvBRATOS, der in Susa
lebte und wul3te, dalRERXES den Zug gegen Hellas im Sinne
hatte, wollte den Lakedaimoniern Kunde davon geben. Wehl si
dies auf andere Weise nicht bewerkstelligen liel3 — er muBte d
Entdeckung tirchten — verfiel er auf folgenden Gedanken: Er
nahm eine doppelte Schreibtafel und schabte den Waenzsug

ab. Dann schrieb er auf das Holz deifdichens den Plan des
Konigs undiberzog die Schrifizge wieder mit dem Wachs. Das
leere Tafelchen sollte den \thtern an der Stral3e keinen Arg-
wohn erwecken. Als die Tafel nach Lakedaimon gelangte, ver-
standen die Lakedaimonier nicht, was die leere Tafel beteut
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sollte. KLEOMENES Tochter GORGO, LEONIDAS Gemahlin, war

es endlich, wie man mir eéhlt, die den Sinn erriet. Sie sagte,
man solle das Wachs abschaben; dann werde man auf dem Holz
die Buchstaben finden. Sie taten es, fanden die Botschaft und
lasen sie, teilten sie dann auch ddrigen Hellenen mit. So soll

sich jene Kunde verbreitet haben.

(zitiert nachA. HORNEFFER Ubersetzung deflistorien,erschienen als
Kroners Taschenausgabe 2R4oner Verlag Stuttgart, 1955)

Beides Mal war die Steganographie kriegsentscheidendiddesche
Aufstand war erfolgreich, und die Griechen begannen nabtlalEder
Nachricht von [EMARATOS, ihrerseits eine Flotte zu bauen. Als die
Flotte des Persetnigs XERXES schliel3lich fertig war und er seinen
vermeintlichenUberraschungsangriff startete, waren die Griechen gut
vorbereitet und konnten die Perser zwar nur miickl(der Wind wehte

in die richtige Richtung), da@ir aber umso vernichtender schlagen.

Zumindest im zweiten Fall freilich hing der Erfolg davon alaf3 zwar
GoRrko auf die ldee kam, das Wachs von der Tafel abzukratzen, nicht
aber einer der \Bchter. Sobald jemand die Existenz einer Nachricht
vermutet, wird er sie mit ziemlicher Sicherheit auch finden.

Aus diesem Grund wird Steganographie oft mit einer Veisstglung
kombiniert. Ein Beispiel, das zwar eher der klassische Kgmphie
als der Steganographie zuzurechnen ist, bietet das mesoische
ArzneimittellexikonUruanna,das im Auftrag des letzten assyrischen
Herrschers ASURBANIPAL (1627v.Chr) zusammengestellt wurde. Dort
findet man Rezepte der Aenschenkot verarbeitest Du mit dem Urin
eines Hundes zu einem Brei und verbindest [den PatientemjtdBei
Ausgrabungen wurde aber auch eine zweispaltige Tafel defurdie
jeweils in der linken Spalte den Namen einer Pflanze entineltin der
rechten ein Wort widMenschenkot, Fledermauskopf, Taubendreck,
Ganz offensichtlich waren diese®ter also Chiffreniir Heilpflanzen.
Trotz des Ekels, den dieartlich genommenen Rezepte verursachen,
war der steganographische Effekt aber so grol3, daf’ die Rdzegr
die Jahrtausende tradiert und @8eisheit der Alten sogar praktiziert
wurden.(s. Bild der Wissenschatft, Heft 6/2007, S. 40-41)
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Im 18. Jahrhundert sehr pogulwar beispielsweise KSTIAN FRANTZ
PAULINI s Heylsame Dreck-Apotheckeo es unter anderem heil3t:

Im Koth und im Urin liegt GOTT und die Natur. Kuhfladen
konnen dir weit mehr als Balsamitzen. Der blosse &se-
dreck geht Mosch und Ambraif. Was Schtze hast du offt im
Kehricht und Mistpiitzen. Der beste Theriak liegt draul3en vor
der THir. (zitiert nach DeutschesArzteblatt 101, Ausgabe 47
vom 19.11.2004, Seite A-3184)

Auch einige heutige Bcher mit Titeln wieLebenssaft UrimderGesund
durch Eigenharrkdonnten ihren Ursprung letztlich in dieser erfolgrei-
chen Steganographie haben.

Heute sind Nachrichten auf der Kopfhaut oder unter der Waathsht
einer antiken Tafel sicherlich keine attraktiven Altemah zu einer
E-Mail; dafur bieten Computer aber ganz neuedlichkeiten zur
Steganographie:
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Speichert man etwa Bild- oder Audiodaten in nichtkomprmeieForm,
andert es im allgemeinen den visuellen oder auditorischadréck
nicht, wenn man das letzte Bit des digitalisierten Wertsamdert: Wie
Experimente zeigen, kann unser Auge nicht mehr als etwaré4vede-
ne Grauwerte unterscheiden; da Grauwerte abkcherweise als Bytes
und damit mit 256 raglichen Werten abgespeichert werdeif3tl sich
problemlos das letzte Bit oder gar Bitpaar tibvertragung zuszlicher
Information verwenden — zumindest solange dies niemanchwiet:
Die Korrelation zwischen den Endbits benachbarter Bytelsasecht-
en Bild- oder Audiodaten im Falle exakter Abtastung erladbkleiner
als beim Aufmodulieren einer steganographischen Nadhieh einer
verrauschten Abtastung dagegen wird sie wohl en@ggr sein.

Auch in Texten lassen sich Nachrichten verstecken; untar &L
www.spammimic.com etwa kann man eine Nachricht in eispam
Email einbetten, die sich wahrscheinlich niemand genanselzen
mochte. AusUruanna, dem gerade erahnten Arzneimittellexikon,
wurde

Dear Business person ; Your email address has been
submitted to us indicating your interest in our newsletter
I If you no longer wish to receive our publications

simply reply with a Subject: of " REMOVE” and you will
immediately be removed from our database . This mail

is being sent in compliance with Senate bill 1622 ,

Title 5, Section 305 . THIS IS NOT A GET RICH SCHEME
I Why work for somebody else when you can become rich
in 88 MONTHS ! Have you ever noticed nobody is getting
any younger plus nobody is getting any younger ! Well,
now is your chance to capitalize on this ! WE will

help YOU decrease perceived waiting time by 200% and
turn your business into an E-BUSINESS ! The best thing
about our system is that it is absolutely risk free

for you ! But don’t believe us . Mr Ames of Massachusetts
tried us and says "My only problem now is where to

park all my cars” ! We are licensed to operate in all

states ! We beseech you - act now . Sign up a friend
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and your friend will be rich too ! Thank-you for your
serious consideration of our offer !

Gibt man diese Nachricht awfww.spammimic.com/encode.shtml
ein, ertalt man wieder das Wort Uruanna.

Die Steganographie ist nicht die einzige Methode, um ohreis|ie
Geheimschrift Nachrichten geheim zu halten: Auch eine dererz
wartenden Gegnern unbekannteimbthe Sprache oder Schrift kann
diese Funktion eifilen.

Im alten China beispielsweise, wo fast niemand lesen uncedsEn
konnte, war die gedhnliche Schrift schon geheim genug; spezielle
Geheimschriften wurden dort nie entwickelt. (Als Schutzh@sekundi-
gen war allerdings eine Form der Steganographie gedhlich: Die
Nachricht wurde auf ein Seidentuch geschrieben und diesesnz
mengekiillt und mit Wachs umdllt, so daf3 es aussah wie eine einfache
Wachskugel.)

Heute gibt es in jedem Staat einen nicht vernassigbaren Prozentsatz
von Birgern, die lesen und schreibedrien; mit wenig bekannten
Sprachen konnte man aber auch im zwanzigsten Jahrhuntiest ise
jahrelangen Grol3einsatz noch Erfolge erzielen: Der eenaigerikani-
sche Code im zweiten Weltkrieg, den die Japaner nie knaokent&n,
war der der Navajos.

Die Navajos waren einer der wenigen Indian@nstne, die noch nie
Kontakte zu deutschen Forschern gehabt hatten (Japan wtsidbiand
kampften im zweiten Weltkrieg auf derselben Seite), und Bpeache

Ist mit keiner europischen oder asiatischen Sprache verwandt. Nach
damaligen Schtzungen gab es weniger als dreil3ig Nicht-Navajos, die
diese Sprache beherrschten. Die meisten von ihnen wardfiraler

von Missionaren gemeinsam mit Navajo-Kindern aufgewathkei-

ner war Japaner oder Deutscher. Aul3erdem gab es zu diesah8pr
keine Schrift, und sie ist so kompliziert, dal3 és éinen Erwachsenen
praktisch unmglich ist, sie zu lernen: Zum einen ist die Grammatik
sehr komplex, zum anderen hat — wie im Chinesischen, nicért iaip
Japanischen — derselbe Laut je nach Tolg verschiedene Bedeutun-
gen. Zwar gab edif viele militarische Fachbegriffe keine &ter, aber
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dafur vereinbarten die sogenanntg&ode Talker* Umschreibungen wie
etwa Namen von ¥geln fir die verschiedenen Flugzeugtypen. Zum
Buchstabieren von Eigennamen und uismglich nicht vorgesehenen
Woaortern wurde auch nocltuf jeden Buchstaben des englichen Alpha-
bets ein Navajo-Wort vereinbart. Die Japaner konnten keimege der
soubermittelten Nachrichten verstehen.

Entsprechend erwies sich 1960, beim damaligen UN-Einsatbrmals
belgischen Kongo das Gaelisch der irischen Soldaten alsffdiktivste
Kryptographie.

Fur die Hauptlast der heutigen Kryptographie freilich, dienkmu-
nikation und den Handelber das Internet, sind solche Verfahren nicht
tauglich; hier geht nichts ohngseheimschriften*, d.h. ohne eine al-
gorithmische Transformation der Nachricht in einen Chiffretextc.
Dies und nogliche Angriffe dagegen wird daher den Hauptinhalt dieser
\orlesung ausmachen.

83: Das Umfeld der Kryptologie

Auch das beste Kryptoverfahren ist nutzlos, wenn der Geginer
Entschiisselungsfunktion kennt oder sich den Klartext auf andezis&V
unablangig vom Chiffretext verschaffen kann. Ditbertragung einer
Nachricht gehtiber eine ganze Reihe von Schritten, und ein etwaiger
Gegner kann sich aussuchen, wo er angreifen williNiab wird es
sich immer das aus seiner Sicht s@uwohste Glied der Kette aussuchen.

Zusatzlich zur Kryptanalyse hat er beispielsweise folgendgli¢hkei-

ten:

1. Durch Bestechung oder sogenantgsman engineeringdersocial
engineering,d.h. durch Ausnutzen der Dummheit und/oder Nai-
vitat von Mitarbeitern im Umfeld des Absenders (oder auch von
diesem selbst!) kann er versuchen, den Inhalt wichtigehNelaten
zu erfahren, bevor diese auch nur abgeschickt werden. Auaind
Abhoren von Telephonen, Einlxche usw. kann er Informationen
gewinnen.

2. Mit denselben Methoden oder durch klassisches Hacken &an
sich Zugriff auf den Computer des Absenders verschafferdaffia
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sorgen, dal3 entweder die unversigselte Nachricht oder alle im
Computer gespeicherten Sihktel an ihn geschickt werden. Einen
gewissen Schutz dagegen bieten nur Betriebssysteme @henh
Sicherheitsklasse, und das sind nicht die, mit denen reeRiaghner
standardral3ig ausgeliefert werden.

. Auch wenn er nicht bis zum Computer vordringen kann undhauc
keinen freiwilligen oder unfreiwilligen Komplizen in dexs Nahe
hat, kann er versuchen, den Bildschirminhalt zu lesen: DxelP
werden im Prinzip geschaltet durch Rechteckimpulse, déuhei
gen fur hochfrequente Sime jedoch nicht nur einenHMschen
Widerstand, sondern auch eine Kapakitaben, fungieren sie als
RC-Kreis und damit als ein sogenannter Tiefpal¥filter. Durch da
Abschneiden der hohen Frequenzen entstehen an den Flaeken d
RechteckdJberschwingungen (88s-PHanomen), die auch noch in
einer Entfernung von etwdhfzig Metern mit einer Antenne aufge-
fangen werden émnen und die Rekonstruktion des Bildschirmin-
halts gestatten. Schutz dagegen ist nur durch aufwendigsiah
lische Abschirmungsmalinahmerdghch: Der gesamte Computer
muf3 in einem ERADAY scher Kafig sitzen und alle Kabel iissen
abgeschirmt sein.

Nnn

Das Gibbs-Phénomen fur Rechteckimpulse

Beim Empfnger entstehen natich wieder im wesentlichen genau
dieselben Probleme.

Betrachten wir zur lllustration die wesentlichen Schratd dem Weg
einer Textnachricht von einem Absenderzu einem Emg#ngerB im
Hinblick auf Angriffsmdglichkeiten eines Gegners

1. Moglicherweise hat sich bereits Notizeruber den vorgesehenen

Inhalt der Nachricht gemacht; fallen diese irgendwie vorbaer
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nachher (Suche im Abfall) in die&hde vori_, kennt dieser zumin-
dest den wesentlichen Inhalt der Nachricht.

WennA hinreichend bedeutend ist, diktiert er die Nachricht einer
Sekreéirin oder einem pedéslichen Referenten. Falls die Fen-
sterscheiben mit einem Laserstrahl abtastet oder gar éaroption
oder einen Spion im Raum plazieren konnte, oder aber dieeBeikr
gekauft hat, kennt er die Nachricht.

. Wahrend A tippt oder tippen af3t, erscheint die Nachricht auf

dem Bildschirm. Falls Bildschirm, Computer und Tastatuchmi
aufwendig abgeschirmt sind, karin mit einer nicht garzu weit
entfernten Antenne die Signale auffangen und die Nachrei{an-
struieren. Falls ein Trojaner auf dem Computer aktiv ishrkdieser
den Klartext der Nachricht weiterleiten.

. Nachster (fakultativer) Schritt ist die Quellenkodierund€r Daten-

komprimierung): Zumindestlange Nachrichten mitvielernAngen
sollten zwecks besserer Ausnutzung der Kanalkapiakdmprim-
lert werden; wie wir bald sehen werden, énhdas auch zumindest
prinzipiell die kryptographische Sicherheit. Falls fiehl das Kom-
primierungsprogramm ein Freeware-Programm Mamip Enterpris-
es Central Europe Ltdst, wird es vielleicht auch noch zazlich die
Nachricht ari_ weiterleiten. Selbst wenn das Programahnend der
Woche der Sicherhdith Rahmen der Aktio®ie Kriminalpolizei fat
erworben wurde, besteht ein gewisses Restrisiko, dal} leslabei
vielleicht um einen sogenannterciAUBLE-Trojaner handelt, mit
dem eine Bundesbéhde den Computerbesitzer augspn nichte.

. Nun wird die Nachricht versciselt. Die Kryptologie ist dr

die Sicherheit des Versdidselungsverfahrens verantwortlich; falls
diese nicht ausreicht, karin entschiisseln. Beim Programm, das
die Verschiisselung durclithrt, hatA dieselben Probleme wie bei

dem zur Quellenkodierung.

. Da kein Ubertragungskanal perfekt ist, folgt alséiahstes meist

noch eine Kanalkodierung, d.h. die Anwendung eines feblerk
rigierenden oder zumindest fehlererkennenden Codes ¢thalbes
Programm ein Trojaner ist, der den Computer durchsuchérinefr
auch hier dieselben Risiken; andernfalls ist die Umsetzumaglem-
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los, da sie auf bereits versdislselten Text angewandt wird.

7. Die Nachricht wirdibertragenC kann sie auffangen und die (nicht
geheime) Kanalkodierungickgangig machen; danach hat er ein
kryptanalytisches Problem zaden.

8. Die Nachricht kommt beim EmahgerB an, und die Schritte 1-6
werden in umgekehrter Reihenfolgéckgangig gemacht. An den
Sicherheitsproblemesndert sich dabei nichts entscheidendes.

Hier in der Vorlesung geht es ausschliel3lich um Sichertegjeg einen

moglichen Angriff in Schritt 7, nicht aber um solche gegenaieleren

Schritte oder gar die sicherlich vielfachen weitereadlichkeiten. Alle

Horer missen sich daher bewul(3t sein, daf3 sich auf Kryptograpkia all

kein Sicherheitskonzept aufbaueifdt und dalR selbst perfekte Kryp-

tographie (falls dies figlich sein sollte), durch einen einziger Fehler
anderswo zunichte gemacht werden kann.

1993 vebffentlichte der amerikanische KryptograpRUCE SCHNEIERS

ein Buch mit dem TiteApplied Cryptography1995 erschien eine we-
sentlich erweiterte zweite Auflage, die (zumindest als Rei&) so ziem-

lich alles enthielt, was damals auf dem Gebiet der Kryptieldgkannt
war. Heute vare es unraglich ein solches Buch zu schreiben; deshalb
erschien 2015 zum zwanzajrigen Jubdum ein unveinderter Nach-
druck, ergnzt nur durch ein neues Vorwort, in dem Schneier auf die
seither deutlich vémderte Situation eingeht und auch zu den damals be-
kannten Aktivieiten deNational Security AgendydSA Stellung nahm.
Zum hier diskutierten Problemkreis schreibt er:

Sowhen we learn about the NSA through the documents provided
by Edward Snowden, we find that most of the time the NSA breaks
cryptography by circumventing it. The NSA hacks the compu-
ters doing the encryption and decryption. It exploits baglen
mentations. It exploits weak or default keys. Or it “exfitas’
—NSA-speak for steals— keys. Yes, it has some mathematics th
we don’t know about, but that’s the exception. The most argazi
thing about the NSA as revealed by Snowden is that it isn’'emad
of magic.

This doesn’t mean that cryptography is useless: far fronvhat
cryptography does is raise both the cost and risk of attack.
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... Governments can use laws to subvert cryptography. They
can sabotage the cryptographic standards in the communica-
tions and computer systems you use. They can deliberaselstin
backdoors into those same systems. They can do all of thude, a
then forbid the corporations implementing those systentslito

you about it. We know the NSA does this; we have to assume that
other governments do the same thing.

Never forget, though, that while cryptography is still asestial
tool for security, cryptography does not automatically mea-
curity. The technical challenges of implementing crypaqury
are far more difficult than the mathematical challenges okma
ing the cryptography secure. And remember that the politica
challenges of being able to implement strong cryptography a
just as important as the technical challenges. Securitylg as
strong as the weakest link, and the further away you get fram t
mathematics, the weaker the links become.

84: Forderungen an ein Kryptosystem

Unser Sicherheitsstandard sollte klar sein: Der Gegner rdaint in
der Lage sein, aus dem Chiffretext den Klartext zu rekoresten. Das
Problem an diesem einfach klingenden Satz ist die Fornurggrdarf
nicht in der Lage sein“: Da der Gegner in der Wahl seiner Wit ist,
wissen wir weder, was er weil3, noch was er kann, noch was.er tut

a) Was weil3 der Gegner tber die Nachricht?

Spontan wrde man wohl sagen, dal3 ihm nur der Chiffretext zur
Verfugung steht; in der Kryptographie redet man dann von eisegriff
nur mit Chiffretext

Eine Sicherheit nur gegen diese Art von Angriffen war ailegd noch

nie in der Geschichte der Kryptographie akzeptabel: Wetimjemand

die Muhe macht, eine Nachricht abzufangen und in eine (bei guigr-K
tographie) aufwendige Kryptanalyse einsteigt, wird ensrtich gewisse
Vorkenntnisséiber den Inhalt der Nachricht haben. Die klassischen An-
wendungen der Kryptographie besghkten sich bis vor etwalihfzig
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Jahren haup&chlich auf den mildrischen und diplomatischen Bereich;
beide sind eher nicht bekanfirfgrol3e Individualét und Phantasie. Ein
einigermal3en mit den Vegltnissen vertrauter Gegner kann mit ziemlich
hoher Sicherheit erraten, womit die Nachricht beginnt (Gtheutnant
Knedderle im Generalstab der vierunddrei3igsten Infeedefision an
... )yund endet. Beiden heute dominierenden Anwendungen imddank
bereich und im Internetlft die Kryptographie weitgehend unbemerkt
vom Anwender im Hintergrund ab und muf3 daher, um von Computer
allein verstanden zu werden, mit stark formalisierten Niablenfor-
maten arbeiten. Deren Spezifikation findet man in RFCsalmdichen
Dokumenten, die sich jedermannihelos verschaffen kann. Man muf3
daher realistischerweise davon ausgehen, dal} ein Gegled&Klar-
texts kennt, und man muf3 fordern, daf3 ihm dies nicht daligi &ilch
die restlichen Teile der Nachricht zu entdeddeln oder gar die gesamte
Entschlisselungsfunktion zu rekonstruieren. Wir brauchen alsth au
Sicherheit gegen Angriffe mit bekanntem Klartext

Zumindest seit der Verbreitung von Chipkartefisaen wir dem Geg-
ner sogar noch mehr 8glichkeiten zubilligen: Er kann gelegentlich
auch einen von ihm selbst frei gahite Chiffretexte zu entsdidseln.
Da Kryptographie heutzutage nicht mehr mit Papier und Bfeis
durchgeiihrt wird, missen wir damit rechnen, dal’ sich der Gegier f
eine gewisse Zeit in Besitz einer Entst$delungsmaschine oder Chip-
karte setzen und frdiber diese veifgen kann. Da jeder veiinftige
Mensch seine Scéselandert, sobald er so etwas bemerkt, muf3 der
Gegner die entwendete Hardware wieder unbemerkickgeben; die
Kenntnis, die er zwischenzeitlich gewonnen hat, kann ihrmr ate-
mand nehmen. Damit auclilkftige verschiisselte Nachrichten sicher
sind brauchen wir also fast immer auch n&ibherheit gegen Angriffe
mit frei wahlbarem Chiffretext wobei der aktuelle Chiffretext nadich
ausgeschlossen istalt er in die Hand des Gegnersatwend dieser
die Moglichkeit zur Entsclilsselung hat, ist er kompromittiert. Jeder
spatere Text mul3 aber sicher sein.

b) Was weil3 der Gegner Uber das Kryptoverfahren?

Idealerweise natrlich nichts. Aber das ist noch unrealistischer als
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die Annahme, dal3 er nichtger den Klartext weil3: Wie schonuA
GUSTE KERCKHOFFS 1883 in seiner grundlegenden Arbeia cryp-
tographie militaire feststellte, mul3 man bei jedem inofgerem Um-
fang eingesetzten Verfahren davon ausgehen, dal3 es stuhibier
einen BAngeren Zeitraum hinweg geheimhalteifdtt Anstelle einer
einfachen Versclilsselungsfunktionf, die jeder Nachrichtn einen
Chiffretextc = f(m) zuordnet, soll man eine Funktion benutzen, die
auf3er vonn auch noch von einem zweiten Paramete@brangt, dem
Schlissel.Somit ist alsa: = f(m, s).

JEAN - GUILLAUME - HUBERT - VICTOR - FRANCOIS -
ALEXANDRE - AUGUSTEKERCKHOFFS VONNIEUWEN-

HOF (1835-1903) wurde in der heute niedartlischen
Ortschaft Nuth geboren. Er studierte an der Univer-
sitat Liege, wo er mit dem Doktor der Literaturwis-
senschaften abschlo3. Nachdem er mehrere Stellen als
Lehrer in den Niederlanden und in Frankreich bekleidet
hatte, wurde er schlie3lich Professor Deutsch an der
Ecole des Hautes Etudes Commerciales in Paris. Aul3er
fur seine Arbeit zur Milirkryptographie ist er vor allem
auch nochfir linguistische Studien bekannt, insbeson-
dere auch zur heute weithin vergessenen Kunstsprache
\olaplk.

Im zweiten Kapitel seiner Schrift stellt er folgende Forgd®gen an einen

Verschlisselungsalgorithmus:

1. Das System mul} praktisch, wenn schon nicht mathematiseh,
entschlisselbar sein.

2. Es darf den Schbksel nicht preisgeben und kann ohne nachteilige
Folgen in die Hand des Gegners fallen.

3. Es mul} miglich sein, den Schiksel ohne schriftliche Notizen zu
Ubermitteln und aufzubewahren, und er mul scldern lassen,
wann immer die Korrespondenten die@ngchen.

4. Das System muR siclifftelegraphisch&lbermittlung eignen.

5. Das Verschisselungssystem mul3 tragbar sein und weder seine
Handhabung noch seine Funktion darf die Zusammenarbererezh
Personen erfordern.

6. Schliel3lich ist es auf Grund der Anforderungen seiner émung
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notwendig, dal3 das System leicht anwendbar ist und wedsrggei
Anspannung noch die Kenntnis einer langen Reihe zu beatdten
Regeln erfordert.

An diesen Forderungen hat sich im wesentlichen bis heutbtsiic
geandert. Anstelle telegraphiscHébermittiungen haben wir zwar heute
meist Rechnernetze, aber auch da ist es aus Effiziéndgn durchaus
sinnvoll, mit Standard ASCII Code zu arbeiten statt mit &é¢undenen
Hieroglyphen. Auch an der Forderung nach leichter Anwenrdhghat
sich nichts gandert: Es ware \0llig unrealistisch, vom typischen Inter-
netbenutzer mehr Intelligenz zu erwarten als von einemtéinitten
Im Gefecht.

Regel drei mul3 man heute allerdings neu interpretierenif8icine No-
tizen sind selbstvergndlich weiterhin tabu, wir haben aber das Dilem-
ma, dal} einerseits ein sicherer Sidsel einfach zu lang ist, als daf3 er
mundlich Ubermittelt und auswendig gelernt werdeinkte, dal’ aber
andererseits Aufbewahrung im Computer oderldaermittiung per E-
Mail zu nicht akzeptablen Sicherheitsrisikdithfen. Wie wir bei der
Diskussion von SSL/TLS sehen werden, gibt es zuric&IMoglich-
keiten zur sicheren Sdidselibermittiung per Computer.

Schwieriger ist das Problem, Sdkkel sicher zu speichern. Eine vath
nismafig sichere, aber aufwendige Methode besteht darin, ddasSel
wird auf einer Chipkarte zu speichern. Da diese in falsched# geraten
kann oder mglicherweise auf einem @aparierten Computer eingesetzt
wird, ist klar, dal3 dabei noch zazliche Sicherungsmal3inahmen einge-
setzt werden rssen. Eine behde etwa darin, den Scldsel selbst zu
verschiisseln. Nadirlich stellt sich dabei sofort die Frage, was man mit
demdazuberdtigten Schilissel (denkey encryption keiEK) macht.
Eine Strategie besteht etwa darin, den KEK auf Grund einssviRats

zu berechnen. Dazu kann etwa ein kryptographisch sichemshvdr-
fahren verwendet werden — siehe dazu das entsprechendelKigser
Vorlesung.

Ein mit einem passwortbasierten KEK verdg$gelter Schissel ist zwar
(wenn wir getreu dem ERCKHOFFSchen Prinzip davon ausgehen, dal3
das Verfahren dazu nicht wirklich geheim gehalten werdemkaicht
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sicherer als das Passwort, aber der Gegner braucht zu eingniffA
sowohl die Chipkarte als auch das Passwort. Selbst wenntuik&rte
hinreichend lange in seinem Besitz ist, dal3 er alléghthkeiten fir
das Passwort durchprobieren kann, besteht immerhin necGlthnce,
daf’ der Verlust bemerkt wird und der Sa$del zumindestif kinftige
Kommunikationen nicht mehr verwendet wird. Denkbar, wenchatir
den allaglichen Einsatz recht teuer, sind auch Chipkarten, drersach
einer gewissen Anzahl falscher Eingaben selbst @est

Alternativ zu einem Passworbknte man auch mit biometrischen Daten
arbeiten; erschwinglich und bereits relativ weit verleesind beispiels-
weise Fingerabdrucksensoren. In der Ragbieten jedoch viele davon
keine ausreichende Sicherheit gegen von einerahrean Gegenstand
abgenommene und auf eine geeignete Folie geritzte Findpéicke.

Die erste der IKERCKHOFFSchen Regeln beschreibt ein Dilemma der
Kryptographie, das auch noch heute bestimméndés gesamte Gebiet
ist und mit dem wir uns daher gleich noch viel ditsflicher befassen
mussen. Die zentrale Frage ist:

c) Was kann der Gegner?

Sicher wissen wir nur, dafd er es uns nicht verraten wird; nveisat
er uns schlief3lich nicht einmal, dal3 er unser Gegner istsivd daher
auf Vermutungen angewiesen und sollten ihn, um mit relatof3gr
Wahrscheinlichkeit auf der sicheren Seite zu sein, im Zssféll eher
deutlichUberschtzen.

Die Kryptologie hat als Idealgestalt daberscltzten Gegners den so-
genannten Bresschen Gegner eingdfrt, mit dem wir uns zu Beginn
des Kapiteldiber klassische Blockchiffren noch genauer basaen
weden. Er verdfigtiiber unbegrenzte Rechenkraft, nicht alteer hellse-
herische Bhigkeiten. Seine Entscheidungen trifft er nach den Regeln
BAvEsschen Statististik, und er@t sich nicht daran, daf3 die in der
BAvEsschen Formel auftretenden Terme in realistischen Anwegpeiun
fur alle praktischen Zwecke nicht berechnet werd@mien. Dies ist der
Hintergrund der KKRCKHOFFSchen Forderung, dal3 das Verfahren nur
praktisch, nicht aber auch mathematisch sicher sein mulf3.
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Die Sicherheit eines Verfahrens gegen deneEsschen Gegner kann mit
informationstheoretischen Methoden ziemlich gut abgé&zthverden;
zumindest was absolute Sicherheit betrifft, ist das Erggeblterdings
deprimierend: Absolute Sicherheit isb¢hstens dann aglich, wenn
der Schilissel mindestens so lang ist wie die Gesamtheit aller jetdami
verschiisselten Nachrichten.

Im nachsten Kapitel werden wir sehen, dal3 sich mit derart langen
Schlisseln tatgchlich absolut sichere Verfahren realisieren lasen (im-
mer vorausgesetzt rniatich, dal3 auch im Umfeld allesbsolutsicher
ist... ), und im Hochstsicherheitsbereich werden diese auchthaigch
angewendet. i die meisten Alltagsanwendungen der Kryptographie
sind sie jedoch viel zu aufwendig; hierfissen wir unsere Anforderun-
gen deutlich zuickschrauben.

Wenn wir KERCKHOFFsfolgen, gerigt es, daf3 ein Verfahren zumindest
praktischen Sicherheit bietet. Wirlresen uns alsaberlegen, wie wir
zumindest diese garantierearknen.

An Ansatzen fehlt es nicht:

Der wohl erste,Sicherheitsbeweis* geht zick auf GROLAMO CAR-
DANO: Seine Strategie bestand darin, ein Verfahren ablen, bei dem
die Menge der raglichen Schissel so grol3 ist, dal3 sie uagiich
vollstandig durchsucht werden kann.

GIROLAMO CARDANO (1501-1576) war einer der be-
deutendsteArzte und Naturforscher seiner Zeit. In der
Mathematik ist er vor allem bekanriirfseine Arbeiten
uber Gleichungen dritten und vierten Grades, auch wenn
wesentliche Teile dieser Arbeiten nicht auf ihn ick-
gehen. Er hat allerdings als erster durch Verwendung
negativer Zahlen die vielen bis dahin betrachtetaite-
auf eine einzige Formel zuckgetihrt. Nach seinem
Medizinstudium schlug er sich zaohst mit Glickspiel
durch, wobei ihm seine Kenntnisse der Wahrschein-
lichkeitstheorie sehriitzlich waren. Erst 1539 konnte
er eine Stelle als Arzt antreten und wurde schnell inter-
national beiithmt.

Konkret schlug @RDANO vor, zur Verschlisselung eines Texts eine zwi-
schen Absender und En@pfger vereinbarte Permutation der 26 Buch-
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staben des Alphabets durchiabfen. Daiir gibt es
26! = 403291461126 605 635584 000 000

Moglichkeiten, also 403 Quadrillionen 291 Trilliarden 46idillibnen
126 Billiarden 605 Billionen 635 Milliarden und 584 Milli@m. Wie er
vollig zu recht bemerkt, Wwrden,viele Bucher nicht ausreichen,” um
alle Moglichkeiten zu fassen.

Heute verwenden wir zum Ents€isiseln nur noch selteniBher, aber
auch Computer &iten Schwierigkeiten mit einer so grof3en Zahl von
Moglichkeiten:

Nehmen wir an, wir Atten Tausend Chips, von denen jeder mit einer
Taktfrequenz von zehn Gigahertz arbeitet und die so sp&eilsind,
dald jeder in jedem Takt eine ganze Probeenisdalung durchifhren
kann. Pro Sekunde kann also jeder Chip zehn Milliardémghdhkeiten
durchprobieren, und alle zusammen kommen auf zehn Bilio&en
Jahr hat durchschnittlich ungsdr

365%1 -24-60-60 =31557600

Sekunden, also schafft die Maschine pro Jahr etwas mehd &l313-
lionen Entschlisselungen; bis sie alle rund 403 QuadrillionedgV
lichkeiten durchprobiert hat, braucht dsiber eine Million Jahre; ein
gewohnlicher PC kaiuchte gar weitdnger als das Alter unseres Uni-
versums. Selbst wenn wir an Stelle von Tausend Chips einkoMil
verwenden, uchte die Maschine immer noch rund 1278 Jahre, und
es ist sehr unwahrscheinlich, dal3 der Inhalt der Nachrigbh alann
noch geheim bleiben muf3. Das Verfahren sollte als@lfle praktischen
Zwecke absolut sicher sein.

Ahnlich klingen die Werbeaussagen vieler heutiger Anbieta Kryp-
toverfahren, obwonhl nicht viele davon niiber 403 Quadrillionen Vari-
anten aufwartendnnen. Was dabei meist verschwiegen wird: Durch-
probieren aller Mglichkeiten ist zwarein Weg zur Entsclilsselung,
aber oft ist es bei weitem nicht der einzige. Witssen uns immer der
Tatsache bewul(3t sein, dal3 es Aegreiferist, der entscheidet, wie er
vorgeht, nicht wir. Wenn wir unser Verfahren gegen eine Art ittacke
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immunisiert haben, @ssen wir stets damit rechnen, dald er einfach eine
andere \ahlt.

Im nachsten Kapitel werden wir sehen, dal3 der Aufwand zum Knack-
en von QARDANOS Verfahren schon bei Nachrichten moderaténge
(60—100 Buchstaben) eher im Bereich von Minuten als im Bareon
Stunden liegt, und nicht viel besser sieht es aus bei moddfngp-
toverfahren, die sich nur auf diginiiberschaubar grof3e Anzahl von
Moglichkeiten® verlassen. Bevor jemand ein solches Vedalanwen-
det, sollte er zum Beispiel bgiwcrack.com nachschauenjif welch
geringe Betage (meist 40-100 US-$) die Kryptographie heutiger Office-
Programme dort geknackt wird — und das mit Erfolgsgaramnes:
glichen mit den Werten, die im kommerziellen Bereich durolcise
Kryptographie gesdltzt werden sollen, ist dieser Aufwanéicherlich
gering. In der sedsen Kryptographieal3t sich daher schon lange nie-
mand mehr durch eine blof3e Vielzahl voroilichkeiten blenden.

Das zwanzigste Jahrhundert kam mit neuen Methoden wie @g-so
nannten Komplexdtstheorie; dazu lesen wir im Budétrivacy on the
Line von WHITFIELD DIFFIE und SUSAN LANDAU (MIT Press,?2007,
Anmerkung 15 zu Kapitel 2):

The vast number of keys was offered as an argument for the un-
breakability of ciphers during the Renaissance Y and prob-
ably earlier. The more general modern theories, includimg t
theory ofnon-deterministic polynomial tima NV P computing
(...) are far more mathematical but little more satisfactory.

(Die beiden Auslassungen sind Verweise auf das Literatzewehnis)

(Wir werden WHITFIELD DIFFIE bald als einen der beidendter der
asymmetrischen Kryptographie kennenlernen; er arbeitatd 991 bis
2009 alschief security officebei Sun Microsystems und ist seit 2010
Vice President for Information Security and Cryptograp@y ICANN,
derInternet Corporation for Assigned Names and Numbers.

Worum geht es? Idealerweisaifsten wir gerne, wie grol3 der Mindest-
aufwand zur Bsung eines Problems ist. doer Bt sich allerdings
nur selten eine Aussage machen, da man dazu entwederdlehen
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Ansatze zur losung des Problems kenneriiidte oder aber beispiels-
weise eine Untergrenzéf die Lange des Ergebnisses. Letztere ist im
Falle der Kryptographie zwar kein Problem: Fast immer ist Kar-
text genauso lang wie oder nur unwesentli@ghder als der Chiffretext;
aulRerhalb der Steganographi@fte es wohl kein Verfahren geben, in
dem er mehr als doppelt so lang ist; diaist er bei Einsatz einer guten
Quellenkodierung gelegentlich auch deutlictrzer als der Klartext.
Somit liefert dies keine brauchbare Untergrenze.

Die Komplexittstheorie betrachtet daher Obergrenzen oder (seltener)
obere Grenzenif den mittleren Aufwand. Es ist klar, dal3 diese wert-
los sind, wenn es um die Beurteilung der Sicherheit einekiaian
Verschlisselung geht.

Schlimmer noch: Da auch konkrete Obergrenzen schwer zutisidd,
begrugt man sich meist miasymptotische\ussageniber das Ver-
halten der Obergrenze, wenn diarige der Eingabe (zum Beispiel die
einesdffentlichen Schilssels) gegen unendlich geht; wie jeder, der seine
Analysis Iverstanden hat, wissen sollte, folgt darausineth nichts fir

eine konkrete vorgegebenémge.

Da selbst asymptotische Obergrenzen nicht einfach sirsthi@aken
sich viele sogar noch darauf, nur zu untersuchen, ob died&eze
polynomial wachst oder sirker — selbst da gibt es noch viele offene
Probleme. Satestens hier werden die Ergebnisse allerdirigkgvbe-
deutungslosiir praktische Anwendungen auf die Kryptographie: Die
zahlentheoretischen Algorithmen, die vielen der in di&selesung be-
handelten Kryptoverfahren zugrunde liegen, haben typisegise eine
asymptotische Komplexat, die fir Eingabewerte derdangen in erster

Naherung durch die Funktioh, .(n) = e"" (™" beschrieben wer-
den mit reellen Konstanten® o < 1 undc > 0. Hira = O ist dies ein
ein Polynom imn, fur a = 1 eine Exponentialfunktion.iF 0 < a < 1
liegt das asymptotische Verhalten zwischen diesen beidenz&llen,
und der tatachliche Aufwand Angt aul3er vom Parameteauch noch
stark von sonstigen Konstanten ab, die bei eiér. .)-Abschatzung
unter den Tisch fallen.

Deshalb kann die Komplextstheorie genauso wenig sese Aus-
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sageniber die Sicherheit eines konkreten Verfahrens machen wie d
Machtigkeit der Sclilsselmenge.

Wenn ein Kryptoverfahren nicht im informationstheoretisg Sinn be-
weisbar sicher ist, kann man nach heutigem Stasah&tens dann Ver-
trauen in seine Sicherheit haben, wenn sich bereits viEdbrene Kryp-
tologen hinreichend lange mit seiner Kryptanalyse baft haben und
keine Attacke mit vertretbarem Aufwand fanden. Das gibtrzk&ne
Garantie, dafl3 nicht doch einer inikze eine finden wird, aber damit
mussen wir leben — es sei denn, wir sind bereit, den hohen Audhia
ein beweisbar sicheres Verfahren zu tragen.

85: Literaturhinweise

Die Geschichte der Kryptographie findet man wohl immer noch a
besten in

DaviD KAHN: The Codebreakers — the comprehensive history of secret
communication from ancient time to the intern@tribner, New York,
2

1996

Abgesehen von einem Anhaiidper public key Kryptographie ist das
Buch weitgehend identisch mit der ersten Auflage von 19&7irdder
Mannheimer Univers#tsbibliothek zu finden ist.

Beispiele, wie man durclocial engineeringSicherheitsmalinahmen
aushebeln kann, findet man zum Beispiel in den beidechBrn des
friheren Hackers und heutigen Sicherheitsberatex&KK MITNICK:

KEVIN D. MITNICK, WILLIAM L. SIMON: The Art of Deception: Control-
ling the Human Element of Securitjley, 2002; deutsche Ausgabee
Kunst der Buschung: Risikofaktor Mensclerlag Moderne Industrie,
2003

KEVIN D. MITNICK, WILLIAM L. SIMON: The Art of Intrusion — The Real
Stories Behind the Exploits of Hackers, Intruders & Decesydiley,
2005; deutsche Ausgalie Kunst des Einbruch$/itp-Verlag, 2006

Beide Hicher stehen auch @glicherweise nicht ganz legal) als Volltext
Im Internet.
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Zur Steganographie sind in den letzten Jahren eine Reitex Béaher
erschienen, die sich haupthlich mit deren elektronischer Version be-
fassen, darunter

PETER WAYNER: Disappearing cryptography — Information Hiding:
Steganography and Watermarkingorgan Kaufmann32009

INGEMAR J. GOX, MATTHEW L. MILLER, JEFFREY A. BLOOM, JESSF
CA FRIDRICH, TON KALKER: Digital Watermarking and Steganography,
Morgan Kaufmann?2008

JESSICAFRIDRICH: Steganography in Digital Media — Principles, Algo-
rithms, and ApplicationsgCambdridge, 2010

Eher geschichtlich orientiert ist

KLAUS SCHMEH: Versteckte Botschaften — Die faszinierende Geschichte
der Steganografid;eise, 2009

Mit der Entdeckung von Steganographie beédtiben sich unter an-
derem

GREGORY KIPPER Investigator's Guide to SteganograpMmuerbach
Publications (CRC Press), 2003

RAINER BOHME: Advanced Statistical Steganalyss$pringer, 2010
Auch das Buch voneEksICAFRIDRICH entlalt ein entsprechendes Kapi-
tel.

Die Existenz der Navajo Code Talker wurde auch nach dem eweit
Weltkrieg noch lange geheim gehalten; inzwischen gibt es dazu
Quellen im Internet sowie auchiiBher, z.B.

NATHAN AASENG. Navajo Code Talkers — America’s Secret Weapon in
World War Il, Walker Publishing Company, New York, 1992
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Kapitel 2
Einige klassische Kryptoverfahren

In diesem Kapitel geht es nicht um eine Darstellung der Gekth

der Kryptographie; die vorgestellten Verfahren werden edahicht

in chronologischer Reihenfolge vorgestellt, sondern mehGruppen
miteinander verwandter Verfahren werden jeweils in logggsdReihen-
folge vom einfachsten zum schwierigsten der behandeltefaien
prasentiert — auch wenn eine ganze Reihe von zum Teil heute noch
geb@auchlichen Verfahren schon zum Zeitpunkt ihrer Bhnrung hoff-
nungslos veraltet waren.

81: Monoalphabetische Substitutionen

Monoalphabetischen Substitutionen permutieren das Apthaus des-
sen Buchstaben die Nachricht zusammengesetzt ist. Kdassiaren

dies die Buchstaben des Alphabets; heute sind es, zumivdastman

mit Computern arbeitet, eher Bytes.

a) Die Nullchiffre

Im Internet kann jeder tun und lassen was er will — mit nur gaeni-
gen Ausnahmen. Zu diesen Ausnahmendgetefinitiv nicht, dafd ir-
gend jemand dazu gezwungefinge, sich veriinftig zu verhalten und
auf Sicherheit zu achten. Dort, wo Versigbselung vorgesehen ist, sind
die Anwender frei in der Wahl der einzusetzenden Verfahuen, fast
uberall ist als eine Variante auch die sogenannte Nullehibrgese-
hen, die einfach darin bestetitberhaupt nicht zu versdidseln. Da
im Internet zwar praktisch nichts vorgeschrieben, abesatiormiert
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ist, hat auch dieses Nichtstun eine rund sechs Seiten laagehBei-
bung in RFC 2410; beispielsweise wird dort darauf hingeaneslald
man auch bei diesengMerfahren® mit Schilisseln arbeiten kann, dai3
eine Ertbhung der Schisselénge die Sicherheit aber nicht wesentlich
steigert. far Einzelheiten sieh&@ww.fags.org/rfcs/rfc2410.html.

b) Die Caesar-Chiffre

Bei CAESAR selbst lesen wir, dafd er eine Nachricht alcERO mit
griechischen statt lateinischen Buchstaben schrieb umeduindern,
daf feindliche Soldaten (die im Gegensatz etEROkeine griechischen
Buchstaben lesen konnten) den Inhalt verstehen konnterB@e kam
zwar nicht bis zu @ERO durch, aber, wie ihm GESAR fur diesen

Fall geraten hatte, steckte er die Nachricht auf einen Speerer in
Ciceros Lager warf. Nach zwei Tagen wurde der Speer gefunden und
die unversindliche Nachricht zu ICERO gebracht, der sie niatich
lesen konnte.

\Von einem geringigig komplexeren Verfahren berichtet einige Jahr-
zehnte spter ETON in Kapitel 56 des ersten Buclbsvus 1ULIUS (der
gottliche Julius)seines Werk®E VITA CAESARUM:

extant et ad ciceronem, item ad familiares domesticis dasieb
in quibus, si qua occultius perferenda erant, per notapstnd
est sic structo litterarum ordine, ut nullum verbum efficepet:
guae si qui investigare et persequi velit, quartam elermento
litteram, id est d pro a et perinde reliquas commutet.

Erhalten sind auch seine Briefe arc€ro, ebenso an seine en-
geren Freundaber private Angelegenheiten, in denen er, was et-
wa geheim zuiberbringen war, in versadiéselter Form schrieb,
namlich in einer solchen Anordnung der Buchstaben, dal3 kein
einziges Wort herauskam. Falls hier jemand nachforschen un
der Sache nachgehen will,dge er den vierten Buchstaben des
Alphabets, d.h. Diir A und so fort setzen.

(zitiert nachSUETON: KaiserbiographiemAkademie Verlag Berlir},993
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Das war zwar weit hinter der Kryptographie, die in anderettyeégen-
den schon Jahrhunderteifrer praktiziert wurde, aber wie die meisten
Romer war eben auch deren Kryptographie recht primitiv.

GAlus JuLlus CAESAR (100-44) und MRCUSTULLIUS CICERO(106-43) dirften wohl den
meisten bekannt sein.ABus SUETONAUIS TRANQUILLUS war ein Bmischer Geschichtss-
chreiber, der um das Jahr 70 geboren wurde; er starb walmBchewischen 130 und 140.

Bekannt ist vor allem seine Lebensgeschichte der Caesdieeaus je einem Buchif
jeden der zwlf Caesaren besteht.

CAESAR verschob also das Alphabet zyklisch um drei Positionen; aus
GALLIA EST OMNIS DIVISA IN PARTES TRESwurde das auchif Romer
unversandlicheIbooL DHVWR PQLVG LYLVD LQSDU WHVWU HV.

Spater soll eimahnliches Verfahren auch voruAusTusverwendet wor-

den sein, allerdings verschob dieser nur um einen BuchstBiadir soll
CAESAR gelegentlich auch um eine andere Anzahl als drei verschoben
haben. lar jemand, der seine Allianzen saufig wechselte wie &ESAR,

bot dies ndirlich schon damals keine grof3e Sicherheit, und heute kann
man ein solches Verfahren erst recht vergessen: ZesfRs Zeiten,

als das Alphabet aus nur 21 Buchstaben bestand und manggis In
net die Nullchiffre noch nicht als Versdidselungsverfahren betrachtet
wurde, gab es schliel3lich nur zwanzigpilichkeiten. (Die Buchstaben
K.Y, Z existieren damals noch nichit, und V' sowiel undJ wurden
nicht unterschieden, undberflissiger Komfort wie Kleinbuchstaben
oder Satzzeichen wurdenifiestens im achten oder neunten Jahrhun-
dert gebauchlich.)

Heute, egal ob wir mit 26 Buchstaben, 256 ASCII-Zeichen adend
etwas dazwischen liegendem arbeiten, kann ein Computekinrsien-
bruchteilen alle Myglichkeiten durchprobieren: Um etwa den Chiffretext

XYXFS DKOCO NCMRY VKONS CMSWE CCOXO
MKOZS CDEVK OWYBK VOCKN VEMSV SEWMF S

zu entschisseln, betrachten wir einfach alle 2@§lichkeiten:

YZYGT ELPDP ODNSZ WLPOT DNTXF DDPYP NLPAT DEFWL PXZCL WPDLO WFNTW TFXNG T
ZAZHU FMQEQ PEOTA XMQPU EOUYG EEQZQ OMQBU EFGXM QYADM XQEMP XGOUX UGYOH U
ABAIV GNRFR QFPUB YNRQV FPVZH FFRAR PNRCV FGHYN RZBEN YRFNQ YHPVY VHZPI V
BCBJW HOSGS RGQVC ZOSRW GQWAI GGSBS QOSDW GHIZO SACFO ZSGOR ZIQWZ WIAQJ W
CDCKX IPTHT SHRWD APTSX HRXBJ HHTCT RPTEX HIJAP TBDGP ATHPS AJRXA XJBRK X

b W N K
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DEDLY JQUIU TISXE BQUTY ISYCK IIUDU SQUFY IJKBQ UCEHQ BUIQT BKSYB YKCSL
EFEMZ KRVJV UJTYF CRVUZ JTZDL JJVEV TRVGZ JKLCR VDFIR CVJRU CLTZC ZLDTM
FGFNA LSWKW VKUZG DSWVA KUAEM KKWFW USWHA KLMDS WEGJS DWKSV DMUAD AMEUN
GHGOB MTXLX WLVAH ETXWB LVBFN LLXGX VTXIB LMNET XFHKT EXLTW ENVBE BNFVO
HIHPC NUYMY XMWBI FUYXC MWCGO MMYHY WUYJC MNOFU YGILU FYMUX FOWCF COGWP
11 IJIQD OVZNZ YNXCJ GVZYD NXDHP NNZIZ XVZKD NOPGV ZHJMV GZNVY GPXDG DPHXQ
12 JKJRE PWAOA ZOYDK HWAZE OYEIQ 00AJA YWALE OPQHW AIKNW HAOWZ HQYEH EQIYR
13 KLKSF QXBPB APZEL IXBAF PZFJR PPBKB ZXBMF PQRIX BJLOX IBPXA IRZFI FRJZS
14 LMLTG RYCQC BQAFM JYCBG QAGKS QQCLC AYCNG QRSJY CKMPY JCQYB JSAGJ GSKAT
15 MNMUH SZDRD CRBGN KZDCH RBHLT RRDMD BZDOH RSTKZ DLNQZ KDRZC KTBHK HTLBU
16 NONVI TAESE DSCHO LAEDI SCIMU SSENE CAEPI STULA EMORA LESAD LUCIL IUMCV
177 OPOWJ UBFTF ETDIP MBFEJ TDJNV TTFOF DBFQJ TUVMB FNPSB MFTBE MVDJM JVNDW
18 PQPXK VCGUG FUEJQ NCGFK UEKOW UUGPG ECGRK UVWNC GOQTC NGUCF NWEKN KWOEX
19 QRQYL WDHVH GVFKR ODHGL VFLPX VVHQH FDHSL VWX0D HPRUD OHVDG OXFLO LXPFY
20 RSRZM XEIWI HWGLS PEIHM WGMQY WWIRI GEITM WXYPE IQSVE PIWEH PYGMP MYQGZ
21 STSAN YFJXJ IXHMT QFJIN XHNRZ XXJSJ HFJUN XYZQF JRTWF QJXFI QZHNQ NZRHA
22 TUTBO ZGKYK JYINU RGKJO YIOSA YYKTK IGKVO YZARG KSUXG RKYGJ RAIOR OASIB
23 UVUCP AHLZL KZJOV SHLKP ZJPTB ZZLUL JHLWP ZABSH LTVYH SLZHK SBJPS PBTJC
24 VWVDQ BIMAM LAKPW TIMLQ AKQUC AAMVM KIMXQ ABCTI MUWZI TMAIL TCKQT QCUKD
25 WXWER CJNBN MBLQX UJNMR BLRVD BBNWN LJNYR BCDUJ NVXAJ UNBJM UDLRU RDVLE
26 XYXFS DKOCO NCMRY VKONS CMSWE CCOXO0 MKOZS CDEVK OWYBK VOCKN VEMSV SEWMF

0OV W O

N ©oOovvo=z =EHPNcgH@DQ@TMEHOAQE=ENS

Auch ohne Lateinkenntnisse sieht man leicht, dafld die které&kt-
schlisselung nur Zeile sechzehn sein kaRoON VITAE SED SCHOLAE
DISCIMUS — EPISTULAE MORALES AD LUCILIUM cVI: Wir lernen nicht
fur das Leben, sondermnif die Schulewie Lucius ANAEUS SENECA
(~1-65) im 106. seiner Briefe aruciLius die Schulmeister seiner Zeit
verspottete.

Da sie so einfach zu entscisiseln sind, sollten A&ESAR-Chiffren heute
vollig vergessen sein. Die kryptographische Réasteht aber leider an-
ders aus: Selbstmnmste Verfahren sind anscheinend unausrottbar. Der
letzte bekannt gewordene prominente Anwender einer (learfierten)
CAESAR-Chiffre war Mafia-Boss BRNARDO PROVENZANO, der bereits
Im Alter von acht Jahren die Schule verliel3: Er ersetzte dashBtaben
»A* durch die Zahl,4* und so weiter bis zur ZahR9" fur ,Z*. Da alle
hier benutzten zweistelligen Zahlen mit einer Eins oderidveginnen,
die einstelligen aber mindestens gleich vier sind, konntkese Zahlen
ohne Zwischenraum hintereinander schreib@h?2418221215251218
etwa kann nur interpretiert werden als

6,12 4,18,22 12,15 25,1218 = Ciao Silvio.
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Da die meisten Strafverfolgesmger zur Schule gegangen waren, stellte
sie diese Modifikation vor kein titberwindbares Problem, und so konnte
er nach rund vierzig Jahren am 11. April 2006 endlich gefadstien.

Auch im Internet benutzt man in einigen Foren diee€AR-Chiffre
mit Verschiebung um 13 (ROT-13), allerdings nicht zur Getteltung:
Hier geht darum, dal3 Texte, die nicht nach jedermanns Gesdhsind,
nur von denen gelesen werden, die das wirklich wollen.

c) Allgemeine monoalphabetische Substitutionen

Schwieriger wird es, wenn die Anzahlaglicher Verschilsselungen
zu grol3 wird, als dal3 man alle ausprobierénrike. Solche Verfahren
lassen sich leicht konstruieren: Wie bereits im vorigenikerwahnt,
schlug GroLAMO CARDANO vor, das Alphabet nicht nur wie bei den
CAESAR-Substitutionen zyklisch zu verschieben, sondern es geha-
einebeliebigeWeise durcheinander zu bringen, so daR es2@! 10°°
Moglichkeiten gibt—auchiir Supercomputer zu viele, um alle auszupro-
bieren.

Trotzdem konnten schon die Miitkryptographen zur Zeit des ersten
Weltkriegs jede so versdmdselte Nachricht ab etwa eineéhge von
funfzig Zeichen problemlos entsdislseln, und das ohne jede Maschine
mit einem Aufwand von deutlich unter einer Stunde. Bei delstea
Verfahren, die heute beispielsweise als Teil von Officetdafe ange-
boten werden, geht die Entsdskelung zwar nicht ganz so einfach daf
aber wenigstens sehr billig: Bei Anbietern wieww.pwcrack.com
oderwww.lostpassword.com kann man nachleserijfwelch geringe
Betrage (ab etwa 40 US-$) die Versidbkelungssysteme der meisten
heute Uiblichen Softwarepakete geknackt werddmiken — nairlich
nur zur Rekonstruktiopvergessener‘ Pas@&nter. Wenn man bedenkt,
dall manche interne Dokumente oder Kundendatenbaiikenrf Un-
ternehmen Werte im Bereich von Tausenden wenn nicht gaiokidh
Euro repésentieren &nnen, wird klar, wie fahéssig hier mit Kryp-
tographie umgegangen wird.

Der Ansatzpunktiir den Kryptanalytiker ist praktisch immer derselbe:
Die Dokumente, die wir sditzen wollen, enthalten keine Zufallsfolgen,
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sondern sprachliche Texte oder sonstige strukturierternmdtion. Diese
Struktur mul3 der Angreifer ausnutzen.

Wir wollen uns anhand eines Beispiels anschauen, wie erietvall
von CARDANOS System vorgehen kann. Angenommen, wir haben die
Nachricht

MBKFB MPLNL NIEAN KXRBP KKUMK KUNJC NEKXR SMKBN
JENEC PKKEI XRLMB BNIEU MKMAX AJIEQ LUNEC NEKXR
NEIEU INRFN REIXR LMBBN IEICK XRJNI ANEBN KNEPN
ALKIX RNIEQ NJEPN EDLIO SNKNE EIXRL MBBNI EIEJN
XREPE OKKMX RNEKF BBUNJ CNEKX RKIXR CPNRN CMXRN
EKFEU NJEMP XRUNJ SNIKR NILBN RJNEC PKKCM ECILQ
NJOEP NONER FNJNE UMKKU INKCI LQONJK LMEUO NKXRM
RSMJR NJJBN RJNJB MNCGN BUMCM VPEUC FJILY UINKN
ANTUN ECFXR LNEIR EUMJP CEIXR LBNIU NEUNE ESNJA
FNKNK LJNIX RNCMX RLOIA LEIXR LMPDU NEBNR JNJMX
RL

aufgefangen und wollen sie entsiad$eln. Ein erster Ansatzdknte
darin bestehen, dal3 wir deaufigsten Buchstaben des Kryptogramms
alsE identifizieren, den zweithufigsten als den na¢hnachsttaufigsten
Buchstaben in deutschem Klartexgw.

Dazu nussen wir als erstes wissen, wigufig welcher Buchstabe in ei-
nem typischen deutschen Text ist. Wie die Jahrhundertdaiédarung
der Kryptanalytiker (und auch die heutige Linguistik) Zeigibt es
hier keine nennenswerten Unterschiede zwischen versameed(hin-
reichend langen) Texten; wirdkinen also einfach irgendeinen deut-
schen Klartext hernehmen und die Buchstab&hlen. Das folgende
Diagramm beruht auf der Aughlung der 260 238 Buchstaben aBanN
PauLs NovelleDr. Katzenbeisers Badereig@Vie in der der klassischen
Kryptographielblich, wurden Zwische@ume und Satzzeichen ignori-
ert und Umlaute sowigl3* umschrieben, so dal3 nur 26 Buchstaben
verwendet werden. Dies macht das Lesen der eritssilten Nachrich-
ten zwar etwas unbequemer, @nhaber die Sicherheit.)

Ordnen wir die Buchstaben nach ihreatdigkeit in diesem Text, erhal-
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H1JKLMNO R Y?

Buchstabenhauflgkelte in eutsche

I‘l _III I III -l
E STUVW
m

Klartext

ten wir die Folge
ENIRSATHDULCGOMBWFKZVPJY XQ.

Das gleiche &nnen wir auch mit dem Kryptogramm machen; hier er-
halten eineahnliche Abbildung (die uns, falls wa priori nichtstuiber
das verwendete Verfahren wissen, auch zeigt, daf3 wir esaladinlich
mit einer monoalphabetischen Substitution zu tun habetzt, aber mit
der Folge

NEKRIMIXLUBCPFAOSQDYVGZWTH.

E KR

Ein naheliegender erster Versuch ist also, dafNmaisE entschilisseln,

IIIIIIIIIII-.- *******
M J X

LUBCPFAOSQDYVGZWTH
Buchstabenh&aufigkeiten im Kryptogramm

N I
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EalsN, K alsl, RalsR, | alsS, und so weiter. Leider ist das Ergebnis
nicht sehr vielversprechend:

ALIOL AGDED ESNME IHRLG ITUAI IUETC ENIHR WAILE
TNENC GIINS HRDAL LESNU ATAMH MTSNB DUENC ENIHR
ENSNU SEROE RNSHR DALLE SNSCI HRTES MENLE IENGE
MDISH RESNF ETNGE NKDSB WEIEN NSHRD ALLES NSNTE
HRNGN BITAH RENIO LLUET CENIH RISHR CGERE CAHRE
NIONU ETNAG HRUET WESIR ESDLE RTENC GIICA NCSDF
ETBNG EBENR OETEN UAIIU SEICS DFETI DANUB ETHRA
RWATR ETTLE RTETL AECPE LUACA VGNUC OTSDZ USEIE
MESUE NCOHR DENSR NUATG CNSHR DLESU ENUEN NWETM
OEIEI DTESH RECAH RDBSM DNSHR DAGKU ENLER TETAH
RD

Denkt man etwas nach, sollte dieses Ergebnis eigentlicmamneden
verwundern: Die Hufigkeitsunterschiede zwisch&mnlich Faufigen
Buchstaben sind teilweise so gering, dal3 sie gerade banaiakativ
kurzen Texten von nur 402 Buchstaben noch im Bereich vonllgufa
schwankungen liegen. Ein erfolgreicher Ansatz muf3 dahar woa der
Struktur der deutschen Sprache ditgen.

Innerhalb eines Texts ist die Wahrscheinlichkaitdas Auftreten eines
Buchstabens stark vom Kontext a@bigig: Auch wenn,E* insgesamt
gesehen derdufigste Buchstabe ist, wird man nach eingthoder, Q"
nur selten eines finden und nach einem andgEnauch nicht. Die
Diagramme auf den folgenden Seiten zeigen, welche Buohistanfig
vor (roter unterer Balkerhzw.nach (blauer oberer Balken) einem ge-
gebenen Buchstaben auftreten.

Auch wenn in einem kurzen Text gelegentligh* haufiger vorkommt
als,,E*: Mit diesen Diagrammendnnen die beiden Buchstaben leicht
unterschieden werden: Beispielsweise kommt ybf haufig ,E"
oder, I“ vor, aber fast nie ein seltener Buchstab@hrend die Verteilung
vor ,E sehr viel homogener ist. Daf ist die Verteilungnach, N* ho-
mogener als die nagit” mit ihren vier grol3en Zacken bei deatfigen
Buchstaben. Zwar sind zu Beginn einer Entgskkelunglle Buchstaben
unbekannt, aber wenn man die Buchstaben in den Diagramnamn na
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Haufigkeit ordnet, kann man einigermal3en sicher sein, dd3kein
Buchstabe gar zu weit von seiner Position entfernt und damindest
die haufigen Buchstaben leicht identifizieren.

Kontaktdiagramm des Buchstabens E

IRSATHDULCGOMBWFKZVPJYXQ

Kontaktdiagramm des Buchstabens N

Kontaktdiagramm des Buchstabens |
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Kontaktdiagramm des Buchstabens R

I..-II.-..-—--------- _____
ENIRSATHDULCGOMBWFKZVPJIYXDAQ

Kontaktdiagramm des Buchstabens S

IRSATHDULCGOMBWFKZVPJYXQ

Kontaktdiagramm des Buchstabens A

IRSATHDULCGOMBWFKZVPJYXQ
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Kontaktdiagramm des Buchstabens T

Negd
| X |
| > |

| o |
1>
Il ~NE
I~xH
(T
H=
laol
1=1
Hol
100
| O
11—
HONR
H ol
H T N
Il -
< il
I o N
H o B
I -
1zl

I . .

| O
| X
| >

o]
| >
I N
| |
||
1=
| o]
m=I
HOol
1 O]
| O I
o -l
1ol
ol
1T
-0
<1
vl
e
H-B
HzE
I

Kontaktdiagramm des Buchstabens H

| O
By
| >

|o|

| >

IN|

| x|

I

1=

| o]

1=1

 Je) |

101

| O

-0

mol

_Ja] |

ITH

|
<1

L] |

g
N -1

| =z I

I .

Kontaktdiagramm des Buchstabens D
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Kontaktdiagramm des Buchstabens U

< |
H- i
Nel
| o |
| O |

N v I
I > |
- .
| sl |
moil
H
[ Jocl |
=
Il -~
B=|
I N

R

I -
-1

BN - N

Kontaktdiagramm des Buchstabens L

RSATHDULCGOMBWFKZ

Kontaktdiagramm des Buchstabens C

40

<
| ol
< |
| <|
| X< |
| O |

VPJIYXDOQ
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Kontaktdiagramm des Buchstabens G

Kontaktdiagramm des Buchstabens O

ol |

1> 1
(o8
|O |

I -
N — N

I ©
I >
. B |
[ oo |
I =1
[l |
EoH
| |
| <
B
O |

-~ .

N

I < B

B m
I -
N —

I © N
Ny |

Kontaktdiagramm des Buchstabens M

IRSATHDULCGOMBWFKZVPJYXQ
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Kontaktdiagramm des Buchstabens B

ENITR
Il" I---'l_l' ***********

Kontaktdiagramm des Buchstabens F

-

N © I
H - .
[ n |

[ QN |

_NON |

N >

I ™
N = 1
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Kontaktdiagramm des Buchstabens K

I
I - B

Kontaktdiagramm des Buchstabens Z

U

Kontaktdiagramm des Buchstabens V

i-H

I O |

>0l
N -

BTl

Hol

ol

I
I = |

Ho
[]

I = |



I

N = |
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Kontaktdiagramm des Buchstabens P

Kontaktdiagramm des Buchstabens J

Kontaktdiagramm des Buchstabens Y
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Kontaktdiagramm des Buchstabens X

E |
] ] . - T mm - - - ffffffffffff
| Kontaktdiagramm des Buchstabens Q

I -
-

Wenden wir dies an auf unser Kryptogramm! Déufgste Buchstabe
dort ist N, was die Vermutung nahelegt, dal3 diés €in KlartextE
stehen Bnnte. Hier ist das Kontaktdiagramm:

Kontaktdiagramm des Buchstabens N

1 m I

HE ~ I
I -

1z |
<1

Ein Vergleich mit dem Kontaktdiagramm des Klartéxizeigt deutliche
Unterschiede:
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Kontaktdiagramm des Buchstabens E

ENIRSATHDULCGOI\/I

B
Ill IIIII I-II

Beispielsweise sehen wir nicht die auf-ab-auf-ab Strudeich am An-
fang des Balkendiagramiiber demE. Andererseits rilssen wir nach
der Erfahrung mit unserer ersten ProbeEnises¢lung damit rechnen,
dafl eine ganze Reihe von Buchstaben ihre Positioandert haben,
und vor diesem Hintergrund sind die vier grof3en Balken imafugkbe-
reich eigentlich alles, was wir realistischerweise eraakbnnen. Auch
sonst ist die qualitativelbereinstimmung recht gut: Im unteren Teil des
Diagramms ist die Verteilung deutlich homogener als im ebgeseltene
Buchstaben kommerdlfiger vor als in den Diagrammen zu den Klar-
textbuchstabel, I, R, SundA, so dafd wir ziemlich sicher seifdknen,
daf’ der Kryptogrammbuchstaligiir ein Klartexte steht.

Kontaktdiagramm des Buchstabens E
|
N

Der zweithaufigste Buchstabe im Kryptogramm ist dasAuffallig an
seinem Kontaktdiagramm ist der lange rote Balken unter dersits
als KlartextE erkannten Aufigsten Kryptogrammbuchstabé&h) der

1=

-JUI

| I
|

[ Null |
lzl
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auch das KlartexiN auszeichnet; der zweite lange rote Balken unter
deml konnte dem unter Klartextoder eventuell auchl entsprechen.
Auch die relativ homogene Verteilung der blauen Balken uedkdum
vorhandenenroten Balken im Bereich der seltenen Buchstgirechen
deutlich Tir ein N, so dal3 der Kryptogrammbuchstabevohl fir ein
Klartext-N steht.

Der dritthaufigste Buchstabe des Kryptogramms ist idags zeichnet
sich dadurch aus, dal3 die seltenen Buchstaben weder davodaleinter

mit nennenswerter &lifigkeit vorkommen, dal&ufig ein Klartexte da-
vorsteht, vahrend\ weder davor noch dahinter sonderlich oft vertreten
ist. Dafur tritt K haufig als Doppelbuchstabe auf. Unter den in deutschen
Klartexten taufigen Buchstaben veih sich offenbar daS amahnlich-
sten: Zwar passen die Balken ganz links besser zu elReaber die
vielen weiteren langen Balken nach unten und daifigkeit vonKK
schlie3en dieses mit ziemlicher Sicherheit aus.

Kontaktdiagramm des Buchstabens K

X

BN T |
[]

'—_
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Als nachstes rassen wir den Kryptogrammbuchstalfedentifizieren.

Hier fallt als erstes der lange Balken unter d€rms Auge; es gibt also
einen mittelkufigen Buchstaben, der das Geschehen vor dem gesuchten
Buchstaben deutlich dominiert; ansonsten tritt dort nuhniSlartext£

mit nennenswerter &lfigkeit auf. Nach dem gesuchten Buchstaben ist
die Verteilung deutlich homogener.

Damit ist eigentlich fast klar, daR nur fur einH stehen kann, und daf3
der haufig davor stehende Buchstabem Klartext einC sein muf3. Ein
direkter Vergleich des KontaktdiagrammsXumit dem von Klartext€
stitzt diese Vermutung.

Kontaktdiagramm des Buchstabens X

Damit sind gleich zwei Buchstaben identifiziert; wenn winnuieder
nach der Fwufigkeit im Kryptogramm vorgehen, steht aechstes daks
auf dem Programm.

N E

Kontaktdiagramm des Buchstabens |

X L
7-

.,
R I M

3
[

I |
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Es kommt faufig nach Klartexte und N vor; insbesondere beiriy

auch vorher. AuRerdem steht das geradeCaldentifizierte X haufig
dahinter. Unter den noch unbekannten Buchstaben ist adfethsh |

selbst der beste Kandidat; dieser Buchstabe wird also dicbhselbst
verschlsselt.

Als nachstes wartet dalsl auf seine Entsciikselung . Es steht oft
nach Buchstaben nur mittlereradfigkeit, praktisch nie nach, aber
gelegentlich davor. Zusammen rititt es nie auf. Das deutet auf einen
Vokal hin, und in der Tat paf3t sehr gut, wobei die KombinatioAE
natirlich von der Umschreibung der Umlaute herkommt.

K

Kontaktdiagramm des Buchstabens M

Kontaktdiagramm des Buchstabens J

NEKRI MIJIXLUBCPFAOSQDYVGZWTH

Unser rachster Kandidatmag keine seltenen Buchstaben um sich haben
und versteht sich am besten mit déminsbesondere wenn es vor ihm
steht. Die Entscliisselungr bereitet damit keine Schwierigkeiten.
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Das X haben wir bereits al€ identifiziert, also kommt nuh. an die
Reihe.

Kontaktdiagramm des Buchstabens L

Es steht zwar gelegentlich hinter einémsehr viel laufiger aber hinter
einemH oderl und praktisch nie hinter eineih. Dahinter sindA undE
die haufigsten Buchstaben. Teile dieser Beschreibung passenlzum
andere zunb, aber alles zusammen pal3t zu keinem der Buchstaben.

Unser Problem ist, daf3 der Buchstdben Kryptogramm nur zwanzig
Mal vorkommt, und damitdf3t sich keine sonderlich aussagdkge
StatistikUiber die Verteilung der 26 Buchstaben des Alphabets vor oder
nach diesen zwanzig Stellen machen. Ab hiéssen wir also entweder
mehrere Mglichkeiten in Betracht ziehen, oder aber zu einer anderen
Strategie wechseln.

Mit acht von sechsundzwanzig Buchstaben haben wir zwar twa e
30% aller Buchstaben identifiziert, aber da es die aéhfigsten Buch-
staben sind, kennen wir deutlich mehr als 30% des Klartsktshzhlen
zeigt, dafl’ wir von den 402 Buchstaben des Kryptogramms 2f8iid
fiziert haben, also rund 70%. Damit sollte es nicht sehr sehgvsein,
zumindest einige weitere Buchstaben aus dem Kontext ztearra

Hier ist noch einmal das Kryptogramm, wobei unter jedem haken
Buchstaben dessen Entst$delung steht:

MBKFB MPLNL NIEAN KXRBP KKUMK KUNJC NEKXR SMKBN
A S A E EIN E SCH SS AS S ER ENSCH AS E
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JENEC PKKEI XRLMB BNIEU
RNEN SSNI CH A  EIN

NEIEU INRFN REIXR LMBBN
ENIN TIEH E HNICH A E

ALKIX RNIEQ NJEPN EDLIO
SIC HEIN ERN EN I

XREPE OKKMX
CHN N SSAC

EKFEU NJEMP
NS N ERNA

NJOEP NONER
ER N E ENH

RSMJR NJJBN
H ARH ERR E

ANIUN ECFXR

RNEKEF BBUNJ
HENS ER

XRUNJ SNIKR
CH ER EISH

FNJNE UMKKU
EREN ASS

RJNJB MNCGN
HRER AE E

LNEIR EUMJP

MKMAX AJIEQ LUNEC NEKXR
ASA C RIN EN ENSCH

IEICK XRJNI ANEBN KNEPN
INTI S CHREI EN E SEN E

SNKNE EIXRL MBBNI EIEJN
ESEN NICH A ETI NINRE

CNEKX RKIXR CPNRN CMXRN

ENSC HSICH

NILBN RJNEC
EI E HREN

INKCI LQNJK
IES T ERS

BUMCM VPEUC
AA N

EHE ACHE

PKKCM ECILQ
SS AN I

LMEUO NKXRM
AN  ESCHA

FJILY UINKN
RI TIESE

EI EN CH ENIH N AR
FNKNK LJNIX RNCMX RLOIA

CEIXR LBNIU NEUNE ESNJA
NICH EI EN EN N ER

LEIXR LMPDU NEBNR JNJMX

ESES REIC HE ACH I NICH A EN EH RERAC

RL
H

Gegen Ende der ersten Zeile haben wir im Klartext die Stelle
,JasdJerCensch,

Hier kann eigentlich nuydass der Menstlgemeint sein, d.hU steht
fur D undC fur M.

In der zweiten Zeile sehen wir die FolgesnichLaB“; hier kannL
eigentlich nur @ir T stehen, insbesondere da wir dadereits provi-
sorisch al oderT identifiziert haben.

In der dritten Zeile ist der drittletzte Block entsabkkelt als,chref;
davor steht eins’, dahinter ein unbekannter Buchstabe gefolgt yei.
Dies spricht fir eines der beiden Wter,,schreibetoder ,schreitef,
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wobei letzteres nicht in Frage kommt, da wir bereits wissafd T
durchL verschiisselt wird, unser gesuchter Buchstabe aber darch
Damit ist wohlA die Verschilisselung des BuchstabBn

Damit sind vier weitere Buchstaben identifiziert, und wennsie an
allen Stellen in die Entsclilsselung einsetzeniilit sich der bereits
entschilisselte Teil des Texts und wir bekommen neue Kontexte zur
Identifikation oder zumindest zum Erraten noch fehlendestBtaben:

MBKFB MPLNL NIEAN KXRBP KKUMK KUNJC NEKXR SMKBN
A S A TET EINBE SCH SSDAS SDERM ENSCH AS E

JENEC PKKEI XRLMB BNIEU MKMAX AJIEO LUNEC NEKXR
RNENM SSNI CHTA  EIND ASABC BRIN TDENM ENSCH

NEIEU INRFN REIXR LMBBN IEICK XRJNI ANEBN KNEPN
ENIND IEH E HNICH TA E INIMS CHREI BEN E SEN E

ALKIX RNIEQ NJEPN EDLIO SNKNE EIXRL MBBNI EIEJN
BTSIC HEIN ERN E N TI ESEN NICHT A EI NINRE

XREPE OKKMX RNEKF BBUNJ CNEKX RKIXR CPNRN CMXRN
CHN N SSAC HENS DER MENSC HSICH M EHE MACHE

EKFEU NJEMP XRUNJ SNIKR NILBN RJNEC PKKCM ECILQ
NS ND ERNA CHDER EISH EIT E HRENM SSMA NMIT

NJOEP NONER FNJNE UMKKU INKCI LQONJK LMEUO NKXRM
ER N E ENH EREN DASSD IESMI T ERS TAND ESCHA

RSMJR NJJBN RJNJB MNCGN BUMCM VPEUC FJILY UINKN
H ARH ERR E HRER AEM E DAMA NDM RIT DIESE

ANTUN ECFXR LNEIR EUMJP CEIXR LBNIU NEUNE ESNJA
BEIDE NM CH TENIH NDAR MNICH T EID ENDEN N ERB

FNKNK LJNIX RNCMX RLOIA LEIXR LMPDU NEBNR JNJMX
ESES TREIC HEMAC HT IB TNICH TA D EN EH RERAC

RL
HT
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Ab dem dritten Block in der ersten Zelle steht nun
einbescBPssdassdermenssaBernenni’ss ,

Selbstversindlich mul@ fiur einen Vokal stehen, und aus dem Zusam-
menhang ist klar, daf3 es €ihsein muf3. Damit ist auch die Entsadk}
selung vorP alsL klar, undS kann eigentlich nuriir W stehen.

Da wir nun einen weiteren Vokal identifiziert haben und auch
ein in deutschen Klartext rech@bfiger Buchstabe ist, lohnt es sich
wahrscheinlich, vor der Suche nach neuen Identifikationemlicti ge-
rade gefundenen im gesamten Text einzusetzen. Wir erhalten

MBKFB MPLNL NIEAN KXRBP KKUMK KUNJC NEKXR SMKBN
ALS L AUTET EINBE SCHLU SSDAS SDERM ENSCH WASLE

JENEC PKKEI XRLMB BNIEU MKMAX AJIEO LUNEC NEKXR
RNENM USSNI CHTAL LEIND ASABC BRIN TDENM ENSCH

NEIEU INRFN REIXR LMBBN IEICK XRJNI ANEBN KNEPN
ENIND IEH E HNICH TALLE INIMS CHREI BENLE SENUE

ALKIX RNIEQ NJEPN EDLIO SNKNE EIXRL MBBNI EIEJN
BTSIC HEIN ERNUE N TI WESEN NICHT ALLEI NINRE

XREPE OKKMX RNEKF BBUNJ CNEKX RKIXR CPNRN CMXRN
CHNUN SSAC HENS LLDER MENSC HSICH MUEHE MACHE

EKFEU NJEMP XRUNJ SNIKR NILBN RJNEC PKKCM ECILQ
NS ND ERNAU CHDER WEISH EITLE HRENM USSMA NMIT

NJOEP NONER FNJNE UMKKU INKCI LQONJK LMEUO NKXRM
ER NU E ENH EREN DASSD IESMI T ERS TAND ESCHA

RSMJR NJJBN RJNJB MNCGN BUMCM VPEUC FJILY UINKN
HWARH ERRLE HRERL AEM E LDAMA UNDM RIT DIESE

ANIUN ECFXR LNEIR EUMJP CEIXR LBNIU NEUNE ESNJA
BEIDE NM CH TENIH NDARU MNICH TLEID ENDEN NWERB

FNKNK LJNIX RNCMX RLOIA LEIXR LMPDU NEBNR JNJMX
ESES TREIC HEMAC HT IB TNICH TAU D ENLEH RERAC

RL
HT
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Niemand, der schon je ein Kreuzwdtsel gebst hat, sollte Schwie-
rigkeiten haben mit den wenigenitken, die jetzt noclibrig sind; der
Klartext springt nun @rmlich ins Auge: Nairlich kann die liicke im
ersten Block der ersten Zeile nuirfein O stehen, und die licke in
der zweiten Zeile kann nur ei@ sein. Selbst in der vierten Zeile, wo
es in einem Wort noch dreiticken gibt, &llt es nicht schwer, diese zu
schliel3en. Mit Wortgrenzen und Satzzeichen geschriebdan&lartext

Also lautet ein Beschluss:

Dass der Mensch was lernen muss. —
Nicht allein das A-B-C

Bringt den Menschen in die Hoeh’;
Nicht allein im Schreiben, Lesen

uebt sich ein vernuenftig Wesen;
Nicht allein in Rechnungssachen

Soll der Mensch sich Muehe machen;
Sondern auch der Weisheit Lehren
Muss man mit Vergnuegen hoeren.

Dass dies mit Verstand geschah,
War Herr Lehrer Laempel da. —
— Max und Moritz, diese beiden,
Mochten ihn darum nicht leiden;
Denn wer boese Streiche macht,
Gibt nicht auf den Lehrer acht.

(WILHELM BuscHverwendet natrlich sowohl Umlaute als auch dd3';
zum besseren Vergleich mit dem Kryptogramm habe ich sie ster
gelassen, wie ich sie vor der Versabselung umschrieben habe.)

Damit haben wir also mit relativ geringem Aufwand ein Krygtamm
entschlisselt, bei dem es auf den ersten Blick so aussah, als seudas n
moglich durch Ausprobieren vaiber 403 Quadrillion Mglichkeiten.

Wir haben zur Entsciikselung zwar einen Computer als Hilfsmittel
benutzt, aber auch wenn uns der das Leben etwas bequemecrhiema
hat, war er nicht wirklich erforderlich: Die Buchstaben imyidtogramm
hatten wir mit nur unwesentlich gRerem Aufwand auch von Hand
durchzhlen lonnen, und die Kontaktdiagramme wurden in der Zeit,
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als man noch alles von Hand machen mulfite, gezeichnet, indem m
einfach Querstriché@ber oder unter einen Buchstaben zeichnete, wenn
dieser vor oder nach dem gerade untersuchten auftrat.

Nachdem die acht bis zehaufigsten Buchstaben identifiziert sind, kann
der Computer ohnehin nicht mehr weiterhelfen; jetzt isr éréahrung
mit der Sprache gefragt, am besten solche, die durch dssrivieler
Kreuzwortatsel erworben wurde.

Als Kuriositat am Rande sei e@dnnt, dal3 die Enghder im zwei-
ten Weltkrieg das PersonailrfBletchley Parkjhre Dechiffrierzentrale,
tatsachlich zum Teil dadurch rekrutierten, dal sie Kreuzvéselwet-
tbewerbe in Zeitungen plazierten und die Sieger als p@idmtheue
Mitarbeiter ins Visier nahmen.

Die Haufigkeitsdiagrammaeif die seltenen Buchstabeiiteen nairlich
fast nie sonderlich viel, da hier die Schwankungen zwiscleeschiede-
nen Texten besonders grol3 sind. Das beste Beispi@ét tdifdas obige
Diagramm zum Buchstabeft Es kommt im wesentlichen dadurch zu-
stande, dal3 es irEAN PauLs Roman einendufig ervahnten Badearzt
namensStrykiusgibt.

Ein praktisches Problem bei der Sabselvereinbarung der hier be-
trachteten Substitutionschiffren bestand darin, dal3arenutation der

26 Buchstaben im allgemeinen nur schweriermitteln und auch
zu merken ist, was unter anderem audRKKHOFFs dritte Forderung
verletzt. Die klassischedsung ging einfach aus von einem Wort oder
einer Folge von Wirtern und schrieb diese von links nach rechts unter
die Buchstaber\, B, C, ... . Dabei mul3te nétlich jeder Buchstabe,
der schon dasteht, gestrichen werden. Falls am Ende nobhalie

26 Positionen géillt waren, nahm man dazu die noch verbleibenden
Buchstaben in alphabetischer Reihenfolge.

Geht man aus vopMax und Moritz*, fuhrt dies auf die Verschkse-
lungstabelle

ABCDEFGHIJKLMNOPQRSTUVWXYZ
MAXUNDORITZBCEFGHJKLPQSVWY

Auf diese Weise wurde das gerade behandelte Beispiellgygutam
verschiisselt.
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§2: Polyalphabetische Substitutionen

Da eine bloRe Permutation de#lphabets® der Buchstaben oder
Bytes offensichtlich keine nennenswerte Sicherheit biddann man
als rachstes versuchen, mehrere solcher Permutationen andemen
Natirlich hat es keinen Sinn, sie alle jeweils auf denselbemBiaben
anzuwenden — das Produkt mehrerer Permutationen ist Bithiavie-
der nur eine einfache Permutation. Stattdessen untemaiitdie Nach-
richt in Blocke einer festen (geheimgehalteneapgen, wahltn Per-
mutationenr, € & und verschiisselt jeweils das-te Zeichen eines
Blocks mit der Permutation;.

Am bekanntesten ist die sogenannteSNERE-Chiffren, benannt nach
BLAISSE DEVIGENERE, der sie 1586 in seinem Budhaictés des chiffres
ou secetes mareres d’escrirebeschrieb; sie wurden allerdings bereits
im 1518 erschienenen BudPolygraphiades Ableé EAN TRITHEME
erwahnt und gehen laut IgENERE zuriick auf die Hebier. Hier sind
alle m, CAEsSAR-Chiffren; der Einsatz allgemeiner Permutationen
durfte jedoch wenriberhaupt nur unwesentliciger sein.

L. Sacco, der ehemalige Chef des Chiffrierdienstes der italier@ach
Armee, schreibt in seineianuel de cryptographiéaris, 1951):

Vigerere reussita produire un chiffre plus faible et moins com-
mode que les @edents, qui n’en connut pas moins une fortune
immeritée, particulerement dans les cent deenés anees, a il

fut adopé par de nombreuses aaas, @me apes la publication
d’'un moyen de &cryptement (1863), indicgvident de dcadence
dans la domaine de la cryptographie.

Die VIGENEREChiffre oderahnliche Verfahren wurden bis Ende des
neunzehnten Jahrhunderts unter anderem vosterreichischen, der
franzZosischen und der italienischen Armee benutzt; von letztargar
bis 1917. In verschiedenen Computerprogrammehsiiches heute
noch zu finden.

Um zu verstehen, warumaSco trotzdem so aldfllig datiber spricht,
mussen wir ihre Sicherheit etwas genauer betrachten undsosiere
sehen, wann sie mit welchem Aufwand geknackt werden kann.
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Hauptproblem des Kryptanalytikers ist offensichtlich 8iestimmung
der Blockhngen, denn sobald diese bekannt ist, weil3 man, welche
Buchstaben mit demselben Alphabet vergskklt wurden und kann
(leicht modifiziert) die kryptanalytischen Verfahren ausndvorigen
Paragraphen anwenden.

Mit dieser Ermittlung der Periode hatten die Kryptanalgtikn letzten
Jahrhundert lange ihre Probleme; den ersten Ansatz farmteleBische
Offizier FRIEDRICHW. KAsIKI (1805—-1881) und véiffentlichte ihn 1863

in einem damals kaum beachteten nur 95 Seiten dicken Buctamit
Titel Die Geheimschriften und die DechiffrierkunSeine Idee war die
folgende: Gewisse Wfter und Buchstabenkombinationen wie etwa die
bestimmten Artikel sind in fast allen Texten seflaufig. Wenn nun
ein langer Text mit einem polyalphabetischen Verfahrezé&uPeriode
verschisselt wird, ist es sehr wahrscheinlich, dal3 solche Bubbsta
folgen mehrfach auf die gleiche Weise versdselt werden. Man suche
daher im Kryptogramm nach zweimal vorkommenden Buchstfaben
gen (Heute nennt man so etwas eingiki-Paar) und berechne deren
Abstand. Die Periode sollte ein Teiler von relativ vieleres#r Ab-
stande sein, wobei Abahde, die zu langen Buchstabenfolgendgeh,
natirlich hdher zu gewichten sind als solche, die etwa nur zu Buch-
stabenpaaren géken: Bei letzteren ist die Wahrscheinlichkeit, dal3 es
sich um eine zudllige Koinzidenz handelt, erheblichdgier.

Die Suche nach Ksiki-Paaren ist recht aufwendig, und didafen im all-
gemeinen nur dann zu einedsung, wenn das Kryptogramm erheblich
langer ist als der verwendete Sasdel. Eine Alternative fand um 1920
der wohl bedeutendste der klassischen Kryptologemn),. MM FRIED-
MAN (1891-1969). Er wurde als W FE FRIEDMAN in Rul3land geboren,
aber als seine Eltern 1892 nach Amerika emigrierégrerten sie sei-
nen Vornamen. Er studierte zachst Landwirtschaft, spezialisierte sich
spater auf Genetik und bekam 1915 eine Stelle als Genetikeddrai
Textilkaufmann GORGEFABYAN, auf dessen Gut Riverbank in Gene-
va, lllinois. Dieser unterhielt dort Laboratorieiirf Akustik, Chemie,
Genetik und Kryptologie — letztere mit dem Ziel zu beweissad? B\-
CON der wahre Autor der AKESPEARESChen Schriften sei. Dadurch
muf3te sich RIEDMAN zwangsaufig auch @ir Kryptologie interessieren
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und war damit so erfolgreich, dal’ er bald Leiter der Labom@tsowohl
fur Genetik als auchif Kryptologie war.

Mit dem Kriegseintritt der Vereinigten Staaten im April I®hul3te sich
auch die amerikanische ArmeigrfKryptographie interessieren, und da
es aul3er Riverbank kein amerikanisches ZentriainKfyptologie gab,
wurden nicht nur aufgefangene Kryptogramme dorthin gegthson-
dern auch Armee-Offiziere, die beRIEDMAN in Kryptanalyse ausge-
bildet werden sollten. Diese Kurse wurden nach Kriegseogdsetzt,
und 1921 verliel3 RIEDMAN Riverbank, um anschlie3end in verschie-
denen miliarischen Funktionen sowohl Codes zu entwerfen als auch
Codes zu knacken. Von ihm stammt das Wkryptanalyse,das das
unbefugte Dechiffrieren vom legitimen unterscheidet.

Seine 1925 perfektionierte Idee zur Bestimmung der Peristdéol-
gende: Man betrachtéf eine natfrliche Zahln die Wahrscheinlichkeit
dafur, dal3 ein Buchstabe mit seinerrten Nachfolgekibereinstimmt.

Falls n ein Vielfaches der Periode ist, wurden die beiden Buchstabe
mit derselben Permutation versabéelt; da Summen nicht von der Rei-
henfolge der Summanden dbigen, ist die Wahrscheinlichkeit also

26
=D v
=1
wobeip, die Haufigkeit des-ten Buchstabens im Klartext ist.

Fallsn dagegerkeinVielfaches der Periode ist, stammen ein Buchstabe
und seim-ter Nachfolger bei hinreichend langer Periode fast immer a
verschiedenen Permutationen, man kann sie also in aller&i&herung

als voneinander unaBhgig ansehen. Dann ist die Wahrscheinlichkeit
einer Koinzidenz ungéhr gleich

26 1 2 _ 1
Betrachtet man die deutsche Sprache auf GrundlageDvoKatzen-
bergers Badereiseo ist

26 1

Z p? ~ 0,0789 verglichen mit o6~ 0,0385,

=1
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die beiden Werte unterscheiden sich also deutlich. In @&md8prachen
erhalt man zwar andere Werte, aber der Unterschied ist auch dort
unubersehbar.

Die theoretische Grundlage des Verfahrens ist einfach miefgen: An-
genommen, wir haben ein Alphabet adisBuchstaben, wobei derte
mit der relativen Hwfigkeitp, vorkomme. Zur Versclisselung verwen-
den wir zwei Permutationemn undw des Alphabets; im Chiffretext hat
deri-te Buchstabe somit dieddifigkeitq, = p._—1(i) bzw.q; = p_-1(3).
Schreiben wir; = £+ + 4, undg, = ¢;, so ist

N N
— ! — 1 1
R = E 4;4; (W + 5@) (W +€z)
=1 =1
N N N
— 1 1 E 1 E E
=N m"‘ﬁ 51+W €i+ 5161
=1 =1 =1

denn die Summe dex, wie auch die dee, sind Null. Somit istx die
Summe aus]lv und der Kovarianz der beidenadfigkeitsvektoreny
undq’. Falls diese unkorreliert sind, ist= % und im Falleg = ¢’ wird
x maximal.

In einem relativ kurzen Kryptogramm wird man selbstvénsllich an-
dere Werte berechnen, aber trotzdem sollte es im allgemé&ingleiche
Alphabete mehr Koinzidenzen geben als¥erschiedene.

Betrachten wir als erstes Beispiel das Kryptogramm

PDOAA KKMQB LYORJ FTLXM 0QGYU XTKCQ LXLVB ATCBU MJEDM SQZJJ
0ZPHT AEZZD FFRSK XTYZV MVVZS QTZUO CTGDX ENOGX XGCOI GXHBN
0ZXCC COJXJ PBQTV XTDOF ZRZND FHADX LZCQC NPBSL HTDVM ESKSP
YFCDB QHCEV ZDVIA DRKTR PGJDQ RFUUW AKQXP UZQVD AMXLF XGFGC
BTCFT KYRES GSALT VGZWT VSQOP UCALM ZFGMA VNDOZ ZNJOA HVDDQ
CMONK CPPBU ZZZYK PYRAD LZLYV GXNUB IURKX OEBBZ DNAWE UOVKH
TPISF DLIIQ LOXHO PAIZZ CAWEV XYSXU IZVUQ MAICE SKYXL AIZEH
KVNCR KUXYH IFKMK BJVHO TRSXX ZIEZJ
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Auszhlen der Buchstabealbfigkeiten zeigt, dal3 die Buchstabaoh
figkeiten sehr viel gleich@liger verteilt sind als in deutschem Text;
dies deutet darauf hin, daf’ keim®noalphabetischesondern eingo-
lyalphabetischeSubstitution angewandt wurde, d.h. die verschiedenen
Buchstaben des Kryptogramms wurden nicht alle mittels aoh der-
selben Permutation aus den Klartextbuchstaben berechnet.

A

B CD F GH JKLMNOPQRSTUVWXYZ
Buchstabenhauflgkelten des Beispielkryptogramms

251

0 4 8 12 16 20 24 28 32 36 40 44 48
Koinzidenzen im Beispielkryptogramm fur Abstande bis 50

Fir das obige Kryptogramm zeigt Abbildung vier die Verteduder
Koinzidenzen beir Buchstaben Abstand. Das erste Maximunvbei 1
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Ist natirlich nicht ernst zu nehmen; sonsttten wir eine monoalphabe-
tische Substitution, derenddfigkeitsverteilung deutlich anders aussieht
als die hier beobachtete. Auch die Spitzenbet 9 undn = 13 sind
wohl eher zudllig, denn bein = 18 undn = 26 sind die Anzahlen
eher Kklein. Uriibersehbar ist das absolute Maximum he+ 29; um

zu sehen, ob dies dgsichtige” Maximum ist, niissen wir allerdings
etwas mehr Werte berechnen. Dichste Abbildung zeigt die entspre-
chenden Abgtnde bis einschlie3lich 120, und man sieht doch recht
deutliche Aussclidlge bein = 58, 67 und 116. Wir wollen daher als er-
stes versuchen, das Kryptogramm unter der Annahme zu &asiein,
daldn = 29 ist.

25

20

15

10

10 20 30 40 50 60 70 80 90 100 110

Koinzidenzen im Beispielkryptogramm fur Abstande bis 120

120

Wir arbeiten also in diesem Ansatz mit der Hypothese, dal} Buweh-
staben genau dann mit derselben Permutation versséilt sind, wenn
ihr Abstand ein Vielfaches von 29 ist.

Deshalb teilen wir das Kryptogramm auf in 29 Buchstabermfo]glie
jeweils mit derselben Permutation verdgdgelt sein sollten. Ein Krypt-
analytiker warde nun die 29 Hufigkeitsverteilungen dazu betrachten;
da sie meisten (ganz grob) ungkf so aussehen wie die VORAEKSAR-
Substitutionen, \irde er VGENERE als wahrscheinlichste tlichkeit
ansehen.

Die Entzifferung von gleich 29 &EsAr-Chiffren ist allerdings alles
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andere als kurzweilig; idealerweise sollten wir also auak doch au-
tomatisieren.

Zum Gluck lait sich RIEDMANS ldee auch darauf anwendey: fur

1 < ¢ < 26 sei die Wahrscheinlichkeiten daf dal3 ein Buchstabe
in deutschem Klartext gleich deirten Buchstaben des Alphabets ist,
q; entsprechend die, dal3 dies ein Buchstabe des Kryptograstilstit
bezeichnen wir eine Addition, bei der das Ergebnis durchuReoh
modulo 26 in das Intervall von 1 bis 26 gezwungen wird.

Falls » die Anzahl ist, um die wir zur Entsdidselung verschieben
mussen, isp; =~ q,..,., also

26 T
~ 2
Pidigy ~ p; -
i=1 i=1

Fur jeden anderen Wert vonist die Korrelation zwischep, undg;,,
schwacher, die Summe sollte also kleiner sein. Der Effekt ishesic
lich nicht so ausgepgt, wie bei RIEDMANS Test, und zumindest bei
kurzen Kryptogrammen kann das Maximum auch gelegentlicleibe
nem falschem liegen, aber das richtigesollte im allgemeinen relativ
weit oben liegen.

Wendet wir dies hier an, erhalten wir folgende Kandidatersichlissel-
buchstaben, wobei links jeweils der mit dedBten) _ p, g, steht, danach
kommen die vier mit denachstkleineren:

N 0,085 E 0,057 Z 0,055 0 0,050 A 0,048
A 0,083 E 0,062 N 0,047 Z 0,046 K 0,045
T 0,080 D 0,068 C 0,064 G 0,059 P 0,057
H 0,077 I 0,054 L 0,051 Y 0,049 G 0,049
M 0,077 Z 0,067 Q 0,055 D 0,051 T 0,051
B 0,055 1 0,054 F 0,053 J 0,053 P 0,048
P 0,074 T 0,071 C 0,069 M 0,058 D 0,056
T 0,069 G 0,055 E 0,052 R 0,050 I 0,048
A 0,081 N 0,070 J 0,061 L 0,050 K 0,047
G 0,092 C 0,075 F 0,064 P 0,056 Q 0,048
S 0,079 W 0,066 J 0,060 F 0,055 N 0,054
S 0,061 F 0,060 R 0,053 W 0,052 J 0,047
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E 0,080 R 0,056 D 0,054 I 0,052 V 0,049
I 0,070 M 0,062 W 0,056 L 0,052 P 0,051
I 0,089 E 0,059 H 0,063 R 0,063 W 0,051
A 0,080 E 0,079 N 0,074 R 0,055 G 0,052
A 0,067 K 0,061 B 0,054 0 0,050 Z 0,050
R 0,076 N 0,072 W 0,056 B 0,054 I 0,049
K 0,072 B 0,060 E 0,059 V 0,056 U 0,051
R 0,075 E 0,055 N 0,054 Q 0,050 D 0,049
Y 0,069 S 0,059 P 0,058 J 0,054 W 0,054
P 0,099 C 0,061 L 0,063 M 0,051 Y 0,049
T 0,092 X 0,071 G 0,061 K 0,050 H 0,045
0 0,080 K 0,068 B 0,066 F 0,063 S 0,047
L 0,059 P 0,056 W 0,055 M 0,051 X 0,050
0 0,083 K 0,068 B 0,058 G 0,056 N 0,052
G 0,080 C 0,068 K 0,062 D 0,055 R 0,050
I 0,083 E 0,059 Z 0,053 V 0,053 R 0,051
E 0,107 N 0,059 A 0,056 R 0,054 I 0,048

Die Buchstabenfolge in der ersten Spalte legt nahe, dalkinygr
tographisch unsorgftig gearbeitet wurde: Der Sdldsel wurde wohl
nicht zufallig gewahlt, sondern als sinnvoller Teil der deutschen Sprache.
Das kommt bei der Anwendung desd¢NERE-Verfahrens Aufig vor,

da sich der Sclilssel so besséibermitteln und auch merkeaft, re-
duziert aber die Sicherheit noch weiter, da es dem Krypydikal einen
zusatzlichen Angriffspunkt bietet.

Wir kdnnen nun entweder versuchen, den korrekteniSskel anhand
der Buchstaben aus den folgenden Spalten zu erraten (was/dind
selbst ohne diese nicht sonderlich schabt;fvor allem wenn man weif3,
daf ich dieses Kryptogramniirf ein Nachmittagsseminaiif Lehrer
zum Thema Kryptologie konstruiert habe), oder aber wir@hlisseln
einfach den Text mit dem wahrscheinlich falschen 8s&él und kor-
rigieren anhand des entsakbkelten Textes. Wenn wir diesen in Zeilen
der Lange 29 aufschreiben, stehen jeweils die Buchstaben, diglai
chen Alphabet gdiren, untereinander, so dal &s jeden Schissel-
buchstaben mehretdberpiifungsnidglichkeiten gibt.

Der Entschlisselungsversuchlifirt auf folgendes Ergebnis: (In der ersten
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Zeile steht der Schiksel.)

NATHMBPTAGSSEIIAARKRYPTOLOGTIE
DEIINMAGRIERTASGUDIENGANGMATH
EMRTIDQNDINFONMNTTIKBIETETTIHNE
NEZNEUARUFSOREEATIERTEWISGSENS
CHRFTEECHEAUSXIYDUNGINDENFAETC
HEINMTPHEMATIGUADINFORMATTIKER
STEACAVWEIJAHNEAENTSCHETIDENSTI
ESZCHYQEREINEZEEBEIDENAUSRICH
TUEGEGIATHEMAPIXUNDINFORMATTIK
UNUDAFETAUCHFQEEEINENDERBETIDE
NASSCAHUESSEDEPYOMMATHEMATTIZKE
ROUERWEPLOMINBOEMATIKERWAEHRE
NDUERXNSTENBEEDRNSTUDIENJAHRE
SIEDAEHEVERANOTNLTUNGENGEMETIN
SAD

Damit sollte wohl jeder Leser den Klartext rekonstruieréniken. Bei
einer Schilisselange von 29 und einer Te#tige von 480, bei etwa
16,5 Zeichen pro Alphabet also, ist das Viges+Verfahren somit schon
vOllig unsicher. Bei noch mehr Buchstaben pro Alphabet wies d
Knacken noch einfacher: Betrachten wir als Beispiel ddreseKlar-
text wie oben, chiffriert mit einemikzeren Sclilssel:

PZWDV AKLNZ ZDMDE MGYNZ VNGSC DVFAD YTFDP PVKOS BFMYT SUDND
JOMAQO MJVIQ BMQUQ MZAAV XNAEQO UXQFX IDXNM UYHDR AFEHO AQVZN
JPRIQ EBUGC QGRVJ XPLXS IROTX LMMUF ZILPT KKIHM MHWXD NYIIJ
NESVD VTGDX ZZSOA JNJEU ZZLHQ LUXMA CLXJE EZPXQ NXUYJ IIBYW
ETCFN MSXZH FOPLS FPZFG GCUGR JWHIA OPQEY PTLUM MPHCN BKWAZ
IQGCQ KNZNY MUGGO TCXND ELQYN KTVSR WKCQF ZFBWZ WJLLX IEGGA
FHZYA MRVBP QJNNV QAQQG PYJMM YYYAE WQBCQ GEOZY QLTOW YMQLH
ZWMGQ ZDLXF JJOME SGGSZ SBMTK NJJVY

Fir dieses Kryptogramm sehen wir wieder anhand der relagéiclgi
mafigen Verteilung der Buchstabentiigkeiten, dal3 es sich um eine
polyalphabetische Versddselung handeln muf3.

Das Diagramm der Koinzidenzen beiBuchstaben Abstand hat bei
n = 6 eine erste Spitze; diese kann jedoch ignoriert werdeesdaei
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EFGHI JKLMNOPQRSTUVWX Z
Hauflgkeltsvertellung der Buchstaben im Kryptogramm

> I
oo I
@]

8 12 16 20 24 28 32 36 40 44 48
Koinzidenzdiagramm dazu

n = 12 undn = 24 keine Maxima gibt. Die Maxima bei = 16, 32
und 48 dagegen lassen eine Periodegk von 16 als wahrscheinlich
erscheinen. Es gibt zwar auch eine ziemlich hohe Spitze: bei40,
was vielleicht doch auf eine Periode acht hindeutet, dachiigs weder
n = 8 nochn = 24 zu sonderlich groRenddfigkeiten @ihren, spricht
das Diagramm doch eheirfn = 16. Derpg-Test schiaigt folgende
Schlisselbuchstaben vor:

N 0,066 M 0,052 Q 0,050 R 0,048 J 0,046
E 0,079 A 0,056 F 0,055 T 0,050 N 0,050
U 0,079 H 0,058 E 0,057 Q 0,056 D 0,051
E 0,064 D 0,055 P 0,049 F 0,048 T 0,048



Kap. 2: Einige klassische Kryptoverfahren 66

R 0,083 vV 0,059 E 0,050 I 0,046 Q 0,045
S 0,087 B 0,051 0 0,049 R 0,048 D 0,048
T 0,077 P 0,070 G 0,068 F 0,047 K 0,045
U 0,067 H 0,052 L 0,052 Y 0,052 V 0,049
D 0,075 Z 0,060 Q 0,056 U 0,049 H 0,046
I 0,072 Z 0,065 M 0,055 E 0,047 N 0,046
E 0,069 R 0,058 I 0,049 P 0,048 F 0,047
N 0,084 R 0,053 J 0,049 W 0,048 A 0,047
G 0,076 K 0,050 Z 0,049 X 0,047 Y 0,046
A 0,078 W 0,073 B 0,063 F 0,051 N 0,050
N 0,090 J 0,053 W 0,052 A 0,047 R 0,042
G 0,091 X 0,057 T 0,052 K 0,048 F 0,047

Hier steht gleich in der ersten Spalte der sehr wahrsclohialissehende
SchlisselNEUERSTUDIENGANG, der auch in der Tat zu vesstdlichem
Klartext fuhrt (entnommen aus einer Informationsbragelder Fakulit
fur Mathematik und Informatikifr Schiler zu der Zeit, als der gerade

noch existierende Diplomstudiengang noch neu war):
Der integrierte Studiengang Mathematik und Informatik-bie

tet Ihnen eine berufsorientierte wissenschaftliche Adsbg

in den Fachern Mathematik und Informatik. Erst nach zwei
Jahren entscheiden Sie sictirfeine der beiden Ausrichtun-
gen, Mathematik® und, Informatik‘ und damit auchir einen
der beiden Absciikse, Diplom-Mathematiker‘ oder, Diplom-
Informatiker*. Wahrend der ersten beiden Studienjahre sind alle
Veranstaltungen gemeinsam.

Informationstheoretische Betrachtungen zeigen, dalinsioslioveniger
als zwei Buchstaben pro Alphabet der Klartext und der i$&gdl mit
hoher Wahrscheinlichkeit eindeutig durch den Chiffrebedtimmt sind.
Zu einer auf der Informationstheorie beruhenden Krypimebelbtigt
man allerdings praktisctnbeschankteRessourcen, denn die &@sen,
mit denen hier gerechnet wird, sind definiert als Sumiitssr den Raum
aller moglicher Schiissel; im Falle des obigen Séiskels der Ange 29
ware das eine Sumniger 26° ~ 10*> Summanden. Kryptanalytiker
suchen daher nach weniger aufwendigen Verfahren — und fiBgen
auch in vielen Bllen.
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§3: Der one time pad

Der one time pad(,Einmalblock®) ist ein Spezialfall des IFENERE
Verfahrens; dal? er trotzdem einen eigenen Paragraphembakdegt
an einem entscheidenden Punktakvend die typische MENERE-
Chiffre, wie wir im vorigen Paragraphen gesehen haben, eklgn
Sicherheit garantiert, ist dene time packines von nur zwei in dieser
Vorlesung behandelten Verfahren, die beweisbare Sichiéraeen. (Das
zweite ist die Quantenkryptographie, die allerdingsaeldich einfach
ein Protokoll ist, umiber @umliche Distanzen hinweg Scisisel fir den
one time pacu vereinbaren.)

Der one time padhat seinen Namen von der Art und Weise, wie er
friher benutzt wurde: Gedruckt wurden zwei identische Exare@ines
Blocks, der auf jeder Seite eine Zllige Folge von Buchstaben eaih
jeder der beiden Kommunikationspartner bekommt ein Exampl

Zur Verschlisselung einer Nachricht nimmt der Absender das oberste
Blatt, verschlisselt den ersten Buchstaben der Nachrickt CAESAR

mit dessen erstem Buchstaben, den zweiten mit dem zwastenVenn

alle Buchstaben auf dem Blatt aufgebraucht sind oder diehfizd
vollstandig verscrlilsseltist, wird das Blatt vernichtet und es geht weiter
mit dem rachsten Blatt. Der Emphger kann die Nachricht mit Hilfe
seines identischen Blocks problemlos entsskeln.

Falls KCHQR OFVFN FVSLA XRQBYV E die ersten Buchstaben auf der
aktuellen Seite sind, wird also die Nachri¢cAngriff im Morgengrauen®
verschiisselt geral3

ANGRI FFIMM ORGEN GRAUE N
+ KCHQR OFVFN FVSLA XRQBV E
= LQOIA ULESA UNZQO EJRWA S

Was kann ein Gegner mit diesem Chiffretext anfangen?

Wenn er das Verfahren kennt, weil3 er, dafidie Verschilisselung dieser
Nachricht aus 21 Buchstaben auch 21 8skélbuchstaben verwendet
wurde; dazu gibt es 26 ~ 5,181318713 10°° Moglichkeiten, also
uber Tausend mal so viele wie bei der allgemeinen monoadiisghen
Substitution. Wie wir dort gesehen haberdnken wir allerdings auf
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solche Zahlen nichts geben. Die Sicherheit dies time paderuht auf
einer ganz anderddberlegung:

Angenommen, ein Gegner kommtirgendwie auf den richtigdmiSsel
KCHQR OFVFN FVSLA XRQBYV E und entschikselt die Nachricht

damit:
LQOIA ULESA UNZQO EJRWA S

— KCHQR OFVFN FVSLA XRQBV E
= ANGRI FFIMM ORGEN GRAUE N

Damit kennt er die Nachricht. Aber weild er das?

Da die Schiissel zudllig gewahlt wurden, ist KCHQR OFVFN FVSLA
XRQBV E genauso wahrscheinlich wie etwa JYFUT PJSXN PZTVJ
MWWCG J, und damit Wirde via

LQOIA ULESA UNZQO EJRWA S
— JYFUT PJSXN PZTVJ MWWCG J
= BRING EBLUM ENFUE RMUTT I

mit einem \0llig anderen Ergebnis entscisiselt. Offensichtlich gibt es
fur jede Buchstabenfolge deahge 21 genau einen Sakkel, der genau
diese Folge alsEntschiisselung® liefert, und da alle Sdldsel dieselbe
Wahrscheinlichkeit haben, gilt dasselbe aughdlle Nachrichten der
Lange 21.

Natirlich sind aus Sicht des Gegners, der im allgemeinen dusdindor-
mationeniber das Umfeld der Kommunikation hat (warum sonst sollte
er schlie3lich abtiren?) nicht alle diese Nachrichten gleich wahrschein-
lich, aber durch das Auffangen des Chiffretexts bekommtegnéd¢lei
neue Informationen, die seine Eingtiung der relativen Wahrschein-
lichkeit der verschiedenen dglichkeiten veandern knnten. Dieses
Phanomen bezeichnet man als absolute informationsthecietsicher-
heit.

Erlerntallerdings zwei Dinge: Erstens, daf’ der Absenaeriachricht

an den Empinger schickte und zweitens, wie lange diese Nachricht
war. Auch dasafit sich verhindern, indem der Absender regdiig zu
festgesetzten Zeiten eine Nachricht an den EEmgér schickt; falls es
nichts zu sagen gibt, schickt er einfach irgendeinen Text.
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Der one time padvurde wohl erstmalig vom amerikanischen General
VERNAM im ersten Weltkrieg benutzt; man redet daher gelegentiich a
von der \VERNAM-Chiffre. Im zweiten Weltkrieg kommunizierte London
auf diese Weise mit der frabgischerRésistanceund sgater sicherten
FIDEL CAsTRoOund GHE GUEVARA ihre Kommunikation auf diese Weise.

Als high techVariante davon entstand im Kalten Krieg daete Tele-
phon zwischen dem Weil3en Haus und dem Kreml: Damals hielten
viele (wohl zu Recht) die Gefahr eines Atomkriegs aus Vezaefir
erheblich gol3er als die eines absichtlichen. Um ersteren etwas weniger
wahrscheinlich zu machen, einigten sich die beiden Géafhte im Ju-

ni 1963 in Genf darauf, das sogenanRiae Telephorinzurichten; es
funktioniert seit dem 30. August 1963.

Natirlich handelt es sich dabei nicht wirklich um ein Telephdenn zu
keinem Zeitpunkt des kalten Krieges reichten die Sprachikesse ei-
nes amerikanischen&sidenten oder eines Generalsekreter KPdSU
auch nur @r ein direktes Gespchiiber das Wetter. Taashlich geht es
um eine Fernschreibverbindung mit je vier (bei Siemens Mam
gebauten) Fernschreibern an beiden Enden: jeweils zwelateiini-
schem und zwei mit kyrillischem Alphabet. Bislang verbracisie ihre
meiste Zeit damit, sindliche Testnachrichten zu drucken wie ameri-
kanische Baseball-Ergebnisse odeRGENJEWS Aufzeichnungen einer
Jagers.

Aus Sicherheitsgmden wurden zwei Leitungen eingerichtet, eine ent-
lang der Route Washington-London-Kopenhagen-Stockhdétsinki-
Moskau, die andere via Tanger. Ndich war es unriglich, diese
Leitungen auf ihrer ganzerdnge zuiberwachen, so dal3 niemand aus-
schlie3en konnte, dal3 irgendwo zwischen Moskau und Watsimmegne
vertrauliche Kommunikation abgéh oder — mit potentiell sehr viel
katastrophaleren Folgen — eine @lsthte Nachricht eingespielt wurde.
Aus diesem Grund muf3ten alle Nachrichten vergsslt werden

Dazu diente folgende einfache Variation dese time pads\Von Zeit
zu Zeit tauschten die beiden Seiten per Kurier Magaeder mit zu-
fallserzeugten Bitfolgen aus. Jedesmal, wenn eine Ndatirbermittelt
werden solltejibersetzte der Fernschreiber diese in eine Bitfolge, d.h.



Kap. 2: Einige klassische Kryptoverfahren 70

in einen Vektor aus einem Vektorrau' . Aus den erstedV bislang
noch nicht benutzten Bits auf dem Magnetband wurde dazu eiterer
Vektor @ € FY gebildet, und tatichlichiibertragen wurde die Summe
§=4U+.

Am anderen Ende der Leitung, wo eine Kopie des Magnetbarntkgyo
war «w bekannt, so dal’ die Nachricht

T=0+0=0+ @+ %) = (F+0)+0 =5+
leicht rekonstruiert werden konnte.

Ein Lauscher ohne Magnetband konnte nur dédge N der Nach-
richt ermitteln, was bei seitenlangen in Diplomatenspedolhmulierten
Texten so gut wie keine konkrete Information liefert — gabhgesehen
davon, dal3 man nie ausschlie3en kann, dal’ es sich viekacath um
eine zudatzliche Testnachricht zu Wartungszwecken handelt.

Wichtig ist auch, dal jemand, der einfach irgendeinen \fekKia die
Leitung einspielt, so gut wie keine Chance hat, dal3 nachtfddron
daraus versindlicher Text wird; die Manipulation wird also mit an
Sicherheit grenzender Wahrscheinlichkeit entdeckt.

In alltaglicheren Anwendungen ist der mit deme time padverbun-
dene Aufwand meist zu hoch; man muf3 notgedrungen mitiSshin
arbeiten, die deutlichikzer sind als die (Summe der) Nachrichten, die
damit verschiisselt werden.

Informationstheoretische Berechnungen legen nahe, az8\&RE be-
reits unsicher wird, wenn die Nachricht nur um 308ader ist als der
Schlissel. der Klartext nur etwa 30%iriger ist als der Scihésel. Wenn
man bedenkt, dal} es Programme gibt, die lange Dokumentegader
eine gesamte Festplatte versideln in Abkngigkeit von einem nur
wenige Zeichen langen Scldsel mittels eines byte- statt buchstaben-
basierten VGENERE-Systems, wundert es nicht, daR so viele Programme
auf dem Markt sind, digvergessene” Pas&wnter rekonstruieren.

Wie der bislang gifdte (bekannt gewordene) Unfall der sowjetischen
Kryptographie zeigt, kann selbst deme time padei falscher Anwen-
dung unsicher werden: Aus irgendeinem Grund wurden Anfé% 1
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eine Zeit lang von jedem Einmalblock nicht zwei, sonderm frem-
plare produziert. Diguberflissigen* Exemplare wurden nicht zengt
sondern wanderten ins Vorratslager und wurdexiespals ihre Herkunft
langst vergessen war, benutzt. Dies gab den amerikanisclodoritis-
chen Geheimdiensten dieddlichkeit, einen Teil der geheimsten sow-
jetische Kommunikation zu entscldseln, obwohl zu&gzlich zumone
time padvorher noch eine Versdi$selung nach einem Codebuch einge-
setzt wurde. Die rekonstruierten Dokumente kann inzwischech die
interessiertéffentlichkeit nachlesen: Man suche unteww.nsa.gov
nachvenona.

84: Transpositionschiffren

Permutationen lassen sich nicht nur anwenden, um ein Agthzlp
permutieren; sie @nen auch verwendet werden, um die Reihenfolge
der Buchstaben des Klartexts so zuarstern, dald dieser nicht mehr
erkennbar ist.

Konkret wahlt man eine (geheime) Blod&dgen und eine Permuta-
tion 7 € G,,. Der Klartext wird aufgeteilt in Bicke der langen,

wobei der letzte eventuell noch mit Allig gewahlten Buchstaben
aufgefillt werden muf3; sodann wird der Bloeka, . . . a,, ersetzt durch

a,ﬂ.(l)a,ﬂ.(z) “e a/ﬂ.(n).

Da nur die Reihenfolge der Buchstaben aratert wurde, ist die
Verteilung der Buchstabeahfigkeiten im Kryptogramm exakt dieselbe
wie im Klartext; man erhlt also ein Histogramm, dal3 genauso aussieht,
wie man es von deutschem Klartext erwartet. Auf diese Weaisenat

ein Kryptanalytiker Transpositionschiffren.

Betrachten wir als Beispiel das Kryptogramm

CSHSI EUNUE EERRQ VNGDB EUINW HINES ZCUTE NELQL
UHNXI DTCRX EFTTF ESLSD TOALI TEESE DNLSU CEEHS
NRGLE VUEFE AINCN H

Wie das Diagramm zeigt, entsprechen die Buchstadafdkeiten darin
in der Tat der von deutschem Klartext:
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Es hat eine Bnge von 96 Zeichen; die Bloégen sollte also ein Teiler
von 96 sein. (Ein geschickter Kryptograplirge freilich am Ende noch

weitere Buchstaben airjen, so dal3 das Kryptogramm keinen Hinweis
aufn liefert.)

Versuchen wir etwa, das Kryptogramm zu entsisBkln unter der An-
nahme, die Scliksselange sei gleich sechs. Dazu teilen wir es auf in
Blocke der lange sechs:

1 CSHSTIE 5 WHINES o RXEFTT 13 LSUCEE
2 UNUEEE 6 ZCUTEN 10 FESLSD 14 HSNRGL
3 RRQVNG 7 ELQLUH 11 TOALIT 15 EVUEFE
4 DBEUIN 8 NXIDTC 12 EESEDN 16 AINCNH

Da im ersten Block sowohl ei@ als auch eitd vorkommen, im zweiter
aber keirH steht, ist zu erwarten, ddaRundH im Klartext einCH sind;
in Klartext sollte also die erste Spalte der obigen Blocktidiung links
vor der dritten stehen.

Im dritten Block steht an dritter Stelle e@, aber es gibt keitJ. Das
nachsteU steht eine Zeile tiefer an vierter Stelle. Fallsund U im
Klartext einQU bilden, mul} also die dritte Spalte im Klartext die letzte
sein und die vierte die erste.

Im sechsten Block haben wir ein C an zweiter Stelle, aber delsste H
steht eine Zelle tiefer an letzter Stelle; diesrde daiir sprechen, daf}
die zweite Spalte im Klartext an sechster Stelle steht uadéchste an
erster.
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Im siebten Block steht in der dritten Spalte €rund des einzige dazu
passend® steht in Spalteiinf; denn im im achten Block gibt es keines.
Demnach sollte die dritte Spalte im Klartext vor danften stehen.

In Block acht steht eilC, aber weder im achten noch im neunten Block
gibt es einH oderK.

In Spalte vier des dreizehnten Blocks steht €jrdazu palit eigentlich
nur dasH in der ersten Spalte de&chsten Blocks, d.h. die vierte Spalte
sollte letzte sein und die erste auch im Klartext die erste.

Der letzte Block schlie3lich legt nahe, dald die vierte $patir der
sechsten stehen sollte.

Natirlich muf3 nicht jede dieser Folgerungen richtig sein; esikb vor,

dald nach einer® in deutschem Klartext weder ekhnoch einK steht,

und es kommt auch vor, dal3 nach einé€nkein U steht. Hier haben
aber so viele Widersfiche zwischen den getroffenen Folgerungen, daf3
so etwas der Regelfall seinifdte — dies spricht eher dagegen, daf3 die
Verschlisselung mit Blockinge sechs erfolgte.

Orden wir den Chiffretextin Bicke der lange acht, bietet sich folgendes
Bild:

1 CSHSIEUN 4 WHINESZC 7 RXEFTTFE 10 LSUCEEHS
2 UEEERRQV 5 UTENELQL 8 SLSDTOAL 11 NRGLEVUE
3 NGDBEUIN 6 UHNXIDTC 9 ITEESEDN 12 FEAINCNH

Hier legt Block eins nahe, dal? die erste Spalte unmittelbader dritten
stehen sollte. Block zwei kann eiplU realisieren, wenn entweder Spalte
sieben im Klartext vor der ersten steht, oder aber sie sttt binten
und Spalte sechs ganz vorne. Block vier legt nahe, dal} Spaitevor
Spalte zwei stehen sollte, bei Blockrf haben wir dieselbe Situation
wie bei Block zwei und bei Block sechs wie bei Block vier. Btaehn
plaziert Spalte vier vor Spalte sieben und Bloclkoveechs vor acht.

Vermuten wir bei Block zwei die erste dgjlichkeit, so stehen im Klar-
text einerseits die Spalten 4, 7, 1, 3 als Viererblock neinaneler,
andererseits Spalten 6, 8, 2 als Dreierblock. Entweder afarynoder
am Ende oder dazwischen steht diafte Spalte.
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Die moglichen Reihenfolgen sind also 47136825, 47135682, 58id24,3
68247135, 68254713 und 56824713. Betrachtet man den Efieser
Permutationen auf die erste Zeile, ist klar, dal3 nur diedviiglichkeit

in Frage kommt; der Klartext ist also

SUCHEN SIE QUERVERBINDUNGEN ZWISCHEN
QUELLTEXT UND CHIFFRETEXT DAS SOLLTE
DIE ENTSCHLUESSELUNG VEREINFACHEN

Bei diesem Kryptogramm erforderte die Kryptanalyse wegamrelativ
vielen PaareCH und QU wenig Arbeit; bei schwierigeren Texte hat
er nicht unbedingt viele sichere Regeln, jedoch gibt estthus noch
andere ziemlich sichere Kombinationen: So steht zum Balispie die
Kontaktdiagramme zeigen, vor einesehr laufig einN, und nach
einemB oderG kommt zwar nicht immer, aber doch oft i) nachV
steht meisO oderE. Bei kurzen Kryptogrammen mit wenigen typischen
Buchstabenpaaren kann ér jedes Paar von Spalten die Wahrschein-
lichkeiten dafir ausrechnen, daf3 die eine vor der anderen steht; auch das
macht die Situation viel klarer. Oft springen dem Betrachts hinrei-
chend langen Bicken (die man aus Sicherheitsgden braucht) auch
Worter ins Auge, die weiterhelfendknen. Hier ist das Sprachgi
des Kryptanalytikers oft wichtiger als jede mathematisghalyse.

Transpositionschiffren spielten bis zum ersten Weltkreage grof3e
Rolle in der deutschen Miktrkryptographie, allerdings wurden sie nie
allein angewendet, sondern nur als Teil eines zweistufigefakirens.
Der Grund dirfte klar sein: Gegen einem Angriff mit bekanntem Klartext
einer Lange, digiber der Blockhnge liegt, bieten Transpositionschiffren
keinerlei Schutz. Heute sind sie (zu Recht) weitgehendessegn.

§5: Rotormaschinen

Alle bislang behandelten Kryptoverfahren sind hinreiachemfach, daf3
Nachrichten einfach mit Bleistift und Papier ver- und ehtgsselt wer-
den lbnnen. Mit Ausnahme des logistisch sehr aufwendigea time
padlassen sie sich allerdings auch alle relativ einfach knacke
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Viele klassische Kryptographen versuchten, die Sichedssone time
padmit der Einfachheit der \M6ENERE-Chiffre zu kombinieren: Letztere
konnte man auffassen als einame time padpei dem die immer gleiche
Buchstabenfolge endlos wiederholt wird, und das ist — wieg@sehen
haben — extrem unsicher.

Alternativ kbnnte man versuchen, aus einer relativ kurzeni&sdlin-
formation eine komplizierte Buchstabenfolge zu erzeudansich ide-
alerweise verdlt wie eine Zufallsfolge. Schliel3lich haben selbst viele
Taschenrechner heute eine Taste, die Zufallszahlen drzmatauch die
meisten Programmiersprachen biet@unifallsgeneratoren“ an, manch-
mal auch unter dem korrekteren Namé&tseudozufallsgenerator”.

Leider liest man immer wieder Untersuchungen, die vielesel Pro-
gramme miserable Ergebnisse attestieren, aber es gildtaligAlgo-

rithmen, die Folgen liefern, die sich beispielsweisedie Zwecke einer
Simulation nicht wesentlich von echt Allig gewahlten Zahlen unter-
scheiden — wie immer auch man letztere bekommen kann. (Waeme
uns am Ende der Vorlesung auch damit bésadpen.)

Aber, und hier kommt das zweitieider, ein Algorithmus der gute
Ergebnisseiir Simulationszwecke liefert, liefert nicht notwendigeiw
se auch gute Ergebnisde kryptographische Zwecke: Diese beiden An-
wendungen sind praktisch disjunkt, denn die Algorithmaa,derzeit
als kryptographisch sicher gelten, sirigd Simulationszwecke viel zu
aufwendig, und die beahrten Algorithmen, dielir gute Simulationen
eingesetzt werden, sind kryptographisdtliig unsicher.

Um 1920, als unalidingig voneinander in mehrererahder erste Ver-
schlisselungsmaschinen auftauchten, wuf3te man von diesentAlgo
men des Computerzeitalters adich noch nichts; man versuchte ein-
fach, aus relativ kurzer und giibermittelbarer Schikselinformation
einen noglichst komplexen Sclikselstrom zu erzeugen.

Wie Ublich in der Kryptographieifhrten nahezu identische Aitge zu
dramatisch verschiedenen Ergebnissen:

Die Ansatze waren iir Laien praktisch ununterscheidbar: Praktisch
alle Maschinen bestanden aus sogenanRetoren.Dabei handelte
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es sich um Rder mit (im mitteleuropischen Bereich) 2&quidis-
tanten elektrischen Kontakten auf der Oliafie. Durch das Innere
liefen Drahtverbindungen zwischen diesen Kontakten, @iejls zwei
miteinander verbanden; ein Strom der an einem dieser Ktndaigelegt
wurde, verliel3 den Rotor also an einer festen anderen Sidiéurch
wurde eine Permutation au®,g realisiert, die sich als Produkt von
13 elementfremden Transpositionen schreiben liel3.

Die Tastatureingabe wurdder mehrere solcher Rotoren geleitet, so dal
effektiv ein Produkt von drei bisiihf solcher Permutationen realisiert
wurde. Rir sich allein bietet das niatlich keinerlei Sicherheit, denn das
Produkt von egal wievielen Permutationen ist schliel3liceder nur
eine einfache Permutation. Deshalb drehte sich einer dier&onach
jedem Buchstaben um eins weiter um so eine andere Pernmuiatio
realisieren.

Aus Sicht eines Kryptanalytikers ist auch eine solche @gBewegung
kein grol3es Hindernis; als zazliche Sicherheit geint daher zu einer
Rotormaschine, dal3 sich auch weiteren Rotoren gelegeiathier nicht
immer weiterdrehen. Bei den ersten Rotormaschinen wie devaon
HEBERN geschah dies in eineidllig regelmalRigen Weise: Dertinfte
Rotor bewegte sich nach jedem Buchstaben um eins weiteerder
nach je 26 und der dritte nach je 676 Buchstaben. Der zwededen
vierte Rotoranderten ihre Position nicht. Bei anderen Maschinen wie
der Enigma wurde die Bewegung der Rotoren durch unregf@ignauf
den einzelnen Rotoren angeordneten Haken realisiert unddaait
auch von der Rotorkonfiguration afingig.

Zur Entschilisselung wird der Chiffretext einfach in eine identiscrgauf
baute Maschine mit gleicher Anfangsstellung aber umgé&eRotor-
reihenfolge gegeben. (Das Bild hier zeigt eine Enigma-Mamc mit
drei Rotoren.)

Bei der Enigma, im Gegensatz zu anderen Rotormaschinengdevar
letzte Rotor fest und leitet den Strom, nach einer weiteesmitation,
zurick durch die beweglichen Rotoren. Dadurch kann die Eriissiet
lung mit derselben Rotorenkonfiguration erfolgen.

Im WWW sind verschiedene Simulatoren sowohl der vielen slghen



77 Kryptologie HWS 2016

Enigma-Modelle als auch anderer Rotor-Maschinen zu fineéame
Enigma der deutschen Abwehr mit vier Rotoren findet man be&sp
weise unterhttp://home.caiway.nl/~antonh/enigma ga.html
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Die mit solchen Maschinen erzielbaren Perioden liegen imeiBk
uber 100 000; wie jeder Leser inzwischen hoffentlich verdéan hat,
ist das aber freilich keine Garanti@rfSicherheit.

In der Tat wurde eine der ersten Rotormaschinen, der Kryapig
des deutschen IngenieursBXANDER VON KRYHA, die in Europa wie
auch Amerika recht erfolgreich an Geaftsleute verkauft wurde, im
Januar 1933 auch der amerikanischen Armee zum Kauf angebote
Diese liel3 sich zu Testzwecken ein damit vergshkeéltes Kryptogramm
aus 1135 Buchstaben (200 dern) geben, und leitete dieses an
ihren Chefkryptanalytiker BBERT FRIEDMAN weiter. Diesem gelang es,
zusammen mit drei Mitarbeitern, das Kryptogramm (ohne Masn)

in zwei Stunden und 41 Minuten zu entsasgeln. Dieffentlichkeit er-
fuhr davon ndirlich nichts; auch um 1950 verscisiselte das Ausartige
Amt in Bonn noch seine diplomatische Korrespondenz mit resic
Maschinen.

Die Enigma-Maschine war deutlich sicherer, wurde abert®in be-
reits wahrend des zweiten Weltkriegs fast routiréd$ig geknackt. Ein
Grund daiir war, dal3 vehrend der @ltigkeitsperiode eines Sdidsels
(d.h. wahrend eines Tages) alle Nachrichten mit derselben Anéhelgs
lung verschlisselt werden iiissen oder aber die Anfangsstellung auf
andere Weisé@bermittelt werden mul3.

Die deutsche Wehrmacht umging dieses Problem in einigezeNet
dadurch, daf3 mit dem jeweiligen Tagessisskel nur ein speziellif
die folgende Nachrichtigtiger zufallig gewahlter Schlisselibermittelt
wurde; danach wurde die Maschine gdindiesem Schksel in eine
neue Anfangsstellung gebracht und die Nachricht vetsdhalt.

Grundstzlich ist das eine recht sichere Option; falls allerdidgsch
einenUbermittlungsfehler bei den ersten drei Buchstaben diés# n
korrekt beim Empinger ankommen, kann dieser die Nachricht nicht
entschlisseln und muf3 um Wiederholung bitten.

Dies war den Miliirs zu umsindlich; deshalb wurden die drei Buch-
staben der Anfangsstellung nicht einmal, sondern zweiifertra-
gen. Sobald die Kryptanalytiker in der britischen Decleffzentrale in
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Bletchley Parldies merkten, hatten sie eine entscheidende Zusatzinfor-
mation: Die ersten sechs Buchstaben einer jddleartragung geiren

zu einem Klartext, der aus zweimal derselben DreiergruppeBuch-
staben besteht. Der Tagess@del muld daher die Eigenschafthaben, dal3
alle diese aufgefangenen Sechsergruppen bei Eatsd#ilng damit zu
zwei aufeinanderfolgenden identischen Dreiergruppe &rerdias bei
zufallig gewahlten Schiisseln nairlich fast nie der Fall ist.

Um zu sehen,ifr welche(n) Sclilssel das funktioniert, mufd man im
Prinzip alle ausprobieren, was bei’26 17 576 nipglichen Anfangsstel-
lungen und arénglich 3! = 6, spater 5 4- 3 = 60 nbglichen Rotorkom-
binationen fir die damalige Zeit ein beichtlicher Aufwand war. Hierzu
wurden inBletchley Parkspezielle Geite konstruiert, die sogenannten
Bombendie mit hoher Geschwindigkeit viele Rotoren parallel atdrei
lieRen.

Viele Angriffe waren auch Angriffe mit bekanntem Klartegxggenann-
ten cribs, die ebenfalls mit Hilfe der Bomben aufdgliche Schiissel
untersucht werden konnten. Meist gelang es, bis etwa elfiniirgens
den Tagesschiksel zu ermitteln und ab dann alle Kommunikation zu
entschiisseln.

Die Verdrahtung der einzelnen Rotoren war schon vor demgkiran
polnischen Kryptanalytikern geknackt worden, nachdemdaitsche
HANS-THILO SCHMIDT (1888-1943) die Gebrauchsanweisurig flie
Enigma-Maschine und die Liste der Sabs$el fir September und Ok-
tober 1932 an einen fratigischen Kryptographen namensfBRAND
verkauft hatte. Dieser konnte die Maschine zwar nicht keackgab die
Informationen aber nach England und nach Polen weiterr &neppe
polnischer Kryptographen unter Leitung voraAMAN ADAM REJEWSKI
(1905-1980) gelang dann die Rekonstruktion der drei dagedd&uch-
lichen Rotoren und somit der Maschine.

Diese Rotoren blieben &hrend des gesamten zweiten Weltkriegs im
Einsatz; kein Rotor wurde je aus dem Verkehr gezogen. Zwadevu

in manchen Netzwerken wie etwa bei den U-Booten ein oder zwei
neue Rotoren eingehrt, aber da diese zusammen mit den alten benutzt
wurden, hatten die Kryptanalytiker dann nur noch das Propldie
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Verdrahtungeinesunbekannten Rotors zu ermitteln, was angesichts des
grofRen Nachrichtenvolumens stets gelang.

Nach dem Krieg verkaufte die britische Regieruilgrigens die er-
beuteten Enigma-Maschinen an Regierungen ihrer Ex-Ketoohne
deneniber die erfolgreiche Entsdidselung zu berichten; damit war sie
erstens immer gtitber die Vorkommnisse in dieser@hdern informiert
und verdiente zweitens noch daran.

Seit etwa 1970 werden Rotormaschinen nicht mehr eingesetafder

in UNIX. Das dortigecrypt (1) -Kommando simuliert eine Rotormas-
chine miteinemRotor, der 256 Ein- und Augage hat. Sehr sicher ist
das nichts; selbst in deran-Seite dazu heil3t églethods of attack on
such machines are widely known; thus crypt provides mingaalirity.

Fur Palvarter verwendet UNIX daher auch nicht dieses Kommando,
sondern das auf einepgesalzenen* DES beruhende deutlich bessere
crypt (3)-Unterprogramm. Es gibt inzwischen ein universelleres Kom
mandomcrypt, das sich zwar mit Optior-enigma genauso verdt

wie crypt (1), das aber auch alternative Algorithmen anbietet, die nach
heutigen Standards sicher sind, z.B. AES und triple-DESstsnter

der GNU public licence e#iltlich untermcrypt.sourceforge.net.

86: Literaturhinweise

Das (dickleibige) Standardwerk zur alten Kryptographi¢ chwer-
punkt auf der geschichtlichen Darstellung ist das beraitslatzten
Kapitel erwvahnte Buch

DaviD KAHN: The Codebreakers — the comprehensive history of secret
communication from ancient time to the intern@tribner, New York,
2

1996

Fur zahlreichealtere Kryptologen war die erste Auflage von 1967 der
Einstieg in ihr Arbeitsgebiet.

Deutlich kirzer, billiger und verfahrensorientierter ist

HELEN FOUCHE GAINES: Cryptanalysis — a study of ciphers and their
solution,Dover, New York, 195¢Originalausgabe 1939)

L. SAacco: Manuel de cryptographid?ayot, Paris, 1951
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beschreibt die klassischen Verfahren und ihre Kryptamadyss seiner
Sicht als Chef des Chiffrierdienstes der italienischen éenkine Reihe
entsprechenderi&her gibt es auch von W.IAM FRIEDMAN, jedoch
sind diese in Deutschland weiberhaupt nur schwer zu finden.
Rotormaschinen und ihrer Kryptanalyse ist das Buch

CIPHERA. DEAVOURS, LouIsKRUH: Machine cryptography and modern
cryptanalysisArtech House, Dedham MA, 1985

gewidmet.,,Modern“ bezeichnet hier den Zeitraum von etwa 1920-
1970. Weitere Informationen zur Kryptanalyse von Rotorchagen im
zweiten Weltkrieg findet man im Buch vonaKIN sowie bei

BENGTBECKMAN: Codebreakers — Arne Beurling and the Swedish cryp-
to program during Word War IlAmerican Mathematical Society, Prov-
idence, R.1., 2002

Moderne Lehriicher mit Kapitelriiber klassische Kryptographie sowie
Uber statistische und informationstheoretischeddns zur Kryptanalyse
sind

JaN C.A. VAN DER LUBBE: Basic Methods of cryptograph@ambridge
University Press, 1998

und

ALAN G. KONHEIM: Computer Security and Cryptograpijley, 2007
sowie dessen Voanger

ALAN G. KONHEIM: Cryptography — A PrimeiViley, 1981
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Kapitel 3
Klassische Blockchiffren

Im vorigen Kapitel haben wir gesehen, dal? alle dort behaewal&lryp-
toverfahren mit Ausnahme deme time padnicht einmal einfach-
sten Sicherheitsanforderungen ggan; derone time padwiederum
erfordert einen derart grof3en Aufwand beim Sisselaustausch, dal3 er
fur die meisten aktuellen Anwendungen wie etwa dem Hailoet das
Internet nicht in Frage kommt.

Nun hat sich aber bereits BRCKHOFFS mit praktischer Sicherheit
begrugt, und in den meisterdflen werden auch wir uns damit begyen
mussen. Zwei Angtze bieten sich an:

Als erstes knnen wir derone time padmitieren, indem wir zwar kei-
nen wirklich zulligen Einmalschissel von der Bnge der Nachricht
verwenden, daifr aber einen solchen Scislsel erzeugen aus einem An-
fangsschiissel handhabbaredhge und einem Algorithmus, der daraus
eine zudllig aussehende Folge produziert. Solche Algorithmeeicez
net man al$?’seudozufallsgeneratoretienn tatachlich ist die erzeugte
Folge ja nicht zudllig, sondern wird streng deterministisch aus dem
Anfangsschiissel berechnet.

Solche Folgen von Pseudozufallszahlen spielen nicht ndenKryp-
tographie eine wichtige Rolle, sondern vor allem auch beiugatio-
nen aller Art; die meisten Pseudozufallsgeneratoren wufiglesolche
Anwendungen entwickelt. Einer der bekanntesten verwetlideare
Kongruenzen, indem er ausgehend von einem Anfangswgde Fol-
gewerte geral3z,, = ax,,_; modp berechnet, wobei eine hinreichend
grol3e Primzahlist. Bei geeigneter Wahl voumndp sind die so erzeugten
Zahlen fir Simulationen gut geeignet{if kryptographische Anwen-
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dungen jedoch sind sie wertlos: Wer im Rahmen einer Attacke m
bekanntem Klartext auch nur wenige Klartext/Chiffret®eare bestim-
men kann, kennt eine Reihe von Folgengliederrund kann daraus im
allgemeinen ohne grol3e Schwierigkeiten awind p schlieRen. Damit
kann er den gesamten Sahselstrom berechnen. Ein kryptographisch
sicherer Pseudozufallsgenerator mufiirieth so beschaffen sein, daf3
auch eine lange Folge der erzeugten Zahlen nicht ausraithtje Pa-
rameter des Algorithmus praktisch zu bestimmen. Wir wersi@ohe
Generatoren im Zusammenhang mit kryptographisch sichidisesin-
funktionen kennen lernen.

Chiffren, die auf diese Weise eine abgespeckte Versionesme pad
realisieren, bezeichnet man &@sromchiffren;ihr Hauptanwendungs-
gebiet sind lange Datengmme, wie sie etwa bei désbertragung zwi-
schen einem Mobiltelephon und dem Sendemasten oder zwisciem
Beobachtungssatelliten und seiner Bodenstation anfallesh Pay-TV
wird so verschiisselt.

Bei der Kommunikation zwischen Computern oder zwischen oem
tern und ihrer Peripherie geht man meist einen anderen WegAD
griffe, die wir im vorigen Kapitel betrachtet haben, berrtauf der
unterschiedlichen &ufigkeit der verwendeten Buchstaben, Buchstaben-
paare und so weiter. Bei einem Alphabet aus nur 26 Buchstadreitet

es auch bei kurzen Kryptogrammen keine Schwierigkeiteh,gne ent-
sprechende Statistik zu verschaffen; nimmt man aber eihakpt, des-
sen Buchstabenzahl die Anzahl der Buchstaben in einectypmsNach-
richt deutlichiibersteigt, wird es eher unwahrscheinlich, daf3 im Chiffre-
text Uberhaupt irgendwelche Doubletten zu finden sind, auf jéain
aber nicht genug, um eine sinnvolle Statistik aufzustelBai diesem
Ansatz spricht man voBlockchiffren,da vor der Verschisselung je-
weils mehrere Buchstaben zu einem Block zusammengefalttiaser
dann als ganzes versdéiskselt wird.

Da Blockchiffren haupt&chlich in Rechnernetzen eingesetzt werden,
bestehen die Bicke bei den heutéblichen Verfahren nicht aus Buch-
staben, sondern aus Bits oder Bytes; bei den ersten koneteain-
gesetzten Blockchiffren arbeitete man miBken von 64 Bit; heute
ublich sind mindestens 128 Bit.
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§1: Anforderungen an eine Blockchiffre

Idealerweise rachten wir erreichen, daf’ ein Gegner durch ein aufgefan-
genes Kryptogramm keinerlei Information&her den Klartext et —
auf3er nairlich der offensichtlichen, dal3 eine Nachricht gesendetie,

und gewissen Hinweisen auf derearige. In der Kryptologie spricht
man vonperfekter Sicherheitwenn die gegnerische Informatidrber
den Klartext ohne Kenntnis des Kryptogramms genauso gtoiies
mit.

Mathematischdl3t sich dieser Begriff wie folgt formalisieren: Der Geg-
ner erwartet, daf3 irgendeine vemoglichen Nachrichtem,, ..., m,.
ubertragen wird, und auf Grund seiner Eingizung der Situation ordnet

er diesen Nachrichten Wahrscheinlichkeit¢m,,) zu: Ein Militarkrypt-
analytiker beispielsweise wird die Nachrichtgriff im Morgengrauen

fur wahrscheinlicher halten aBringe Blumen fuer Mutti und wer

im Internet Kontodaten abgreifen will, wird Banken mit Sitz der
Nahe seines Opfersif wahrscheinlicher halten als solche aus anderen
Erdteilen.

Sobald er einen Chiffretext aufgefangen hat, kann er diesen unter-
suchen und dann dibedingtenWahrscheinlichkeiterp(m,|c) dafur
berechnen, dal3 sich hinter dem Chiffretexter Klartextm, verbirgt.

Wir reden von perfekter Sicherheit, wep@n,) = p(m;|c) ist fur alleq,
wenn ihm also der aufgefangene Chiffretext nicht erlaudine An-
fangseinscitzung zu modifizieren. (Da man aus dénige eines Kryp-
togramms fast immer ickschiisse auf die Ange der Nachricht ziehen
kann, besclankt man sich bei dieser Forderung meist auf Nachrichten
einer festen Bnge — sonst iwde auch deone time padeine perfekte
Sicherheit bieten.)

Leider konnte BANNON beweisen, dal} eineotwendigé/oraussetzung
fur perfekte Sicherheit darin besteht, dafl? die Gstelange mindestens
gleich der Summe derdngen aller je mit diesem Sclaselibermittelten
Nachrichten ist. Einen Beweis dieses Satzes in Lehrbustelamg
findet man zum Beispiel bei

DomiNic WELSH: Codes und Kryptographi&Viley-VCH, 1991,
Theorem 7.3, oder in einigen délteren Versionen dieses Skriptums.
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CLAUDE ELWOOD SHANNON (1916-2001) wurde in
Petoskey im US-Bundesstaat Michigan geboren; 1936
verliel3 er die University of Michigan mit sowohl einem
Bachelor der Mathematik als auch einem Bachelor der
Elektrotechnik, um am M.I.T. weiterzustudieren. In sei-
ner 1938 geschriebenen Masterarl#eisymbolic ana-
lysis of relay and switching circuitentwickelte er die
Schaltlogik, die seitdem eine wichtige Grundlage der
digitalen Informationsverarbeitung bildet. Seine 1940
fertiggestellte Dissertation befal3te sich mit Anwen-
dungen der Algebra auf die BiDELschen Gesetze.
Nach seinem Studium arbeitete er bis 1956 bei den
Bell Labs, wo er viahrend des zweiten Weltkriegs insbesonddrer die Sicherheit kryp-
tographischer Systeme forschte. Selvi@thematical theory of cryptographyurde aus
Geheimhaltungsdinden erst 1949 zur \@ffentlichung freigegeben. Seine wohl bekan-
nteste Arbeit ist die 1948 erschieneiathematical theory of communicatian, der er

die fehlerfreieUbertragung von Nachrichtdiber einen geétten Kanal untersuchte. \on
1956 bis zu seiner Emeritierung 1978 lehrte er am M.L.T., @ladadurch zurifhren-
den Universiét auf dem Gebiet der Informationstheorie und Kommunikesiechnik
machte. Zu seinen zahlreichen Arbeiteéthlt auch eindiber die mathematische Theorie
der Jongliermuster, anhand derer Jongleure eine Reihe Muster gefunden haben;
aufRerdem konstruierte er mehrere Jonglierroboter.

Der zitierte Satz vonI$ANNON zeigt noch einmal von der theoretischen
Seite, warum uns schoreRCKHOFFgiet, uns mifpraktischerSicherheit

zu begiigen. Dafir missen wir nicht unbedingt wissen, dal3 kein Gegner
irgendwelche Informationen aus dem Kryptogramm gewinragmkwir
konnen an mehreren Stellen abs@&aowen:

e Wir missen uns nicht geggaden Gegner sclitzen, sondern nur
gegen zu erwartende Gegner. Private Aufzeichnungen, dire im
die Hande neugierigelingerer Geschwister fallen sollenfigsen
nicht unbedingt auch gegéber einer Attacke von Regierungsor-
ganisationen sicher sein.

e Viele Geheimnisse haben ein Verfallsdatum, nach dem siet nic
mehr gescitzt werden riissen. Entirrfe fur eineoffentliche An-
kiindigung eines Unternehmens etwassen nur bis zu dieser An-
kiindigung geheim gehalten werden undigsen nicht wie etwa
eine Kundenkartei gegen eine Attacke gegzhwerden, die eine
mehrmonatige Kryptanalyse erfordert.

e Wir missen nicht unbedingt fordern, dal3 der Gedpearerleilnfor-
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mation aus dem Kryptogramm extrahieren kann; falls er modtr
als einige kleinere statistische Anomalien des Klartexiddi, kann
man in vielen Rllen damit leben.

Diese Abschwichungen sind allesamt wenig konkret, denniriah
wissen wir nicht, was welcher Gegner in welcher Zeit leidtann. Um
auf der sicheren Seite zu seiniissen wir seine &higkeiten nach oben
absclatzen, indem wir im Zweifelsfall miteinem sehr viel géflicheren
Gegner rechnen, als dem tatlich erwarteten.

Der gefihrlichste Gegneiberhaupt ist der bereits edwnte B\yEssche
Gegner, deilber unbegrenzte Ressourcén Rechnungen und Probe-
entschlisselungen veiilgt. Er ist benannt nach dem englischen The-
ologen und MathematikerHloMAS BAYES, dessen Formeln wohl den
meisten Lesern aus der Wahrscheinlichkeitstheorie beksind. Mit
diesen Formeln arbeitet auch desviBssche Gegner, indem eiiff je-
den noglichen Klartextm und/oder Sclilssels die bedingte Wahr-
scheinlichkeit ddir berechnet, dal3 der abgefangene Chiffretext eine
Verschlisselung vonn bzw. mit Schiissels ist. Er entscheidet sich
dann fir den Klartextn und/oder den Schksels mit der gib3ten be-
dingten Wahrscheinlichkeit.

THOMAS BAYES (1702-1761) wurde in London geboren
alsaltestes von sieben Kindern eines der ersten nonkon-
formistischen Pastoren Englands. Da die englischen
Universitten Oxford und Cambridge keine Nonkon-
formisten akzeptieren, muf3te er zum Studium 1719 nach
Schottland an die Universit Edinburgh, wo er sich
fur Logik und Theologie immatrikulierte. Nach seinen
spaterenAuRRerungen muf? er sich auch bereits damals
oder kurz danach mit Mathematik begaftigt haben.
Wie sein Vater wurde er Geistlicher; seine mathemati-
schen Arbeiten, z.Biber die Grundlagen der Analysis,
erschienen zu seinen Lebzeiten nur anonym. Trotzdem wurilé42 fellow der Royal
Society, die 1764 auch posthum seirtessay towards solving a problem in the doctrine
of chanceweroffentlichte.

Sicherheit gegdiber dem ByEsschen Gegner ist nur in einem Punkt
schwacher als perfekte Sicherheit: Widknen zulassen, dal} er etwas



Kap. 3: Klassische Blockchiffren 88

Informationuiber den Klartext (oder den Scisisel) erhlt, allerdings so
wenig, dal3 es ihm nichtdiiet.

Mit SHANNONS Ansatz &l3t sich genau bestimmen, wieviel Information
der Bavyessche Gegner aus einem Chiffretext extrahieren kann; sobald
die Schiisselange wesentlich kleiner wird als der Klartext, ist das leide
deutlich mehr als alles, was wir tolerierearknen.

Tatsachlich istkeineBlockchiffre sicher gegdiber einem BYEsschen
Gegner, denn selbst wenn nur weniged&e Text im ASCII Code
verschiisselt werden, gibt es mit an Sicherheit grenzender Waéirsch
lichkeit nur einen Sclhilssel, mit dem die Entsdidselung zu lesbarem
Klartext fuhrt. Der BAYESsche Gegner mit seinen unbegrenzten Res-
sourcen kann alle Sdiisel durchprobieren und so den einen richtigen
identifizieren.

Man konnte ihm das Leben schwerer machen, indem man den Text vor
der Verschilisselung komprimiert; da kein heutiger Komprimierungsal-
gorithmus so gut ist, dajéde mogliche Bitfolge zu lesbarem Klartext
dekomprimiert werden kann, heil3t das aber nur, dal3 er esdeninige
Blocke mehr braucht, um den korrekten Sdsel zu finden.

Zum Gluck sind die Gegner, vor denen wir uns gtden niissen, nur
selten BiyEssche Gegner, undH8BNNON machte sich auch Gedanken
uber die Konstruktion praktikabler Chiffren, die zumintigegeriber
den zu erwartenden Gegnern praktisch sicher sind. Nacersgorstel-
lungen beruht die Sicherheit eines Kryptosystems auf zwezpien,
derKonfusionund derDiffusion.

Die Konfusionsoll dafir sorgen, dal3 der Zusammenhang zwischen
Schlissel und Chiffretext fglichst undurchsichtig ist; mit seinen
verfugbaren Mitteln soll der Kryptanalytiker aus dem Chiffretaur
wenig Informationtiber den Klartext und den Scldsel gewinnen
konnen. Derone time padist ein Beispiel dair, wie Konfusion zu
perfekter Sicherheitithren kann; die anderen Beispiele aus dem ersten
Kapitel zeigen, dal’ reine Substitution bérkeren Sclilsselangen nicht
sonderlich hilfreich ist. Wie das Beispiel dend-Chiffre vom zweiten
Ubungsblatt zeigt, muf? Konfusion insbesondere aiicNichtlinearitt
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sorgen; andernfalls reichtdglicherweise bereits die Lineare Algebra
zur Kryptanalyse.

Die Diffusion soll die statistischen Besonderheiten des Klartextg-m
lichst weitaumig tber den Chiffretext verteilen und somit ausmitteln.
Jedes Zeichen im Klartext solltedglichst viele Zeichen im Chiffre-
text beeinflussen, so dald insbesondere kein signifikardgstsicher
Zusammenhang zwischen dem Zeichen an einer spezielletmoRaies
Klartexts mit dem Zeichen an einer (eventuell anderen)isfiez Posi-
tion des Chiffretexts bestehen sollte.

82: Der Aufbau einer Blockchiffre

Moderne Blockchiffren arbeiten rizlich nicht Gber einem Alphabet
aus 26 Buchstaben; heute brauchen wir Kryptosysteme, die¢ nur
Texte, sondern Dateien aller Art sicher versigsleln nnen, und bei
vielen Anwendungen wollen wir, dal3 die gesamte Kryptogieaphne
Zutun des Anwenders im Hintergrund abft. Insbesondere mul3 die
entschilisselte Datei genau so aussehen, wie vor der Varssélung.
Daher niissen wir davon ausgehen, dal3 unsetei aus beliebigen
Bitfolgen (einer festen &nge) bestehen, und dald sie auch als solche
wieder entsclilsselt werden fissen.

Wir betrachten die Chiffrierung daher als eine Abbildungn Vs,
nachF5, wobei F5 = {0,1} den Korper mit den beiden Elementen
0 und 1 bezeichnet unddie Blocklange.

Die Rechenoperationen I, sind die Addition und die Multiplikation
modulo zwei:

®| O 1 ©| 0 1
0Ol O 1 0| O 0
1] 1 0 1]/ O 1

F> mit denublichen Operationen ist ein VektorrauiberF,; die Vek-
toraddition bezeichnen wir mip. Sie A3t sich auf Computern prob-
lemlos realisieren durch die logische Antivalenz, das @sike Oder
XOR.
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Da gangige Computer byteorientiert arbeiten, ist die Blackjen prak-
tisch immer ein Vielfaches von acht; bei einigen alten BtduKren war
n = 64, heute solltes > 128 gevahlt werden.

Getreu dem Prinzip der Konfusion darf die Verdddelung keine line-
are Abbildung sein; eine solche liel3e sich schliel3lich mrtwenigen
Paaren aus bekanntem Klartext und seiner Vetssalung rekonstru-
leren. ldealerweise sollte die Versibkbkelung irgendeine beliebige Per-
mutation deMengeF; sein.

Diese Menge hat'’2Elemente; somit gibt es*2 verschiedene Permuta-
tionen. Schoniirn = 64 ist das eine Zahl, die kein Taschenrechner mehr
ausrechnen kann und vor der auch die meisten Computerakysbeme
nicht einmal eine Gleitkomma-&herung berechnerbknen: Nach der
STIRLINGSchen Formel ist in ersteralerung log! ~ nlogn, wobei

der Logarithmus links und rechts zur gleichen, aber beajetiBasis
genommen werden kann. Somit ist

log,(2°%) ~ 2°*10g,(2°%) = 2°*.64 = 2° und
log,(2'%%) ~ 2'%®log,(2"%°) = 2'%°. 128 = 2°%;

die Anzahl aller ndglicher Permutationen hat also etwd 2 1,2 101
bzw.2'%° &~ 4.3 . 10 Binarziffern; die Anzahl der Dezimalziffern ist
ungefihr Q3 mal so viel.

Um nur eine PermutationF5* — F$* zu spezifizieren, brauchen wir
demnach ungéhr 2° Bit oder 27 Byte oder 27 kB oder 27 MB oder
23" GB oder 2’ TB oder. . ., jedenfalls viel zu viel.

Damit ist klar, dal3 wir bei einer modernen Blockchiffre rtichehr
wie bei den monoalphabetischen Substitutionen einfaah leafiebige
Permutation als Sctbsel zulassentknen; dieUbermittlung eines
solchen Sclilssels v@are \0llig unpraktikabel. Wir niissen uns daher
beschanken auf eine deutlich kleinere Menge von Permutatiorerder
Elemente sich durch Sdldsel handhabbareéhge beschreiben lassen.

Von einer guten Blockchiffre erwarten wir aber, daf3 die vonrea-
lisierten Permutationen wie zufallsverteilt in der Grupaéer Per-
mutationen liegen. Sie sollen beispielsweise weder eingrgruppe
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bilden noch eine veditnisnalig kleine Untergruppe erzeugen, denn
die Kenntnis von deren Erzeugenden und Relatiordemte einem Geg-
ner Ansatzpunkte zu einer Entsihselung geben, die deutlich schneller
geht als das Durchprobieren aller Stddel.

Eine Blockchiffre gilt nach heutigen Standards als gut, nveach nach
langerer Untersuchung durch Fachleute keine Attackenuaaliéan, die
schneller sind als das Durchprobieren aller 8skeél; als praktisch si-
cher gilt sie derzeit, wenn die Anzahlaglicher Schilissel mindestens
gleich 2°° oder besser'2®ist. Bis zum Ende dieses Kapitels pstens
aber bis Mitte des Semesters, sollte jedeandt klar sein, dal} letzterer
Wert in 25 Jahren mit ziemlicher Sicherheit nicht mehr alsraichend
betrachtet werden kann.

Fast alle heutigen Blockchiffren arbeiten in mehreren Rumavobei
in jeder Runde eine relativ einfache Permutation in &dudgkeit von
einem sogenannten Rundendiddel realisiert wird; erst die Hinter-
einanderausirung hinreichend vieler Rundehrt zu ausreichender
Konfusion und Diffusion. Speziellifr die Diffusion setzt man hier auf
den sogenanntdrawineneffektWWahrend die Transformationen in jeder
einzelnen Runde recht einfach sind und eiréwelertes Eingabebit nur
wenige Ausgangsbits beeinflul3t, sorgt die Hintereinanddithrung
vieler Runden dafr, daf3 sich dieser Einflul3 immer mehr ausweitet und
schliel3lich das gesamte Endergebnis beeinflul3t — zumibeesiner
gut aufgebauten Blockchiffre.

Bis gegen Ende des vorigen Jahrhunderts dominierten bairdbitek-
tur der Blockchiffren die sogenannteaIBTEL-Netzwerke, bei denen in
jeder Runde nur ein halber Block modifiziert wurde.

HORSTFEISTEL (1915-1990) wurde in Berlin geboren. Er emigrierte 1934é45A, wo

er am MIT (BSc) und in Harvard (MSc) Physik studierte. Als Bxaher stand er &ahrend
des zweiten Weltkriegs z@achst unter Hausarrest, wurde aber Anfang 1944 eiimgelt
und arbeitete dann gleich in einem Forschungszentrum defFéice. Nach dem Krieg
arbeitete er kurze Zeit am MIT und bei MITRE, dann wechseitewelBM, wo er ab
etwa 1960 die ersten Blockchiffren entwickelte, insbeswadiuch das Lucifer-System,
auf dessen Grundlage der iraahsten Paragraphen vorgestellte DES entwickelt wurde.

Da FeIsTEL-Netzwerke jeweils mit halben Btken arbeiten, muf3 die
Blocklange gerade sein; wir bezeichnen sie alé. Xern des Ver-
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schiisselungsalgorithmus ist eine Funktion
fIFIZ{: X ]Fév — ]Fév ,

die sogenannteftsTEL-Funktion, die aug Schlisselbits undvV Nach-
richtenbits wiederV Bits produziert. Sie wird folgendermal3en ange-
wandt: Vor Beginn der Verscisselung wird die Nachricht aufgeteilt in
ein Paar [y, Ry) aus der linken Hlfte L, und der rechten &fte R,

in den verschiedenen Runden wird dieses Paar transformuiereuen
Paaren [,, R;), deren letztes das Ergebnis der Vergssklung ist.
Konkret wird in der:-ten Runde das Paal (, R;) zurnachst ersetzt
durch

(f(sia R, 1)® L;_q, Ri—l) ,

wobei s, den Schilissel deri-ten Runde bezeichnet;, danach werden
(aul3er in der letzten Runde) die beidealften miteinander vertauscht.
Die i-te Runde realisiert also die Substitution

Li=R;_y und R;=f(s;,R;_1)®L; 1.

Die FeISTEL-Funktion ist somit die einzige Quelle vdfonfusion;die
Auswahl der Sclilsselbits f@ir die jeweilige Runde sowie auch die Ver-
tauschung von linker und rechter Seite in jeder Runde diégmsmen der
FEISTEL-Funktion selbst) der Diffusion.

DaFF, nur die beiden Elemente D entralt mit 00 = 14 1 = 0, ergibt
jeder Vektorv € FY zu sich selbst addiert den Nullvektor; sonif3t
sich das Paarl{;,_,, R,_,) aus (,, R;) rekonstruieren durch

2

Zur Entschlisselung einer alsefsTEL-Netzwerk aufgebauten Block-
chiffre kann die Versclhilsselung also einfach rundenweisekgangig
gemacht werden, wobei im wesentlichen derselbe Algorithwie zur
Verschlisselung benutzt wird.

83: Der Data Encryption Standard DES

Logisch gelort dieser Paragraph eigentlich zum vorigen Kapitel: Der
Data Encryption Standard DES ist kein Verfahren, das matehsach
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anwenden sollte. Der Standard wurde 1977 eiilgefund war ur-
springlich fur eine Dauer von zehn Jahren vorgeseheate&ipens seit
1998, als dieElectronic Frontier Foundatioroffentlich vorfuhrte, wie

einfach er geknackt werden kann, sollte jedem klar sein,adegeine

nutzliche Lebensdauer inzwischen deutlidirerschritten hat.

Tatsachlich aber drfte er immer noch zumindest eines der in der
Praxis am Rufigsten eingesetzten Kryptoverfahren sein, wenn auch
(hoffentlich) meist in der derzeit wahrscheinlich nochhgieen Vari-
ante Triple-DES. Ein Grund daf dirfte in einer heute als falsch
eingeschtzten Rahmenbedingung seines Entwurfs liegen: Er satlte s
nur schwer rein softwareafig implementieren lassen und im Regelfall
mit Spezialhardware eingesetzt werden. Dies hielt miasihen Sicher-
heitsvorteil, da dadurch ein Angriff von Amateuren mit bagaten Mit-
teln deutlich erschwert wurde. Aus diesem Grund mulitere \Aei-
wender in Spezialhardware investieren, die sich zumindasianchen
Unternehmen nur schwer aussonde&ifit] bevor sie nicht mehrfach
abgeschrieben ist.

Professionelle Angreifer freilich (zu denen auf jeden Falch der
Hauptsponsor des DES, diational Security AgenciNSA der Ver-
einigten Staatenahlt), sind typischerweise bereit, zum Knacken eines
Codes ein Vielfaches des Aufwands einzusetzen, den spaBachhal-

ter fur die Verschilisselung zulassen, so daf3 sie durch die Notwendigkeit
von Spezialhardware nicht abgeschreckt werdamien.

Heute, da auch Amateure mit reinen Softwareattacken keioBeg
Schwierigkeiten mehr haben, DES zu knacken, muf3 man tnotzde
sagen, dal3 DES nach allem, was in den letzten dreil3ig Jabkamift
wurde, abgesehen von der viel zu kleinen 8skklange ein sehr gutes
Verfahren war: Trotz vieler Versuche auch der erfahrenstdrr den
veroffentlichenden Kryptanalytikern ist es keinem von ihnefuggen,
eine Angriffsndglichkeit zu finden, die schnellerase als das Durchpro-
bieren aller Sclilssel: Alle erfolgreichen Angriffe basieren darauf. Im
Sinne der Sicherheitsdiskussion im ersten Kapitel ist dagdeéale Si-
tuation fur ein Verfahren, dessen Sicherheit wir nicht beweisamien:
Wir konnen mit ziemlich grol3er Sicherheit sagen, wie grol3 dewant
des Gegners sein muf3: Er mul3 die 8skkl durchprobieren, was im
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Durchschnitt nach? Versuchen zum Erfolgihrt. Unser einziges Pro-
blem besteht darin, dal3 dieser Aufwand inzwischen mit rgehhgen
Kosten erbracht werden kann.

Der DES ist im wesentlichen alselSTEL-Netzwerk aufgebaut, al-
lerdings werden die Nachrichteritwke @4, x,, ..., zg,) zZumachst ei-
ner Anfangspermutation unterzogen, d.h. der Block wir@ttsdurch
(Zr1)) Tr(2), - - - » Tr(ea)), WObDEI die Folge der Zahler(1), . . ., 7(64) der
folgenden Tabelle entnommen wird:

585042342618102 605244362820124
625446383022146 645648403224168
5749413325179 1 595143352719113
615345372921135 635547393123157

Das Wort geht also aufefg, x5, 245, - - - , 23, 15, 7). Erst dann begin-
nen die im Falle des DES sechzehn Runden.

Die Anfangspermutation hat keine kryptographische FamktDa sie
nicht vom Schiissel abhngt und allgemein bekannt ist, kann sie je-
der Kryptanalytiker leicht iickgangig machen. lhr Sinn bestand an-
scheinend in erster Linie darin, Software-Attacken zu lensgen,
denn Permutation sind aufwendig zu programmieren. (BedWare-
Implementierungen sind Permutationen tmbth sehr einfach und
schnell durch Leitungskreuzungen zu realisieren.)

Zur Definition der [EISTEL-Funktion f dienen acht sogenannteBoxen
(S =Substitution), die als Wertetabellen einem Eingabewostsechs
Bit einen vier Bit langen Funktionswert zuordnen; sie besitfen also
Abbildungen vorF$ nachFj.

Diese Wertetabellen sind folgendermaf3en angeordnet: ingalkewort
mit seinen sechs Bitwird geschrieben alsf, ), wobeia das Anfangs-
bit, e das Endbit unan die aus vier Bit bestehende Mitte ist. Diese wird
als Zahl zwischen Null undiihfzehn aufgefal3t, genau wie auch die
Ausgabe de5-Box. Die S-Box wird angegeben durch vier Zeilen, die
mit den verschiedenen dfjlichkeiten fir das Paard e) indiziert sind,
und die fir die sechzehn Werte von die Ausgabewerte enthalten:
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ae

00
01
10
11

ae

00
01
10
11

ae

00
01
10
11

ae

00
01
10
11

ae

00
01
10
11

m=0
14
0

4
15

m=0
10

13
13

m=0
7

13

10

3

m=0

14

11
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Box 1

1 23 456 7 8 9101112131415

413 1 21511 8 310 612 5 9 0 7
15 7 414 213 110 61211 9 5 3 8
114 813 6 2111512 9 7 310 5 O
12 8 2 4 91 7 511 31410 0 613

Box 2

1 23 456 7 8 9101112131415

1 814 611 3 4 9 7 21312 0 510
13 4 715 2 81412 0 110 6 911 5
14 71110 413 1 5 812 6 9 3 215
810 1 315 4 211 6 712 0 514 9

Box 3

2 3456 7 8 9101112131415

1

0 914 6 315 5 11312 711 4 2 8
7 09 3 4610 2 8 514121115 1
6 4 9 815 3 011 1 212 51014 7
013 06 9 8 7 41514 311 5 212

Box 4

1 23 456 7 8 9101112131415

1314 3 0 6 910 1 2 8 51112 415
811 5 615 0 3 4 7 212 11014 9
6 9 01211 71315 1 314 5 2 8 4
15 0 610 113 8 9 4 51112 7 214

Box 5
1 2 3 456 7 8 9101112131415

12 4 1 71011 6 8 5 31513 014 9
11 212 4 713 1 5 01510 3 9 8 6
2 1111013 7 815 912 5 6 3 014
812 7 114 213 615 0 910 4 5 3



Kap. 3: Klassische Blockchiffren 96

Box 6

ae m=0 1 2 3 456 7 8 9101112131415

00 12 11015 9 2 6 8 013 3 414 7 511
01 1015 4 2 712 9 5 6 11314 011 3 8

10 91415 5 2 812 3 7 0 410 11311 6
11 4 3 212 9 515101114 1 7 6 0 813
Box 7
ae m=0 1 2 3 45 6 7 8 9101112131415
00 4 11 21415 0 813 312 9 7 510 6 1
01 13 011 7 4 9 11014 3 512 215 8 6
10 1 4111312 3 7141015 6 8 0 5 9 2
11 611 13 8 1 410 7 9 5 01514 2 312
Box 8

ae m=0 1 2 3 456 7 8 9101112131415
00 13 2 8 4 61511 110 9 314 5 012 7

01 11513 810 3 7 412 5 611 014 9 2
10 711 4 1 91214 2 0 6101315 3 5 8
11 2 114 7 410 8131512 9 0 3 5 611

Diese S-Boxen werden in der offensichtlichen Weise zusammenge-
setzt zu einer Funktio#: F»® — F3% Ein Vektor der lange 48 wird
aufgeteilt in acht Vektoren derdnge sechs; auf den ersten davon wird
die ersteS-Box angewandt, auf den zweiten die zweissv;dabei entste-
hen acht Vektoren derdnge vier, die zum Ergebnisvektor deirige 32
zusammengesetzt werden.

Nach diesem Konfusionsschritt folgt noch ein Diffusiortgdt: Die
Komponenten des Vektors werden untereinander permutigeisreiner
Permutation auss,, die durch folgende Wertetabelle geben ist:

16 7202129122817 1152326 5183110
2 824143227 3 9 191330 62211 425

Die Funktion F' wird folgendermal3en eingesetzt: Aamst wird die
rechte Halfte R der Eingabe der jeweiligen Runde auf 48 Bit véigert,
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indem man einen Vektorr, . . . , x3y) ersetzt durcha, ), . .., 7, 4sg),
wobei die Werte vorr der folgenden Tabelle entnommen werden:

3212345 456789 8 910111213
121314151617 161718192021 202122232425
242526272829 2829303132 1

Das Ergebnis dieser Aufbhung wird zum Sclilssel deri-ten Runde

addiert; der kryptologische Sinn bestehtimbth wieder in einer Dif-

fusion, die daifir sorgt, dal’ ein Eingabebitayglichst viele Ausgabebits
beeinfluf3t.

Damit kommen wir zur Verwendung des Sigssels im Algorithmus.
Der Schiissel hat, wie bereits edlint, 56 Bit, wird aber mit 64 Bit
gespeichert, wobei jedes achte Bit ein Rdsbit ist, d.h. die Summe
(inF,) der sieben davorstehenden Bits. Wir numerieren dielfSeklbits
daher von eins bis 64, verwenden aber nur die nicht durchteitiedren
Indizes.

Aus dem Schissel werden zucthst zwei Sclilssel der Bnge 28 ex-
trahiert, bestehend aus den folgenden Komponenten:

574941332517 9 1585042342618
10 25951433527 1911 3605244 36

und

63554739312315 7625446 383022
14 66153453729 2113 5 282012 4

Die so erhaltenen Teilsdidsel werden vor jeder Runde noch zigul
nach links verschoben, und zwar vor dden Runde um nochmais
Bit gegeriiber der vorherigen Runde, woksgibis a,4 die Zahlenfolge

1122222212222221

ist. Man beachte, dal3 die Summe dieser Zahlen gleich 28erdsr |
der Halbschiissel wird also in den sechzehn Runden einmal komplett
zyklisch verschoben.

Nachdem die beiden Teilsdldsel so mapariert sind und aneinan-
dergelangt einen 56 Bit-Schiksel §,, . . ., s5g) bilden, wird daraus ein
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48 Bit-Schlssel fir die:-te Runde gewanlt, bestehend aus den folgen-
den Komponenten:

14171124 1 5 328 15 62110231912 4
26 816 7272013 2 4152313747553040
5145334844493956 3453464250 3629 32

Die Rundensclhissel werden also in einem reinen Diffusionsverfahren
aus dem Gesamtscldsel berechnet.

Die FeIsTEL-Funktion f berechnet die Summe aus den 48 aufgletan
Nachrichtenbits und den 48 Sdkkelbits deri-ten Runde und setzt
diesen Vektor aug’y® in F ein; der Funktionswert ist der Wert der
FEISTEL-Funktion.

Dieses Spiel wird insgesamt sechzehnmal gespielt, wolohi dex letz-
ten Runde keine Vertauschung von links und rechts mehfistt.

Danach wird nur noch die Anfangspermutatiarckgangig gemacht;
die inverse Permutation hat die Wertetabelle

40 8481656246432 39 7471555236331
38 6461454226230 37 5451353216129
36 4441252206028 35 3431151195927
34 2421050185826 33 141 949175725

Man beachte, dal3 DES (wie jedes (balancierm¥FEL-Netzwerk) in
jeder Runde nur einen halben Block &rdert; die andere &fte bleibt
erhalten. Schreiben wir den Nachrichtenblock nach Anwagdder
Anfangspermutation also in der Form, m,), so wird in deri-ten
Runde (n,_,,m;) zu (m;, m,,,) mit

My =M1 @ f(s;,m;),

wobei wieders, den Schiissel deg-ten Runde bezeichnet. Das Ergebnis
der sechzehn Runden, abgesehen von der Endpermutataaminsaller-
dings nicht {nqg, m45), sondern#f,,, m4¢), da nach der letzten Runde
die Halften nicht mehr miteinander vertauscht werden.

Der Grund daifir liegt in der Entsclilsselung: Wegen

My =My_1 @ f(s;,m;) & my_1 =my @ f(s;,my)
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laldt sich die Verschisselung bei Kenntnis des Sabsels leichtiick-
gangig machen, sogar mit derselben Hardware. Da aber vor dem e
sten Versclhilsselungsschritt die &iften nicht vertauscht werden, soll-
ten sie es dann auch nach dem letzten nicht mehr werden, denn d
Entschlisselungauft ja rfickwarts durch die Runden.

84: Designkriterien und Kryptanalyse des DES

Die Beschreibung des DES im vorigen Paragraplat tie meisten
Leser zuachst wohl mit ziemlicher Verwirrung ziack, und es erscheint
schwierig, irgendeine Aussageer die kryptographische Sicherheit des
Verfahrens zu machen. In der Tat wurde diese von Anfang an seh
kontrovers diskutiert.

a) Geschichtliche Entwicklung

Als das damaligéNational Bureau of Standardser USA (heute Na-
tional Institute of Standards and Technology, NIST) im &nlO77
den DES als Standard #fentlichte (mit einer auf zehn Jahre veran-
schlagten Laufzeit) enthielt das Dokument im wesentliamandie hier
reproduzierten Angaben; sowohl IBM als auch die NationaluBey
Agency (NSA) lehnten es ab, die Kriterien zu benennen, naokeildie
S-Boxen und die Permutationen konzipiert worden waren.

Dies fuhrte schnell auf den Verdacht, dal3 DE®giicherweise eine
nur IBM und NSA bekanntgFalltur* enthalt, mit deren Hilfe eine
Entschiisselung ohne Sadsel mit vertretbarem Aufwand durchgbft
werden kann. Aul3erdem gab es bereits damals Kritik an deseritit
sehr kurzen Schikselange: Das VorgngersystemaUCIFER hatte eine
Schlisselange von 128 Bit, im mild&rischen Bereich waren Systeme
mit mehr als zehn mal so langen Sasdeln nichts Ungewhnliches.

M.E. HELLMAN: A cryptanalytic time-memory tradeoffEEE Trans.
Inf. Theory26 (1980), 401-406

schlug ein Verfahren vor, mit dem durch eine Kombination Womn-
berechnungen und Probieren die Komplatiter ScHisselsuche vorr2
mit grol3er Erfolgswahrscheinlichkeit auf ungbkf die Kubikwurzel
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dieser Zahl reduziert werden konnte; als Baupreis seinescMae
schatzte er zehn Millionen Dollar, als Zeitrahmeiar fdie Vorberech-
nungen ungefhr ein Jahr. Da die NSA erheblichafgere Geldmittel als
nur zehn Millionen Dollar einsetzen kann, tate dies den Verdacht,
dafld sie DES selbst dann knacken kann, wenn der Algorithming ke
Falltur enthalten sollte.

Im Laufe der Jahre wurden einige der Designkriterien duesterse
engineeringgefunden; einige dann auch freiwillig \@fentlicht. Erst
1994 vebffentlichte einer der ursfinglichen Entwickler bei IBM die,
wie er sagt, vollsindige Liste der kryptographisch relevanten Kriterien
in

D. CorpPERSMITH The Data Encryption Standard (DES) and its strength
against attackdBM J. Res. DeveloB8(1994), S. 243-250

— nachdem die kryptanalytische Technik, gegen die diesteréan
schitzen sollten, auch in der offenen Literatur erschienen Wabei
zeigte sich, daf3 DES mit seinen nur 56 Bit zumindest gegesediech-
nik eine eher gil3ere Sicherheit bietet dlscifer mit seinen 128 Bit und
daf} die Sicherheit von DES nicht unbedingt@rhwirde, indem man
fur jede der sechzehn Runden einen neuen 48 BittSshl verwendet,
so dal3 man insgesamt eine Sdelange von 16< 48 = 762 Bit latte.
NSA hielt diese Technik damal&ifso wichtig fir den Angriff auf geg-
nerische Systeme, dal} die speziell dagegen eingesetagmketerien
»aus Giinden der nationalen Sicherheit* geheimgehalten wurden.

Die Technik, umdie es hier geht, war bei IBM um 1974 unter deamin

T attackbekannt; in der offenen Literatur erschienen erstestresdazu

ab etwa 1988, vollgindige Beschreibungen erschienen ab 1990 unter
dem Namerifferentielle KryptanalyseéBevor wir sie genauer betrach-
ten, wollen wir uns zuachst die inzwischen bekannten Designkriterien
des DES ansehen.

b) Designkriterien

D. CopPERSMITHNeNNt in der oben zitierten Arbeit folgende Designkri-
terien fur die S-Boxen (und sagt, dal3 diedle kryptographisch rele-
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vanten gewesen seien; der Rest habe nur mit Implementisiraggn
zusammengeingt):

(S1) JedeS-Box hat sechs Eingabe- und vier Ausgabebits.

(S2) Kein Ausgabebit einefs-Box sollte zu nahe bei einer linearen
Funktion der Eingabebits liegen.

(S3) Bei festgehaltenem linken und rechtem Bit der Eingabeesollt
jeder der sechzehndglichen Ausgabewerte genau einmal vor-
kommen.

(S4) Wenn sich zwei Eingaben einékrBox um genau ein Bit unter-
scheiden, nassen sich die Ausgaben um mindestens zwei Bit
unterscheiden.

(S5) Wenn sich zwei Eingaben einé-Box genau in den beiden
mittleren Bits unterscheiden,imsen sich die Ausgaben um min-
destens zwei Bit unterscheiden.

(S6) Wenn sich zwei Eingaben eingrBox in ihren beiden Anfangs-
bits, nicht aber in ihren beiden Endbits unterscheideinssan
die Ausgaben verschieden sein.

(S7) Fur jede von Null verschiedene Differenx zwischen zwel
Eingaben drfen ichstens acht der 32 Paare mit Differeiz
auf dieselbe Differenz zwischen den Ausgab@mrén.

(S8) Ahnlich zu (S7),aber mit sarkeren Eigenschafteriif den Fall
gleicher Ausgaben, wenn in einer Runde dseBoxen,aktiv*
sind.(s.u.)

FUr die Permutation aus;,, die in jeder EISTEL-Funktion als Abschluf3
ausgeiinrt wird, sollten folgende Bedingungen @it sein:

(P1) Die vier Ausgabebits eineg¥-Box werden so verteilt, dal in der
nachsten Runde zwei von ihnen mittlere Bits der Eingabe einer
S-Box sind und die beiden anderen nicht (d.h. die kommen an
Position 1, 2, 5 oder 6).

(P2) Die vier Ausgabebits eine$-Box sind in der @&chsten Runde
Eingaben zu sechs verschiedeseBoxen; keine zweivon ihnen
sind Eingabe derselbe$tBox.
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(P3) Fur zwei (nicht notwendigerweise verschiedenseBoxen j, k
gilt: Wenn ein Ausgabebit vori als eines der beiden mittleren
Bits ank weitergegeben wird, kann kein Ausgabebit Voals
mittleres Bit any weitergegeben werden. Insbesondere darf also
kein Ausgabebit vor anj selbst als mittleres Bit weitergegeben
werden.

Der Sinn einiger dieser Kriterien ist unmittelbar einsigh{S1) etwa
kommt daher, dafd mit der Technologie von 197d@(3greS-Boxen dazu
gefuhrt hatten, dafld man den Algorithmus nicht auf einem Chip unterge-
bracht fatte.

(S2) ist selbstversindlich: Da dieS-Boxen der einzige nichtlineare
Bestandteil des Algorithmus sind issen sie nichtlinear sein; ansonsten
hatten wir eine (leicht zu knackende)ud-Chiffre. Wenn einzelne Bits
lineare Funktionen der Eingabebit&ren, latten wir noglicherweise
fur einzelne Ausgabebits des Algorithmus lineare Zusamiosgd mit
den Eingabebits, was dazihren wirde, dal3 man zumindest einen Teil
der Chiffre als HLL -Chiffre betrachten kann und damit die Kompléit
des Algorithmus reduzierAhnlich vertélt es sich, wenn Funktionen
nicht exakt, aber doch ung#ir linear sind — mehr dazu gleich bei der
linearen Kryptanalyse.

Die restlichen Kriterien dienen in erster Linie zubrderung der Dif-
fusion: Fir zwei verschiedene Eingabé¥, W'’ in Rundei sagen wir,
eine S-Box seiaktiv, wenn sie &@ir W und W’ verschiedene Ausgaben
liefert. Es muf3 nicht in jeder Runde akti$eBoxen geben, aber die obi-
gen Kriterien sollen dadir sorgen, daf3 im Durchschniiber alle Runden
moglichst vieleS-Boxen pro Runde aktiv sind; wie man zeigen kann,
sind es im Durchschnitt mindestens 1,6.

(Bei (S7)sind die Zahlen, so wie sie genannt wurden, offensichtlioh u
den Faktor zwei zu klein: Es gibt 64 Paare mit vorgegeberféziienzA,
und fur A # 0 dirfen dann wohl bchstens 16 davon auf denselben
Ausgabewertiihren.)

Bevor wir solche Fragen vertiefeidRnen, niissen wir uns zwachst mit
der kryptanalytischen Attacke begtigen, vor der dies sciizen soll:
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c) Differentielle Kryptanalyse

Ihre Grundidee besteht darin, daf3 man nicht von einzelnear- Kl
textblbcken ausgeht, sondern von Paaré#, (') aus zwei Klar-
textblbcken. Diese werden aufgefat als ElementeR&Indaiiber dem
Korper mit zwei Elementen Addition gleich Subtraktion istzbichnen
wir die Differenz zwischen den beiden Nachrichtenl&isp 1W’. Prak-
tisch handelt es sich hier einfach um das bitweise XOR zwisaten
beiden Bbcken.

DES unterzieht die beiden Worte Aachst der Anfangspermutation; da
XOR eine bitweise Operation ist, wird dabei auch die Differ®” & W’
dieser Permutation unterzogen. Danach werden die reclélterider
entstandenen Nachrichten betrachtet; inre Differenzistrlich einfach

die rechte Hilfte der permutierten Differenz. Die entstandenen 32 Bit-
Worte werden durch Bitauswahl auf 48 Bit Woitel” aufgeb&ht; auch
diese Aufblhung ist kompatibel mit der Differenzbildung.

Als nachstes kommt der Sdhdsel ins Spiel; sowohV als auchV”’
werden zum 48-Bit Schiksels; der ersten Runde addiert; dann gehen
die Ergebniss& ¢ s, undV’ & s, in acht 6 Bit Sticke aufgespalten in
die achtS-Boxen. Die Differenz zwischen den beiden Eingaben ist

Vaspe(V' as)=VaeV)e(s,@s)=VaV,
d.h. der Schissel ist herausgefallen.

Nun kommen dieS-Boxen ins Spiel. Falls diese linearaven, ware
die Differenz ihre Ausgabelif zwei gegebene Eingabewerte nur von
der Differenz der Eingabewerte abolgig, aber da es gerade der Zweck
der S-Boxen ist, die Versclilsselung nichtlinear zu machemjrinen
wir natirlich nicht erwarten, daf3 wir hier auch nur bei einer eienig
S-Box eine lineare Funktion finden: Schon die ersten expariatien
Untersuchungen von DES befal3ten sich mit etwaigen lineansam-
menlangen zwischen einzelnen Ausgabebits sowohl etiBiox wie
auch des gesamten DES und der jeweiligen Eingabe, und kenregek
eine lineare Funktion finden.

Nach der Anwendung de¥-Boxen kdnnen wir also nicht mehr sagen,
was die Differenz der Ausgabewerte ist, obwohl wir die Difiez der
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Eingabewerte auch unahigig vom Schissel kennen.

Trotzdem zeigt sich, dal3 wir zumindest gewisse Informaitnoiber
die Differenz haben: Bei sechs Eingabebits und vier Ausgigbero
S-Box milssen von den®= 64 Eingabepaarerl, E') mit einer gege-
benen Differenz\ E im Durchschnitt jeweils vier auf jede der sechzehn
moglichen Differenzem\ A der Ausgabewertd, A’ fithren. Im Einzel-
nen gibt es allerdings bétchtliche Schwankungen:

Fur AE = 0 ist natirlich auchAA = 0, denn dasselbe Wort kann
nicht auf zwei verschiedene Weisen versigdslelt werden. Aber auchif
andere Werte voAA E gibt es keine Gleichverteilung der Ausgabewerte:
Fur AE = 100100 etwa ergibt sichif die (dezimal geschriebenen)
DifferenzenA A bei der ersten S-Box folgende Verteilung:

AA 01234567 8 9101112131415
Falle 1200222201414 2 0 2 6 2 4

Wir haben also hier, wie auch bei den anderen Differenzeranddren
S-Boxen eine ziemlich inhomogene Verteilung. (Die Falldriea fur
jede S-Box und jede Ausgabedifferenz sind aufgelistet im Anhaoig v

E. BIHAM, A. SHAMIR: Differential Cryptanalysis of the Data Encryption
StandardSpringer,1993;

in diesem Buch ist die differentielle Kryptanalyse des DB anderer
Blockchiffren vollstndig beschrieben.)

Auf die Ausgabe der achi-Boxen wird eine Permutation angewandt;
die ist wieder mit Differenzenbildung kompatibel. Fallgaiso die Dif-
ferenzen der Ausgaben d&€fBoxen kennen, bereitet diese Permutation
keine Schwierigkeiten und wir kennen die Eingabediffeegnfir die
zweite Runde, mit denen wir genauso weiter verfahi@mien.

Tatsachlich kennen wir die Ausgaben der ashBoxen der ersten Runde
natirlich nicht; wir kdbnnen nur @ir jede einzelneS-Box eine Wahr-
scheinlichkeitsverteilung der Ausgabedifferenzen aegehir einzel-
ne Bits oder Bitgruppen kommen wir dabei durchaus auf recselan-
liche Wahrscheinlichkeiten: Im obigen Beispiéf flie Eingabedifferenz
100100 etwa ist mit jeweils einer Wahrscheinlichkeit von:164, al-
so in mehr als 20% allerde, die Ausgabedifferenz gleich acht oder
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neun, birar geschrieben also 0100 oder 0101. Die Wahrscheinlichkeit
dafur, daf’ die ersten drei Bits der Ausgabedifferenz gleich €140,

ist also 28 : 64 = 7 : 16, und wenn wir uns auf das erste und
dritte Bit beschanken, kommen wir auf eine Wahrscheinlichkeit von
40 : 64 = 5 : 8 ddiir, dal? die Ausgabedifferenz die Formd hat. Das
dritte Bit schlief3lich istin 52 der 64 @glichen Rllen gleich Null, so dal3

wir zumindest dieses eine Bit mit der recht hohen Wahrsdiobieit

von 13 : 16 kennen.

Eine Blockchiffre gehtinsbesondere deshalb durch meRenelen, dal3
sie solche Inhomogeriten durch die Konfusion und Diffusion in den
Folgerunden weitestgehend zu zérsh. Man wird erwarten, dal dies
nicht fur alle Klartextdifferenzen gleich gut gelingt; die Ideatar der
differentiellen Kryptanalyse ist, sich auf die zu konzear&n, bei denen

es noglichst schlecht gelingt. Wir iirssen uns also genauer anschauen,
wie eine Klartextdiffernz durch die Runden geht.

Definition: Einer-Rundencharakteristilst eine Folge
A = (g, 61,.--,9,)

von Elementen augs*.

Ein Klartextpaar £, yo) € FS*x Fs* getdrt zur Charakteristik\, wenn
fur die Paarex;, y;) der Ausgaben derten Runde giltz, &y, = 6, fur
1=0,...,r.

Die Wahrscheinlichkeieiner Charakteristik ist die Wahrscheinlichkeit
dafur, dai ein Klartextpaarg, y,) mit Differenzd, zur Charakteristil
gehort.

Natirlich sind die Wahrscheinlichkeiten der meisten Chanadtiken
sehr gering: In einem idealen Kryptosysteraren alle Ausgabewer-
te einer Runde gleich wahrscheinlich, die Wahrscheinkah&inerr-
Rundencharakteristik sollte also im Mittel bei2l % liegen, und schon
die Wahrscheinlichkeit daf, daRliberhaupt ein Klartextpaar mit ge-
gebener Differenz nach-Runden eine ebenfalls vorgegebene andere
Differenz hat, sollte im allgemeinen bei nur etwa®2liegen.

Wenn wir eine guter-Rundencharakteristik gefunden haben, deren
Wahrscheinlichkeit deutlich besser ist al€?’, kbnnen wir daher ziem-
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lich sicher sein, daf3 ein zaifig gewahltes Klartextpaary,, y,) mit An-
fangsdifferena, und Enddifferen?,. in denr Runden so verschéselt
wurde, wie es der Charakteristik entspricht. Ist ebwa2~44, sollte die
Wahrscheinlichkeitiir alles andere bei nur etwa 2 oder etwa eins
zu einer Million liegen. Konkret heifl3t das: Wir kennen didf&ienzen
x; & y, mit hoher Wahrscheinlichkeit undknen die Versclilsselung
durch dier Runden verfolgen.

Zunachst brauchen wir aber gute Charakteristikémrfer eine Runde ist
das sehr einfach:iF jeden Halbblockl, € F3° fuhrt der mit 32 Nullen
auf 64 Bit aufgefillte Block i, auf die Charakteristiky,, d,) mit Wahr-
scheinlichkeit eins: Sindamlich ¢n, m,) und (ng, m,) zwei Klartexte
mit (nach der hier stets ignorierten Anfangspermutati¢egizer rechter
Halfte, so wird die linke Hilfte ersetzt durch

my =mo @ f(sg,my) bzw. my =my @ f(sq,myq),
und die Differenz ist
my & my = (Mo ® f(s1,m1)) @ (Mo @ f(s1,m1)) = Mg ® mg = dy,
wie wir das schon oben gesehen haben. Nach Durchgang derersti

Runde haben wir also die beiden Paarg, (m,) und (m5, m,), deren
Differenz wieder, ist.

Leider kbnnen wir diese Charakteristik nicht iterieren, denn nagh d
ersten Runde werden ja die beidedalften vertauscht, so dal’ wir dann
(m4, m5) und (m,, m5) haben, waidber wir nicht so viel sagendkinen,
da nun die EISTEL-Funktionen verschiedene Werte liefern.

Um trotzdem zu einer Zweirundencharakteristik zu kommemnutzen
wir die Nichtinjektivitat der FEISTEL-Funktion f: Wir suchen zwei Halb-
blockemy undmg derart, daf¥f (s, mg) = f(s, mg) fir moglichst viele
Schilssels; die Differenzmg & mg bezeichnen wir mit,.

Zwei beliebige Klartexte der Form{(,, m,) und (mg, m,) mit Differenz
mgy @ mg = dg gehen in der ersten Runde naeh,(m,) und (n5, m,)
mit

my =my @ f(sg,mg) und my =mg® f(sg,my),
danach werden die linke und die rechtalfte vertauscht, so daf3 die
Eingaben zur zweiten Runde gleich{, m,) und n,, m5) sind, wobei
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m, und m5 die Differenzd, haben. In der zweiten Runde gehen die
beiden Klartexte dann nach

(ml ® f(s2,my), mz) und (ml @ f(s2,m3), mlz) -

Dam, undm/, Differenz d, haben, ist dabei mit einer gewissen Wahr-
scheinlichkeit

f(s2,mp) = f(sy, mlz) .

Falls dem so sein sollte, haben wir, @) als Differenz zwischen den
Ausgabewerten. Es gibt daher eine Zweirundencharakkedist Form

((do, 0), (do, 0), (0, o)) ,

die mit einer gewissen Wahrscheinlichkgituftritt. Diese Charakte-
ristik kann offensichtlich beliebig oft iteriert werdenerh bevor ihre
Ausgabewerte in diedacthste Runde gehen, werden die linke und die
rechte Halfte vertauscht, so dafl’ wir wieder die Ausgangsdiffereten.
Damit haben wirfir jedes: einen-Rundencharakteristik gefunden; ihre
Wahrscheinlichkeit isp™/?, wobei die Guss-Klammer [] die groRte
ganze ZahK x bezeichnet.

Diese Charakteristik ist umsaitelicher, je gol3erp ist. Wie sich zeigt,
kannp nur dann gol3er als Null sein, wenn mindestens drei benachbarte
S-Boxen aktiv sind; die gif3ten Wahrscheinlichkeiten sind also zu er-
warten begenaudrei aktivenS-Boxen. Systematisches Probieren zeigt,
daR3 der beste erreichbare Wert dann

14 3 10 35 1 ~ 2—7,870716983

64 64 64 8192 ~ 234

ist. Er wird erreicht éir
=(19600000Q),, und d,=(1B600000),-

Damit haben wir alsoifr beliebiges: einen-Rundencharakteristik ge-
funden; leider ist sie aber nichiif jedesn brauchbar: Br 16 Runden
ist ihre Wahrscheinlichkeit nur etwa

2—7,870716983<8 ~ 2—62,96573586

wir brauchten also mindesten§*Xlartextpaare bekannter Differenz,
um eines zu dieser Charakteristik zu findem@hnend wir mit nur 2
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Versuchen alle Scliksel durchprobierendkinten. Tatachlich reichten
sogar bereits? Versuche, denn nimmt man das Einserkomplement von
Schlissel und Klartext, so entsteht das Einserkomplement désezh
texts. Deshalb sind auch die 14- und die 15-Rundencharsiitederen
Wahrscheinlichkeiten bei

2—7,870716983<7 ~ 2—55,09501888

liegen, nicht sonderlich interessant; erst die 13-Runklarakteristik

liefert mit
P ~ 2—7,870716983<6 ~ 2—47,22430190

eine halbwegs interessante Wahrscheinlichkeit.

Wahlen wir ein Halbwortn, derart, dal3ng & f(s, m,) fur moglichst
viele Schiissels gleich ist! Rir einen solchen Scisel sind dann

my =my® f(s,mq) und my=my® f(s,my)

AulBerdem interessieren wir uns niclir fdie Wahrscheinlichkeitsver-
teilung der Chiffretexte — Chiffretext ist schliel3lich dass wir immer
haben — sondernif Klartext oder besser noch den Sicddel bei gege-
benem Chiffretext.

Dazu nutzen wir aus, daf’ der Eingabewertsi®&oxen der ersten Runde
nicht der Klartext ist, sondern der mit gewissen Siskklbits geXORte
Klartext. Wenn wir nun iir ein Klartextpaar mit gegebener Differenz
die Ausgabedifferenz kennen, haben wir diégichen Eingabepaare
der S-Boxen, deren Differenzen ja genau dieselben sind redas
Klartextpaar, von 64 auf eine erheblich kleinere Zahl reeiz Fir
jedes dieses aglichen Paare dnnen wir die entsprechenden ScdH
selbits durch XOR mit dem taishlichen Klartext berechnen und haben
somit eine relativ kleine Anzahl potentieller Sabktelteile. Wenn wir
das ganzedir hinreichend viele Klartextpaare wiederholen, sollte de
fur die jeweiligeS-Box zustindige Schisselanteil relativ bald eindeutig
feststehen.

DES mit nur einer Runde ist auf diese Weise also relativ emfau
entschilisseln, falls wir geiagend viele Paare von Klartext mit fester
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Differenz haben. Diesednnen wir uns nur verschaffen durch eine At-
tacke mit vahlbarem Klartext, also der schwierigsten Form der Attacke

Auch diese Attacke liefert aber nicht die Ausgabediffeeamrer er-
sten Runde, sondern nur die detzten.Der Ansatz der differentiellen
Kryptanalyse des DES ist daher folgender:

1. Man wahle eine geeignete Differenz zwischen Klartexten.

2. Dazu erzeuge man hinreichend viele Paare von Klari@&siteh mit
dieser Differenz, versciitsele sie und behalte nur die so berechneten
Chiffretextpaare.

3. Durch Analyse der Klartextdifferenzen und des Verhaltdar.S-
Boxen in den verschiedenen Runden bestimme man die zu er-
wartende Wahrscheinlichkeitsverteilung der Eingabedsfizen der
letzten Runde.

Differentielle Kryptanalyse war der erste Ansatz, DES neitiggerem
Aufwand als der vollsindigen Durchsuchung des Sia$delraums zu
zu brechen. Da aber, wie bereits a@aimt, die Designer des DES die
differentielle Kryptanalyse schon kannten lange bevoirster offenen
Literatur auftauchte und den Algorithmus so gut wiégtich dagegen
iImmun machten, ist diese Attacke nicht sehr praktikabelbsSeei
Angriffen mit frei wahlbarem Klartext braucht maiber 2° Paare aus
Klartext und Chiffretext, um den Sdidsel zu finden.

d) Lineare Kryptanalyse

Eine leichte Verbesserung bietet die kurzatgp entdecktdineare
Kryptanalyse:Zwar sind die Ausgabebits déf-Boxen nach Design-
Kriterium (S2) auch nicht Aherungsweise lineare Funktionen der
Eingabebits, aber es kann dennoch vorkommen, dal3 man &ieart.i
kombination von Ausgabebits mit einer Wahrscheinlichldké deutlich
uber 50% liegt durch eine Linearkombination der Eingalsebarher-
sagen kann. Mit hinreichend vielen Paaren aus Klartext umidfr€-
text lalt sich dadurch ein niedrigdimensionaler affiner Untenraes
Schiisselraum®3° finden, in dem der Schissel mit hoher Wahrschein-
lichkeit liegen muf3. Die vollstndige Durchsuchung dieses Unterraums
Ist unproblematisch, so daf’ der Scddel mit hoher Wahrscheinlichkeit
gefunden werden kann.
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Auch fur diese Attacke sind allerdings unrealistisch viele PaasKlar-

text und Chiffretext erforderlich (in einer Variante ggen noch mehr
reine Chiffretexte), so dal3 der Gesamtaufwand nicht vainkgjeringer
sein dirfte als die vollshindige Durchsuchung des Sabselraums.

Nach allem, was in der offenen Literatur bekannt ist, gibalss zum
Knacken des DES keine wesentlich bessere Alternative Zistandigen
Durchsuchung des Sdldselraums.

e) DES-Cracker

Der erste in der offenen Literatur dokumentierte realistesAngriff auf
DES war denn auch die volisdige Durchsuchung des Sigbselraums.
Eine amerikanische iBgerrechtsorganisation, di€lectronic Frontier
Foundation (EFF)konstruierte eine Maschine mit Spezialhardware zum
Knacken von DES mit Chiffretext allein.

Die Electronic Frontier Foundatiomnvurde 1990 nach dem grol3kEiack-

er Crackdownn den USA gedindet; Initiatoren waren unter anderem
JOHN PERRY BARLOW, bekannt vor allem durch die Lieder, die @arThe
Grateful Deadschrieb, ®HN GILMORE, einer der Pioniere sowohl von
Sun Microsystemals auch defFree Software FoundatioVlITCHELL
KAPOR, der Giinder vonLotus,sowie SEVE WOZNIAK, einer der bei-
den Giinder vorApple.

Ihr Ansatz ist im wesentlichen der unseres guten alten Beidds
BAYEsschen Gegners: Kodiert man einen englisch- oder deutsattspr
gen Klartext im ASCII-Code sollten demaBesschen Gegner ein bis
zwei Blocke Chiffretext ausreichen, um den Sdddel zu finden.

Natirlich verfigen selbst die vier obengenannteriGter derElec-
tronic Frontier Foundatiomicht tiber die unbegrenzten Mittel, die der
BAYEssche Gegner einsetzen kann; verglichen mit vielen andeegh G
nern verfigt aber doch jeder von innéier betachtliche Mittel. Trotz-
dem war das 1997 begonnene und 1998 beendete DES-CrackektPr
kein Angriff ohne Ricksicht auf die Kosten: Di&lectronic Frontier
Foundationwollte gerade zeigen, dal? DES auch mit begrenzten Mit-
teln geknackt werden kann. Aus diesem Grund wurde der Artkez
BAYEsschen Gegners an mehreren Stellen optimiert:
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Zunachst ist es nicht notwendig, wirklictuf jedenSchiissel die be-
dingte Wahrscheinlichkeit auf Grund des Chiffretexts zstivemen: In
vielen Fallen werden bei der Entsdldselung nicht druckbare Zeichen
entstehen, so dafld schon nach wenigen Byte klar ist, dal3 dies@Vein-
lichkeit des Schissels Null ist.

DES Cracker beginnt daher mit der Aussonderungagioher Schiis-
sel durch massiv parallele Hardware: Die Maschine arbmietzweli
Blocken Chiffretext; sie hat als Kern von EFF entwickelte ASHD-
plication specific integrated circuitsjlie einen 64-Bit-Block mit einem
vorgegebenen Sdiisel dechiffrierené@nen und die Bytes des Ergeb-
nisses auf vom Benutzer einstellbare Bitmusiieerpiifen — beispiels-
weise darauf, ob es sich um ASCII-Codes druckbarer Zeicheddit.
Nur wenn alle Bytes den gevlten Kriterien geiagen, wird auch der
zweite Block entsprechend untersucht, und wenn auch hier ike
Klartext unnogliches Byte auftaucht, wird der Scisksel zur weiteren
Untersuchung an einen die Maschine steuernden PC weiabhgrg
der eine genauere Untersuchung g8nmem Ansatz desABESschen
Gegners durclifrt.

Von den 256 mglichen ASCII-Werten sind etwa ein Viertel druckbare
Zeichen; da DES eine Ausgabe liefert, die sich nur wenig vioere
Zufallsfolge unterscheidet, wird ein Block nur mit einer Mégschein-
lichkeit von etwa 1 : & = 1 : 65536 den Test besteheiir zwei Blbcke
liegt die Wahrscheinlichkeit entsprechend bei ¢4 1 : 2°2. Von den
2°% zu untersuchenden 8tken werden also nur etwa

2°6-32 = 224 = 16777216

an den PC weitergegeben, und die Untersuchung von etwa 1@ridth
Klartextkandidaten ist kein Problerirfeinen Standard-PC.

Der hauptachliche Rechenaufwand liegt in der Voruntersuchung der
Blocke durch die ASICs; je nachdem, wie viele von diesen prall
arbeiten, kann dies mehr oder weniger schnell gehen.

Die tatsaichlich gebaute Maschine eéth1536 = 3x 2° ASICs, von
denen jedes aus 24 parallel arbeitenden Sucheinheiteahljeisisge-
samt lonnen also jeweils 36 864 Scisisel parallel untersucht werden.
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Jede Sucheinheit kann zweieinhalb Millionen Si&skel pro Sekunde
untersuchen, die gesamte Maschine also etibas 92 Milliarden.

Insgesamt riissen 2 Schiissel untersucht werden; im Mittel wird man
nach 2° Versuchen den richtigen gefunden haben.iDafaucht man

255
92160000006° 390937 Sekunder 1085 Stundernx 4,5 Tage .

Die Maschine ist skalierbar: Jeweils 64 Chips sitzen auémifiBoard

und 12 Boards in einer Chassis (einer ehemaligen SUN); dawde
Maschine besteht aus dem steuernden PC zusammen mit zwssi§ha
der PC lbnnte aber auch mit deutlich mehr als zwei Chassis arbeiten
und auch mehrere PCsanen denkbar.

In der gebauten Version kostete DES Cracker 210 000 $, wad 608 $
Entwicklungskosten waren; der Bau eines zweiten Exemplars also
fur 130 000 $ mglich, wobei der Preis bei Serienproduktion wohl deut-
lich niedriger gewesen ae. Mit einer Investition in der GfRenord-
nung von einer Million Dollar htte am also bereits damals einen DES-
Schlussel innerhalb weniger Stunden findgimken. Heute kann man
das auch rein softwareifiig mit einem handealblichen PC.

Da eine Million Dollar auch iir Geheimdienste kleinerdnder und
(etwas kreative Buchhaltung vorausgesetzt) Gro3unterartkein Pro-
blem sind, war damit enddgig gezeigt, dald die Zeitir DES abgelaufen
war.

Die EFF vebffentlichte sowohl die komplette Hardware-Spezifikation
als auch die Software von DES-Cracker; in gedruckter Fordefiman
sie im Buch

ELECTRONIC FRONTIER FOUNDATION: Cracking DES. Secrects of En-
cryption Research, Wiretap Politics & Chip Desigd’'Reilly, 1998

Online ist das Buch unter anderem \iggbar unter

http://cryptome.org/cracking-des.htm ;
die DES Cracker Seite der EFF ist
www.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/ .
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84: Modifikationen

Viele Unternehmen, insbesondere im Bankenbereich, haigtiGeld
in DES-Hardware investiert und hatten daher wenig Intereasf ein
neues Verfahren umzusteigen — ganz abgesehen davon, daRdd&®
kein allgemein anerkannter Nachfolgealgorithmus zurguwhg stand.
(Mit dem inzwischen normierteyoffiziellen Nachfolger AES werden
wir uns in einen s@teren Kapitel besétftigen.)

Deshalb bot sich ein Verfahren an, das auf der Grundlage & &ne
Verschlisselung mit deutlich mehr als nur 56 Sigdelbit realisierte.

a) Mehrfacher DES

Die Kritik an der extrem kurzen Saddselange des DES wurde bereits
kurz nach dessen Eiamlfirung laut, und schon damals wurde vorgeschla-
gen, ihn zur Erbhung der Sicherheit mehrfach und mit verschiedenen
Schlisseln anzuwenden.

Eine zweifache Verschikselung Angt von 112 statt von nur 56 Scist
selbit ab; der Aufwandifr eine Durchsuchung des gesamten Gehl
selraums steigt also vorr2auf 2!1?, was eine Maschine nach Art des
DES Crackers auch nach heutigem Stand der Technik noch imicht
akzeptabler Zeit durciihren kann.

Eine mehrfache Versciselung bietet allerdings nur dann Vorteile,
wenn die Hintereinanderauigfrung zweier DES-Versahselungen
nichtaquivalent zur einfachen DES-Versihselung mit einem anderen
Schissel ist.

Um dies zu untersuchen,iresen wir noch einmal ziack zur grundatz-
lichen Struktur von Blockchiffren: Blockchiffren sind Feutationen
auf der Menge aller Ricke; im Falle von DES also auf der Menge
aller bijektiver Abbildungen von der Menge aller 64-BiteBke auf
sich selbst.

Die 2°° durch DES definierten Permutationen bilden{méth nur eine
winzige Teilmenge der Gruppe allef*2 solcher Permutationen; falls
diese Teilmenge eine Gruppe sein sollte (oder in einerivetéginen
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Untergruppe liegt), kann die mehrfache Anwendung von DEiBeke
(oder nur wenig) zuszliche Sicherheit bieten.

Wir brauchen daher Informationen déer, wie grol3 die kleinste Gruppe
ist, die alle 2° DES-Permutationen erih. Uber deren genaue Struktur
und Elementanzahl ist leider nichts bekannt, man kann ateerhin
untere Schranken angeberiirHeden einzelnen DES-Sdldsel kann
man die zugebrige Substitution so lange wiederholen, bis die ldantit
entsteht; da®! eine zwar groRe, aber endliche Zahl ist, muR dies nach
endlich vielen Schritten der Fall sein.

Angenommen, bei solchen Berechnungen mit verschiederigiisSeln
ergeben sich die Ordnungen, n,, ...,n,.. Dann ent@lt die kleinste
Gruppe, in der alle DES-Substitutionen liegen, zykliscimddgruppen
der Ordnungem, ..., n,.. Nach einem einfachen Satz der Gruppenthe-
orie, dem Satz von AGRANGE, mussen die Zahlen,, ..., n, dann die
Ordnung der gesamten Gruppe teilen; diese ist also mintegteich
dem kleinsten gemeinsamen Vielfachen dgr

Experimente zweier Wissenschaftler von Bell Northern Rede in
Ottawa zeigten, dal3 die Ordnung der erzeugten Untergrupjigeg
als Q9 x 10°4%° sein muR; das liegt sehr deutliciher 2°. Fir Einzel-
heiten sei auf ihre Arbeit

KEITH W. CAMPBELL, MICHAEL J. WENER: DES is not a GrougCrypto
'92, Springer Lecture Notes in Computer Scieidd® (1993), 512-520

verwiesen. Sie zeigt insbesondere, dal? mehrfache AnwgnvamDES
die Sicherheit erhen kann.

b) Doppelter DES

Beim doppelten DES hat man einen Siddelraum mit 22 Elementen.
Leider mul3 ein Gegner mit hinreichend viel Speicherpla¢sein aber
nicht vollsandig durchsuchen, um die Sakkel zu finden: Falls er nur
ein Paar £, y) aus Bbcken von einander entsprechendem Klartext und
Chiffretext hat, reicht es, kann er in einer sogenannteat in the middle
attackden Klartextr mit allen 2° moglichen Schilsselnverschiisseln
und den Chiffretexty mit allen 2° Schiisseln zuentchiisseln. Ist
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y = DES(s,, DES(s;,7)}), S0 ist DES(s,, y) = DES(s,, z), dieser
Block kommt also in beiden Listen vor. Da die von DES reatisie
Permutationen weit von einer Gruppe entfernt sind, ist bBs waewahr-
scheinlich, dal3 es noch einen anderen Block gibt, der irebeligsten
auftaucht; sobald man einen solchen Block gefunden ham, keam also
praktisch sicher sein, daf? mapunds, kennt.

Der Speicherbedarf dieser Attacke ist sicherlich nickitsAmateure
am heimischen PC: SchlieRlichiissen fir 2°° Schiissel jeweils zwei
Blockea 64 Bit oder 8 Byte gespeichert werden; insgesamt &Byze

= 2°0 Kilobyte = 2*° Megabyte = ¥ Gigabyte = 3° Terabyte; das
ist unge&hr eine Million mal soviel, wie eine grof3e handddiche
Festplatte heute falt. Trotzdem handelt es sich hier umkapazitt,

die nicht nur bei Regierungsorganisationen, sondern aeclgro3en
Unternehmen durchaus im Bereich de$dichen liegt; tir Google
etwa sind dapeanutsin der Praxis spielt der doppelte DES daher keine
Rolle.

c) Dreifacher DES

Der rmachste Schritt zu Edhung der Komplexét besteht in einer
dreifachen Anwendung von DES. Auch hier kann man wieder eine
meet in the middle attacknwenden, aber auf dem Weg zur Mitte mul3
von mindestens einer der beiden Seiten aus DES zweimal msitivie-
denen Sclilsseln angewendet werden, der Aufwand liegt also in der
GroRenordnung von32. Dreifacher DES oder, wie man meist sagt,
Triple DES (kurz TDES), gilt daher im Augenblick noch alshsc:
Nachdem die DES-Cracker-Attacke publik geworden war, ze@uohe-
rikanische Regierung die Zulassung von DHB feniger geheime
Nachrichten im Regierungsbereich @ok und verlangte stattdessen
Triple DES; entsprechend wurden in Deutschland die Euexddtarten
ersetzt durch neue Karten, die auf Triple DES anstelle defsaahen
DES beruhen. Daran hat sich bis heute wen#égkert: Die grol3en Kred-
itkartenunternehmen einigten sich auf einen gemeinsanagal&rd, der
nach den Initiatoren Europay, Mastercard und Visa als EMxélmdnet
wird, damit die Geldautomaten und Verkaufsstellenterifsieaer Fir-

ma auch die Karten aller anderer beteiligter Unternehmsamnlé&nnen,
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und der verwendet weiterhin Triple DES als symmetrischggptGver-
fahren. (Erst seit 201Bzw.2011 ist fakultativ auch AES zugelassen.)
Die genau Spezifikation des Standards ist wi&w.emvco.com zu
finden.

Triple DES wird praktisch immer so angewendet, daf3 man nmt ee

sten Schiisselerschlisselt, mit dem zweiteantschlisselt und mit dem
dritten wiedewerschlisselt. Oft ist dabei der dritte Sctdsel gleich dem
ersten; zumindestif einemmeet in the middl@ngriff erleichtert dies die
Arbeit des Angreifers nicht wesentlich. Trotzdem gehemiszhen die
Empfehlungen eher dahin, drei verschiedene i&ddl zu verwenden.

d) DESX

Wie wir gesehen haben, wurde DES bewul3t so spezifiziert, €iaB r
Softwareimplementierungen eher langsam sind. Bei TriS Dnacht
sich diese Langsamkeit gleich dreifach bemerkbar. Da &s Istite
kaum mehr lohnt, neu in DES Hardware zu investieren, sucltae m
daher filh nach Alternativen, die einerseits das Problem der kurzen
DES Schlisselange abmildern, andererseits aber keine mehrfache An-
wendung von DES erforderndR RIVEST, den wir im rachsten Kapi-
tel kennenlernen werden, schlug 1995 eine erstaunliclaehef solche
Methode vor: Sein DESX kombiniert den gélnlichen DES einfach
mit zwei VIGENERE-Verschlisselungen: Zugzlich zum DES-Sclilssel

c T3P gibt es noch zwei \GENERE-Schlissels,, s; € F5*, und ein
Nachrichtenblock: € F$*wird verschiisselt alsi; ® DES(sy, z @ s,).

Nach unseren Erfahrungen mit derc¢NERE-Chiffre ware es naiv zu
glauben, dal’3 ein Gegner zum Knacken dieser Chiffre den gesam
Schiisselraunt3® x FS* x FS* >~ F1% durchsuchen muR; erdknte
beispielsweise durch eine differentielle Kryptanalysenaalnst den
Schlussels; eliminieren, und wenn er — wie auch immers-und s,
gefunden hat, gemgt ein einziges Klartext/Chiffretext-Paar, um auch
noch s; zu finden. Trotzdem ist DESX erstaunlich gut: Die beste be-
kannte Attacke muf3 auch bél"dbekannten Klartext/Chiffretext-Paaren
immer noch 21°=™ mggliche Schiissel durchprobieren; sie ist zu finden
bei
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JOE KILIAN, PHILLIP ROGAWAY: How to protect DES against
exhaustive key search (an analysis of DESX)rnal of Cryp-
tology 14 (2001), 17-35;
http://www.springerlink.com/content/b1ljx8fky92nlhmk/

e) Alternativen zu DES

Da DES nach heutigen Standard nicht mehr zeitgférst, sind die gera-
de betrachteten Modifikationembhstens al§lbergangsisungen inter-
essant; sinnvoller sinddllig neu konzipierte Alternativen. Insbesonde-
re eine davon, denn offiziellen Nachfolger AES (Advancedrigpimon
Standard) werden wir in dieser Vorlesung noch abdich diskutieren;
da hierzu allerdings mehr Algebra erforderlich ist, als glang ken-
nen, muf3 das entsprechende Kapitel nach weiter hintenhadyea wer-
den, bis wir im Zusammenhang mit den sogenannten asymuotetns
Kryptoverfahren mehr Hilfsmittel aus der Algebra kenndagd haben.
Zum Abschlul3 dieses Kapitels wollen wir uns noch kurz mitiéexge
befassen, wie man eine Blockchiffre nach Art von DES in dexxiRr
anwenden sollte.

§85: Operationsmodi

Bislang haben wir DES nur betrachteirfdie Verschilisselung eines
einzelnen Blocks; taéchlich besteht eine Nachricht aber meist aus einer
ganzenFolge,, z,, ..., z, von Blocken. In diesem Paragraphen wollen
wir uns tberlegen, wie diese Nachricht am besten veissdlt wird.
Dabei werden zum ersten Mal auf ein&lomen stof3en, dal} uns im
Laufe dieser Vorlesung noch mehrfach begegnen wird: Auahrelativ
sichere Chiffre zeigt praktisch immer deutliche Séolven, wenn sie
einfach in der offensichtlichen Weise angewendet wird.

Die Betrachtungen hier beziehen sich nicht speziell auf Dd6&dern
gelten genauso auchirfjede andere Blockchiffre. Daher gehen wir hier
aus vonrgendeinerBlockchiffre

B:SxX—X,; (s,x)— B(s,x),

die einem Block: in Abhangigkeit von einem Sciések den Chiffretext
B(s, x) zuordnet.
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a) Electronic Code Book (ECB)

Die naheliegendste Weise, eine Nachriehtz,, ..., x,, zu verschiis-
seln, bestenht darin, ihr den Chiffretext, v,, . . .,y zuzuordnen mit
y; = B(s,x;), d.h jeder Block wird vor detbertragung mits ver-
schiusselt.

So einfach diese Methode auch ist, in der Praxis sollte marbes-

ser nicht anwenden. Die grol3e Séuke von ECB liegt in der Tat-
sache begmdet, dal3 gleiche Klartextidkeimmerzu gleichen Chiffre-
textblocken fihren. Das bedeutet zwar nicht unbedingt, dal3 gleiche
Klartextteile stets gleich versddselt werden, denn wegen der Block-
struktur der Chiffre Angt der Chiffretext ja auch noch davon ab, wie
weit der Textbeginn vom Blockanfang entfernt ist. Bei DE$ ASCII

gibt es dafir aber nur acht Kiglichkeiten, bei DES mit Unicode sogar
nur vier, so dald beaihgeren Texten in denen gewisse Namen und/oder
Begriffe haufig vorkommen, durchaus die Gefahr einéfggren Anzahl
identischer Chiffretextlilcke bestent.

Auch magic bytesdie bei vieler Dateiformaten als Dateianfang vorge-
schrieben sind ifhren stets zur selben Versibselung; bei anderen Da-
teiformaten wie etwa aughrbaren Programmen oder gewissémdpro-
grammen gibt es innerhalb der Datei viel&&ke von Nullenusw.,so
dafl’ jemand, der alle Nachrichten eines Absendersradlie Empanger
leicht in Klassen einteilen kann, die (unghf) dieselbe Information er-
halten. Dadurch kennt er zwar noch nicht den Inhalt der Nelotan,
kann aber vielleicht doch sehitzliche Informationen gewinnen.

Manchmal kann ein Gegner auch einfach dadurch Schadertarjc
dal’ er unbemerkt die Reihenfolge von Nachrichtéakeén vertauscht
oder aber einen Nachrichtenbloclehrfachibermittelt. Er khnnte auch
eine neue Nachricht generieren, die aus Teilen beidgermittelter
Nachrichten zusammengesetzt ist; falls er die StruktuNaehrichten
auf Grund gemeinsamer &tke erkennt, hat er sogar eine gute Chance,
dal die entstehende Nachricht sinnvoll ist. Bei Nachrichtet fe-
stem Format, wie sie beispielsweise im elektronischenutegdverkehr
unter Bankerblich sind, latte er eventuell sogar dieddlichkeit, zwei
von ihm selbst initiierte Transaktionen zu identifizieremdwzu seinem
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Vorteil zu manipulieren. Aber auch das blo3e Einschleusser enicht
als falsch zu erkennenden Nachricht etwa zu Sabotagezwedaken
bereits geiigend Schaden anrichten.

Natirlich hat ein Angreifer bei einer guten Blockchiffre auch ECB-
Modus keine Chance, die Nachricht zu dechiffrieren oder dgm
Schlissel herauszufinden, aber wie wir gesehen haben, kannher sic
bei gewissen Typen von Nachrichten doch einiges an Infoomater-
schaffen.

Man kann in der Kryptographiablicherweise nicht davon ausgehen,
dal’ ein Anwendeiiber die Sirken und Schéachen des verwendeten
Kryptosystems Bescheid weil3: Er \éBt sich darauf, dal’ das gekaufte
oder von einem Experten eingerichtete System seine Gelssiennu-
verlassig schtzt, egal worum es sich handelt. Daher sollte man den
ECB-Modus im Normalfall nicht benutzen.

b) Cipher Block Chaining (CBC)
Hier wird die Nachrichtc, x,, . . ., z,, Ubermittelt alg,, y,, . . . , y,, mit

y; = B(s,z; Dy;_1) -

Da es fir i = 1 noch keinen Chiffretextblocly, gibt, mul3 dabei
zusatzlich zum Schissel noch ein Anfangsblogfg explizit festgelegt
werden. Er mul3 nicht unbedingt geheimgehalten werdertesaltier
zwecks zuatzlicher Sicherheit fglichst {ir jede Verschilsselung neu
gewahlt werden.

Unablangig von der Wahl des Anfangsbloclkarngt bei CBC jeder
Ubertragene Blocky, auch noch vom Vor@ngery, , ab; es ist da-
her nicht nbglich, eine Nachricht durch Auslassen voro&ten oder
durch Zusammensetzen zweier existierender Nachrichtemamip-

ulieren ohne dal3 Bcke veralscht und damit unentsdidselbar werden
—was den Emg@inger (hoffentlich) zum Nachfragen veranlal3t.

Ein weiterer Vorteil besteht darin, daf3 jeddyertragene Blocl, von
jedemder Blocke x4, x,, ..., x; abhangt; insbesondereahgt als der
letzte Blocky, von jedem einzelnen Klartextblock ab. Falls also die
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ubermittelte Nachricht noch elektronisch unterschrielsenden soll,
reicht es, den Block,, zu unterschreiben.

(Mit elektronischen Unterschriften werden wir uns im Zusaem-
hang mit der asymmetrischen Kryptographie bésiogpen. Wir werden
dann auch Verfahren kennenlernen, wie man auch bei antiérentra-
gungsmodi oder gar désbertragung von Klartext einen Block finden
kann, der von der gesamten Nachricht afggt. Einen solchen Block
bezeichnet man almessage authentication codkeirz MAC. Im Allge-
meinen berechnet man ihn durch sogenannte sichere Hatdhikn;
eine gute Blockchiffre im CBC-Modus liefert ein, wenn audngleich-
sweise aufwendiges, solches Verfahren.)

Die Abhangigkeit eines jeden Chiffreblocks von allen vorausgdean
Klartextbibcken hat nicht nur Vorteile: Sidihrt auch dazu, daBber-
tragungsfehler nicht nur einen Block betreffen. &atdich ihren sie
aber bei CBC nur zur falschen Entsas$selung zweier Bicke: Die
Entschiisselungsfunktion ist bei CBC offenbar

Ty = B_1(37 yz) DY;—1,

bereitsr,,, = B71(s, y;40) ® ;.4 ist also von einen falschbermittelten
Block y; nicht mehr betroffen.

Ein groRes Problem beim ECB-Modus war, daf gleiche Nadernch
und auch gleiche Bicke gleichiibermittelt werden. Beim CBC-Modus
ist dieses Problem zumindest insofern abgemildert, aislgdeBlock
durch das XOR mit dem vorangegangenen Chiffreblock veesiem
chiffriert werden. Falls man allerdings den Anfangsblagkkonstant
wahlt — aus Sicht des Anwenders sicherlich die einfachsiguhg —
werden identische Nachrichten weiterhin identisch cieiftr

Die Sicherheit wird also auf jeden Fall éffit, wenn fir jedeUbertragung
ein neuer Anfangsblock benutzt wird. Dies@nkte beispielsweise ein
Zufallsblock sein, der — damit ihn auch der Er@ap§er kennt — entwe-
der unversclilsselt oder ECB-versaddselt als erstegbertragen wird.
Damit wird die zutibermittelnde Nachricht um einen Block \éampert,
was im allgemeinen kein grof3es Problem ist — auf3er vielleéncdem
Fall, dal3 man sehr viele sehr kurze Nachrichi®er eine teure oder
stark kapazatsbesctankte Leitungibertragen muf3.
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Ein zufalliger Anfangsblock hilft noch nicht gegen das ProblenT} da
ein Angreifer einfach eine aufgefangene Nachricht ein =geMal

in die Leitung einspielt. Da so etwas beispielsweise bditedaischen
Finanztransfers unbedingt erkannt werden muf3, enthaltsprechende
Nachrichten selbstveitdlich eine eindeutige Buchungsnummer.

Auch in anderen Systemen ist es aftlich, dal3 jede Nachricht ihre
eindeutige Kennzeichnung hat, und das legt es nahe, zustimdgsol-
chen Systemen entweder direkt diese Nachrichtennummaer admhe
eine daraus abgeleitete Zahl (eine sogenaNoi&ce;die Bezeichnung
Ist eine Kontraktion vorNumber usednce zu verwenden. Da auch
Nachrichtennummern Informationen enthalten, sollteaiismmer zur
Sicherheit mit der Blockchiffre versdindselt werden.

Ganz perfekt ist die Chiffre auch so noch nicht: Angenomnuaan,
Chiffretextblocky; ist gleich dem Blocky,. Dann konnen wir wie folgt
argumentieren:

y; = B(s,z; ® y;_1) NY; = B(S7xj @yj—l)
=10y, 172, By 1=>2,01; =y, Dy, .

Somit lalt sich die Differenz; © z; aus der Differenz der vorangegan-
genen Chiffretextliickey; , @ y;_, berechnen. Falls die Nachricht-
enquelle einédhnlich hohe Redundanz hat wie die deutsche Sprache,
sollte diese Information ausreichen, um die beideické (bis auf Rei-
henfolge) zu rekonstruieren.

Dies ist sicherlich ein Schwachpunkt, den man in der bedten\&el-
ten gerne vermeiden twde; andererseits ist die Wahrscheinlichkeit,
dal3 zwei gleiche Chiffretextbtke auftreten, nicht sonderlich grol3:
Wenn wir davon ausgehen, dald sich Chiffretext im CBC-Modies w
eine Zufallsfolge verdlt (was wahrscheinlich etwas zu optimistisch ist),
liegt sie im Falle der BlockingeN etwa bei 2¥/2. Bei einer 64-Bit-
Blockchiffre wie DES heift das, daR wir etwé2= 4294967296 oder
rund 4,3 Milliarden Bbcke brauchen, bevor wir mit einer Wahrschein-
lichkeit von mindestens 50% zwei gleiche Chiffretexitke finden. Bei
einer Blockchiffre mit 128 Bit (was heute eigentlich Mintitandard
sein sollte, kommt man sogar adf2> 1,8-10'° oder rund 18 Trilliarden
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Blocke. (Rir Einzelheiten sei auf das Kapitéber sichere Hashverfahren
verwiesen, wo wir das sogenani@eburtstagsparadoxogenauer be-
trachten werden.)

Da wir in Wirklichkeit natirlich keine Zufallsfolge haben,idften die
tatsachlichen Wahrscheinlichkeiten wohl etwa@er sein, aber bei
normalen Textdateien sollten sie weiterhin praktisch aehfssigbar
sein, und bei wirklich gro3en Dateien wie etwa Videofiimetitsalie
Kenntnis einiger weniger einzelner d&lke tir einen Angreifer wohl
nutzlos sein. Was bleibt, ist das Restrisiko, daf} beispatse genau
der eine Block, in dem ein besonders streng geheimzuh&itévame
oder Begriff steht zu#lligerweise trotzdem genauso versdelt wird
wie ein anderer Block und damit einem ohne grof3e Erfolgseluss
en auf genau dieses Restrisiko hoffenden Gegner bekanmt-wdies
gehdrt zum unvermeidbaren Risiko eines jeden nicht absolinesen
Kryptosystems.

Als Randbemerkung sollte ealint werden, dal3 obige Rechnung na-
turlich auch zeigt, dal3 verschiedene Klartestde zu verschiedenen
Chiffretextbibcken fihren, falls die Chiffretextliicke in den Vorgnger-
positionen verschieden sind. Dies mag zwar auf den erstiek Bls
nicht sehr informativ erscheinen, aber die Enigma wurde weiten
Weltkrieg geknackt eben wegen der Beobachtung, dal3 sieimes e
Buchstaben durch sich selbst versddelt. Bei einer Blockchiffre von
64 oder 128 Bit kann man mit so einer Information zwar seHmemiger
anfangen, aber es handelt sich doch Informatimmé&n Gegner, von der
wir nicht sicher sein &nnen, was er damit anfangen kann.

c) Cipher Feedback (CFB)

Die nun folgenden Modi sindirizlich, wenn Daten in Echtzeitbertra-
gen werden sollen, dielkzer sind als die Blockinge; hier verwenden
wir die Blockchiffre, um einen Schikselstrom zu erzeugen, der nach Art
desone time padrerwendet wird. Der grof3e Unterschied istiréch,
dali3 die Entropie dieses Sadbkelstroms nur die des Siksels und des
(dhnlich zu CBC verwendeten) Anfangsblocks ist: Unser gat@r
Feind, der ByEssche Gegner,dite also keinerlei Schwierigkeiten, die
Chiffre zu entschisseln. Unsere Hoffnung und der publik gewordene
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Teil der Erfahrung im Umgang mit Blockchiffren wie DES und 8E
beruht darauf, dal3 der Séiskelstrom zu komplex istif einen realen
Gegner.

Bei CFB gehen wir davon aus, dal3 die Daten nicht aixBt anfallen,
sondern in eventuell kleineren EinheitenzBit. Typisch fur Anwen-
dungenist der Weit = 8, d.h. wir verschisseln einen Strom von Bytes,
aber selbst der Falt = 1, bei dem einzelne Bits verscisiselt werden,
kommt gelegentlich vor. Fallg kleiner ist als die Blockinge N des
Codes, ist dieser Modus also um den Fakdfk langsamer als die
bislang betrachteten Modi.

Auch hier gehen wir aus von einem Anfangsblock; er ist aliegsl
durchk fast vollséndig festgelegt: In einem RegistBy dessen Ange
gleich der Blockhnge des verwendeten Codes ist, stehen rdcBis,
zum Beispiel lauter Einsen, die restlichen Bits des Regsterden auf
Null gesetzt. Sodann werden diestenk Bit von B(s, R) zu den ersten
k Bit der Nachricht addiert und dies wikthertragen. Man beachte, dal3
das Verschisselungsergebnis niirrfdie Ubertragung benutzt wird; der
Inhalt des Registers balt seinen Wert.

In jedem der folgenden Schritt wird der Inhalt des Registenst Bit
(nichtzyklisch) nach links verschoben, und dieuletztibertragenen
Bits werden am rechten Ende eingesetzt. Sodann werden stiener
k Bit des mit dem neuen Registerinhalt berechneten Bldgks R)
zum rachsten Nachrichtenblock addiert uinoertragenusw.

Sofern die erste Bit, die ins Register geschrieben werden, konstant
sind, werden gleiche Texte stets gleich vergskelt, und — was schlim-
mer ist — zum ersten Block der Nachricht wird stets dersetifdiSsel
addiert, so dal3 die statistischen Angriffe aus dem erstpn&anwend-
bar sind. Fall& gleich der Blockange ist, bnnte ein damit erfolgreicher
Angreifer sogar den WeiB(s, R) fur den Anfangszustand des Registers
rekonstruieren und, zumindest im Falle DES mit Hilfe von DE&cker
oder einemahnlichen Werkzeug den Sdislsels ermitteln. Hier liefert
also die Wahl eines deutlich unterhalb der Bl@aide liegenden Werts
von k einen zuatzlichen Sicherheitsfaktor. Bei einer guten und zeit-
genmalien Blockchiffre ist es natlich unnibglich, aus einem Paar von
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Klar- und Chiffretextbbcken den Sclilssel zu rekonstruieren — es sei
denn, man veifgt iber die Rechenkraft dessBesschen Gegners.

Auch in der praktischen Anwendung gibt es ein Problem, dern w
bei CBC langt wieder jedesibertragene Wort aus Bit von allen
Vorgangern ab. Aus Sicht des Endpigers allerdingsdngt der Inhalt
des Registers nur ab von den letzteempfangenen Chiffretextixtken,
wobeir die kleinste ganze Zahl ist mit: > n, denn nach Ubertragun-
gen flltjeder Chiffreblock wegen der zyklischen Verschiebang dem
Register heraus. Eidbertragungsfehler beeinfluf3t hier also insgesamt
r + 1 Nachrichtenlicke.

d) Output feedback (OFB)

Typische Anwendungen von Stromchiffren sind Satellitegrtragun-
gen. Hier sind Bitfehler auf Grund atmosbischer Sirungen relativ
haufig; obwohl sie nairlich durch fehlerkorrigierende Codes so weit wie
moglich kompensiert werden, mufd man doch immer wieder mihauc
langerfristigen erbhten Fehlerraten rechnen. Dabei ist die Eigenschaft
des CFB-Modus, jeden Fehler gleich auf 1 Blocke durchschlagen zu
lassen, bchst unwillkommen.

Ein fir solche Anwendungenitzlicher Modus istoutput feedback
(OFB). Auch dieser Modus erzeugt einen Sidsdelstrom mit Hilfe ei-
nes Registerk, allerdings langt dessen Inhalt weder vom Klartext noch
vom Chiffretext ab. Da der Salselstrom zum Nachrichtenstrom ad-
diert wird, betrifft daher ein Bitfehler bei désbertragung hier nur ein
einziges Bit.

Das RegisterR wird zu Beginn auf einen Anfangswert gesetzt. Im
Gegensatz zu CFB wird das Register selbst in jedem Schmitt ve
schiusselt, sein Inhalt also durch(s, R) ersetzt. Danach werden die
ersterk Bit zum Nachrichtenblock addiert, und vor deédahsten Schritt
wird das Registeryklischum k& Positionen nach links verschoben.

Bei dieser VorgehensweisauB man naiirlich fur jede Ubertragung
einen neuen Anfangsblock und/oder Sddel vidhlen, denn ansonsten
wird mehrfach derselbe Sdhdselstrom verwendet, ein Gegner kann
also schon mit einer relativ kleinen Anzahl von Chiffresxtdurch
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Haufigkeitsanalysen Informationérber den Klartext bekommen, die
bis zur \0lligen Entschlisselung ihren lonnen. Da die Blockchiffre
hier nur zur Erzeugung eines Sahselstroms verwendet wird, ist die
zu betrachtende Einheit aus Sicht des Kryptanalytikenrs R&ck, son-
dern die kleinste Dateneinheit der Nachricht, typische&sa@lso ein
Byte, so daf’ die Verfahren aus dem ersten Kapitel problearge-
wandt werden &nnen. AulR3erdem mul3 darauf geachtet werden, dal3 der
Schlisselstrom ndtlich periodisch ist. Die Periode ist zwar, abgesehen
von einigen wenigen sogenanntsohwachenSchlisseln der Block-
chiffre, sehr grol3, aber je nach abertragendem Datenvolumen kann
es trotzdem Probleme geben.

e) Counter mode (CTR)

Dieser Modus wird im Standardif DES nicht en@hnt, wurde aber 2001
vom NIST (demNational Institute of Standarder Vereinigten Staaten)
als eine Methode zur Anwendung von Blockchiffren standaed.

Ausgangspunkt ist eindlonce,d.h. eine Zahla, die fur genau eine
Nachricht und danach nie wiederatwend der @ltigkeitsdauer des
Schlissels verwendet wird. Sie wird beispielsweise aus der Neimm
oder demUbertragungsdatum der Nachricht nach einem vorher defi-
nierten Verfahren erzeugt.

An diese Zahl wird wie bei OFB ein von der Nachricht unabgiger
Schlisselstrom erzeugt, hier nach der Vorschrift

S = B(87 CLHZ) )

wobeial|i fUr eine Vorschrift steht, wie die Blocknummehinter die
Zahla geschrieben wird. Konkret geht es also darum,daitie gewisse
maximale Bithnge hat, und die restlichen Bits werdénd#freserviert.

Wie bei OFB mufl3auch hier nairlich sichergestellt sein, dal3 keine
zwei Blocke mit demselben, verschiisselt werden, d.h. die Anzahl
moglicher Werte @ir : mul3 gbRer sein als die maximalehge einer zu
ubertragenen Nachricht. Bei 64 Bit-Chiffren kann dies damntédbereich
von ¢ deutlich einschiinken; bei einer Blockinge von 128 Bit sollte es
jedoch mit realistischen Nachrichten keine Probleme geben
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Die Verschiisselung geschieht auch hier wie bamne time padd.h.
Yy, =x; ®s;, =x; ® B(s,al|t).

Auch hier mul3 wieder unbedingt sichergestellt werden, daBetbe
Schlisselstrom nur einmal benutzt wird, d.h. die Zaldarf auf keinen
Fall mehrfach benutzt werden, da sonst die Attacken aus dstane
Kapitel greifen vidrden.

Sofern dies wirklich sichergestellt istjidte CTR wohl der sicherste
unter den hier diskutierten Modi sein.

§6: Literatur

Da DES rund 25 Jahre lardps Standardverfahreriif ernsthafte sym-
metrische Versclilsselung im zivilen Bereich war, ist er Gaich in
praktisch jedem Lehrbuch der Kryptologie aus der damaligert
ausfihrlich beschrieben, z.B. in

JaN C.A. VAN DER LUBBE: Basic Methods of cryptograph@ambridge
University Press, 1998

oder, besonders atigfrtlich in
ALAN G. KONHEIM: Cryptography — A PrimeiViley, 1981
Auch in

JOHANNES BUCHMANN: Einfuhrung in die KryptographieSpringer,
2010

ist noch ein Kapiteliber DES zu finden.

Eine ausiihrliche Diskussion der Operationsmodi findet man unter an-
derem in

A.J. MENEZES P.C.VvAN OORSCHOT S.A. VANSTONE Handbook of
applied cryptographyCRC Press 1997

sowie in

NIELS FERGUSON BRUCE SCHNEIER: Practical CryptographyWiley,
2003
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und

NIELS FERGUSON BRUCE SCHNEIER, TADAYOSHI KOHNO: Crypto-
graphy Engineering — Design Principles and Practical Apations,
Wiley,2010

Speziellere Fragen sind aul3er in den bereits im Text atefrbeiten
und Blichern auch in fast jeder Konfereiitber Kryptologie behan-
delt; insbesondere gilt diesif Tagungen wieCrypto, Eurocryptund
Asiacrypt,deren Proceeding jeweils in den Springer Lecture Notes in
Computer Science erscheinen.
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Kapitel 4
Das RSA-Verfahren

81: New directions in cryptography

Bei allen bisher betrachteten Codes &eft die Entschisselung ent-
weder genauso oder zumindest sahnlich wie die Versclilsselung;
insbesondere kann jeder, der eine Nachricht veiissieln kann, jede
andere entsprechend verdgddelte Nachricht auch entsiabseln. Man
bezeichnet diese Verfahren daheratsametrisch.

Der Nachteil eines symmetrischen Verfahrens besteht ,ddai in ei-
nem Netzwerk jeder Teilnehmer mit jedem anderen eineniSshl
vereinbaren muf3. In mibirischen Netzen war dies traditionellerweise
so geregelt, dal3 das gesamte Netz denselbenisadilbenutzte, der
in einem Codebuchif jeden Tag im voraus festgelegt war; in kom-
merziellen Netzen wie beispielsweise einem Mobilfunknistzdies
natirlich unnbglich.

1976 publizierten MRTIN HELLMAN, damals Assistenzprofessor an der
Stanford University, und sein ForschungsassisteAtTWELD DIFFIE
eine Arbeit mit dem TiteNew directions in cryptographyEEE Trans.
Inform. Theory 22, 644—-654; inzwischen auch im Netz zu finden),
in der sie vorschlugen, den Vorgang déarschlisselung und den der
Entschiisselung @llig voneinander zu trennen: Es sei schliel3lich nicht
notwendig, dal’ der Sender einer vergskklten Nachricht auch in der
Lage sei, diese zentschlisseln.

Der Vorteil eines solchen Verfahrensave, daf3 jeder potentielle Emp-
fanger nur einen einzigen Sélskel bauchte und dennoch sicher sein
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konnte, dal3 nur er selbst seine Post entsddin kann. Der Sdsel
muf3te nicht einmal geheimgehalten werden, da es ja nichtlsthaenn
jedermann Nachrichtemerschlisseln kann. In einem Netzwerk mit
n Teilnehmern biauchte man also nurSchlissel, um jedem Teilnehmer
zu erlauben, mit jeden anderen zu kommunizieren, und diesiéssel
konnten sogar in eineffentlichen Verzeichnis stehen. Bei einem sym-
metrischen Kryptosystemave der gleiche Zweck nur erreichbar mit
%n(n — 1) Schlsseln, die zudem noch durch ein sicheres Verfahren
wie etwa ein perdnliches Treffen oder durch vertrauengwige Boten
ausgetauscht werdenifdten.

BAILEY WHITFIELD DIFFIE wurde 1944 geboren. Erst
im Alter von zehn Jahren lernte er lesen; im gleichen
Jahr hielt eine Lehrerin an seiner New Yorker Grund-
schule einen Vortragber Chiffren. Er liel3 sich von sei-
nem Vater alle veiigbare Literatur déiber besorgen,
entschied sich dann 1961 aber doghdin Mathematik-
studium am MIT. Um einer Einberufung zu entgehen,
arbeitete er nach seinem Bachelor bei Mitreatep,
nachdem sein Interesse an der Kryptographie wieder
erwacht war, kam er zu Martin Hellman nach Stanford,
der ihn als Forschungsassistent einstellte. 1991-2009
arbeitete er alshief security officebei Sun Microsys-
tems; heute ist econsulting professoin Stanford.
http://cisac.stanford.edu/people/whitfield diffie/

MARTIN HELLMAN wurde 1945 in New York geboren.

Er studierte Elektrotechnik zéchst bis zum Bachelor
an der dortigen Universit; fur das Studium zum Master
und zur Promotion ging er nach Stanford. Nach kurzen
Zwischenaufenthalten am Watson Research Center der
IBM und am MIT wurde er 1971 Professor an der Stan-
ford University. Seit 1996 ist er emeritiert, gibt aber
immer noch Kurse, mit denen er Sdar fur mathema-
tische Probleme interessieren will. Seine home page ist
unterhttp://www-ee.stanford.edu/~hellman/ zu
finden.

DIFFIE und HELLMAN machten nur sehr vage Andeutungen, wie SO
ein System mibffentlichen Schritten aussehearknte. Es ist zuichst
einmal klar, dal3 ein solches System keinerlei Sicherhgegesinen
BAYEsschen Gegner bieten kann, denn die Vergssgélungsfunktion ist
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eine bijektive Abbildung zwischen endlichen Mengen, untgjeder die
Funktion kennt, kann zumindest im Prinzip auch ihre Umkesikfion
berechnen.

Wer im Gegensatz zum#BEsschen Gegner nuilber begrenzte Ressour-
cen verfigt, kann diese Berechnung allerding®giicherweise nicht
mit realistischem Aufwand durctihren, und nur darauf beruht die
Sicherheit eines Kryptosystems raftentlichen Schiisseln. DFFIE und
HELLMAN bezeichnen eine Funktion, deren Umkehrfunktion nicht mit
vertretbarem Aufwand berechnet werden kannEatsvegfunktiorund
schlagen als Versc$selungsfunktion eine solche Einwegfunktion vor.

Damit hat man aber noch kein praktikables Kryptosystemndasi
einer echten Einwegfunktion ist es audlr flen legitimen Em@nger
nicht moglich, seinen Posteingang zu entsdseln. DFFIE und HELL-
MAN schlagen deshalb eine Einwegfunktion featltir vor, wobei der
legitime Emp#anger zuatzlich zu seinendffentlichen Schissel noch
uber einen geheimen Sdislsel veriigt, mit dem er (und nur er) diese
Falltur 6ffnen kann.

Natirlich hangt alles davon ab, ob es solche Einwegfunktionen mit
Falltir wirklich gibt. DIFFIE und HELLMAN gaben keine an, und unter
den Experten gab es durchaus einige Skepsisdien der Moglichkeit,
solche Funktionen zu finden.

Tatsachlich existierten aber damals bereits Systeme, die daheso
Funktionen beruhten, auch wenn sie nicht in der offenenrafite
dokumentiert waren: Die britischéommunications-Electronics Secu-
rity Group (CESG) hatte bereits Ende der sechziger Jahre damit be-
gonnen, nach entsprechenden Verfahren zu suchen, um di¢ePro
me des Miliairs mit dem Sclhilsselmanagement zéden, aufbauend
auf (impraktikablen) Angtzen von AT&T zur Sprachversdidselung
wahrend des zweiten Weltkriegs. Die Briten sprachen nichtkayp-
tographie mitffentlichen Schilsseln, sondern vamchtgeheimer Ver-
schlisselungaber das Prinzip war das gleiche.

Erste ldeen dazu sind in einer auf Januar 1970 datierten itArbe
von AMES H. ELLIS zu finden, ein praktikables System in einer
auf den 20. November 1973 datierten Arbeit voniFE C. COCKS.
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Wie im Milieu Ublich, gelangte nichtsiber diese Arbeiten an die
Offentlichkeit; erst 1997 véffentlichten dieGoverment Communica-
tions Headquarter¢§GCHQ), zu denen CESG geét, einige Arbeiten
aus der damaligen Zeit; eine Zeitlang waren sie auch auf dewvet
http://www.cesg.gov.uk/ zu finden, wo sie allerdings inzwischen
anscheinend wieder verschwunden sind.

In der offenen Literatur erschien ein Jahr nach der Arbeit BorFIE
und HELLMAN das erste Kryptosystem niffentlichen Schisseln: BN
RIVEST, ADI SHAMIR und LEN ADLEMAN, damals alle drei am Mas-
sachussetts Institute of Technology, fanden nach rundigierfolglosen
Ansatzen 1977 schlie3lich jenes System, das heute nach ihrfamds:
buchstaben mit RSA bezeichnet wird:

Das System wurde 1983 von der eigendid@fegiindeten Firma RSA
Computer Security Inc. patentiert und mit gro3em komméezre Er-
folg vermarktet. Das Patent lief zwar im September 2000diad;irma
ist aber weiterhin erfolgreich im Kryptobereiditig; sie hatte beispiels-
weise auch einen KandidateiarfAES entwickelt, der es immerhin bis
in die Endrunde schaffte.

RSA st Ubrigens identisch mit dem von laut GCHQ voroc€ks
vorgeschlagenen System. Die Beschreibung dureB$}, SHAMIR und
ADLEMAN erschien 1978 unter dem Tit&lmethod for obtaining digital
signatures and public-key cryptosystem€omm. ACM21, 120-126.

82: Die Grundidee des RSA-Verfahrens

a) Allgemeine Voriuberlegungen

Die SHANNONschen Forderungen naklonfusionundDiffusionmiissen
natirlich auch bei einer asymmetrischen Blockchiffreliétfsein. Bei
den heuteliblichen asymmetrischen Verfahren sind die verarbeiteten
,Blocke" fastimmer Zahlen aus/N = {0, ..., N — 1} fur eine hinrei-
chend grof3e natliche ZahlN, und die Versclhilsselung ist ein Bijektion
f:Z/N — Z/N.

Von dieser Funktion erwarten wir drei Dinge:
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RONALD LINN RIVEST wurde 1947 in Schenectady
im US-Bundesstaat New York geboren. Er studier-
te zurachst Mathematik an der Yale University, wo
er 1969 seinen Bachelor bekam; danach studierte er
in Stanford Informatik. Nach seiner Promotion 1974
wurde er Assistenzprofessor am Massachussetts Insti-
tute of Technology, wo er heute einen Lehrstuhl hat.
Er arbeitet immer noch auf dem Gebiet der Kryp-
tographie und entwickelte eine ganze Reihe weite-
rer Verfahren, auch symmetrische Verdgdelungsal-
gorithmen und Hashverfahren. Er ist Koautor eines
Lehrbuchs iiber Algorithmen. Seine home page ist
//http://theory.lcs.mit.edu/~rivest/ .

ADI SHAMIR wurde 1952 in Tel Aviv geboren. Er stu-
dierte zuachst Mathematik an der dortigen Univeasjt
nach seinem Bachelor wechselte er ans Weizmann Insti-
tut, wo er 1975 seinen Master und 1977 die Promotion
in Informatik erhielt. Nach einem Jahr als Postdoc an
der Universiat Warwick und drei Jahren am MIT kehrte
er ans Weizmann Institut ziick, wo er bis heute Pro-
fessor ist. Aul3erifr RSA ist er bekannt sowohiif die
Entwicklung weiterer Kryptoverfahren als audir fer-
folgreiche Angriffe gegen Kryptoverfahren. Er schlug
auch einen optischen Spezialrechner zur Faktorisierung
grolRer Zahlen vor. Seine home page ist erreichbar unter
http://www.wisdom.weizmann.ac.il/math/
profile/scientists/shamir-profile.html

LEONARD ADLEMAN wurde 1945 in San Francisco ge-
boren. Er studierte in Berkeley, wo er 1968 einen BS
in Mathematik und 1976 einen PhD in Informatik er-
hielt. Thema seiner Dissertation waren zahlentheoretis-
che Algorithmen und ihre KompleXt. Von 1976 bis
1980 war er an der mathematischen Fakuites MIT;
seit 1980 arbeitet er an der University of Southern Cal-
ifornia in Los Angelos. Seine Arbeiten be&dtigen
sich mit Zahlentheorie, Kryptographie und Molekular-
biologie. Er fihrte nicht nur 1994 die erste Berech-
nung mit einem,DNS-Computer‘ durch, sondern ar-
beitete auch auf dem Gebiet der Aidsforschung. Heute
hat er einen Lehrstuhlif Informatik und Moleku-
larbiologie. http://www.usc.edu/dept/molecular-
science/fm-adleman.htm
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1. Sie mul} einfach berechenbar sein

2. lhre Umkehrfunktion muf3 einfach berechenbar sein.

3. Aus der blofRen Kenntnis vghdarf man nicht auf die Umkehrfunk-
tion schliel3en &nnen.

Forderung 3 ist, mathematisch gesehenjmah unerfillbar: f ist eine
bijektive Abbildung zwischen endlichen Mengen, und darsitihre
Umkehrfunktion eindeutig festgelegt. Andererseits mufd enzch beim
Entschlisseln einer symmetrischen Blockchiffre im allgemeineB (z
wenn die Nachricht aus Klartext in einer adichen Sprache besteht)
»hur alle Schiissel durchprobieren. Wie satfig in der Kryptographie
mussen wir uns wieder einmal mjtraktischer Sicherheit zufrieden
geben, wobepraktischnur bedeutet, dal3 wir kein Verfahren kennen,
mit dem man die Funktion mit vertretbarem Aufwand umkehr@mie.

Fur kleine Werte vonN kann man sich die Umkehrfunktion vofi
einfach dadurch verschaffen, daR man zur Berechnung/vdgy) fiir
jedesr € Z/N ausprobiert, olf (x) = yist. Eine notwendige Bedingung
fur praktische Sicherheit ist daher, dal3hierfur zu grof3 sein muf3.
Wenn wir mit den Sicherheitsanforderungen an heutige symmsoke
Blockchiffren vergleichen, heiRt das konkret, dsiR3> 2128 sein sollte.
Tatsachlich missen wir jedoch oft mit erheblich@geren Werten vorvy
arbeiten, d&f fur die gangigen Verfahren eine einfache mathematische
Struktur hat, so daR es bessere @me zur Berechnung vofi-! gibt

als das Durchprobieren aller potentieller Urbilder.

Fir stetige, wordglich gar monotone Funktionen ist die Berechnung der
Umkehrfunktion ziemlich problemlos; was wir b@igen ist also eine
diskrete Funktion mit raglichst konfus aussehendem Graphen. Dazu
bietet sich etwa dienoduleFunktion an: Er eine ganze Zahlen und
eine natirliche Zahlm ist bekanntlichn modulom, in Zeichenn mod

m, der Divisionsrest bei Division von durchm; insbesondere ist also
stets 0< n modm < m— 1. Fast alle asymmetrischen Kryptoverfahren
hangen in der einen oder anderen Weise ab von dieser Funktion.

Generell qgilt, dal3 asymmetrische Verfahren in erster Lmiémathe-
matischen Problemen unda@en beruhen, jedenfalls in vielaske-
rem Mal3e als symmetrische. Etwiherspitzt beginnt EAL KoBLITZ,
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einer der Pioniere der Kryptographie mit elliptischen Kamy einen
Ubersichtsartikel daher auch mit den Worten:

During the first six thousand years — until the invention dblp

key in the 1970s — the mathematics used in cryptography was
generally not very interesting. . Indeed, mathematicians look-
ing at cryptography in those years might have found justibca

for Paul Halmos’ infamous title “Applied Mathematics is Bad
Mathematics”. (MAL KoBLITZ: The Uneasy Relationship be-
tween Mathematics and Cryptographigtices of the American
Mathematical Society, September 2007, S. 972-8ié9e auch
http://www.ams.org/notices/200708/index.html .)

Im Umkehrschluf3 folgt, dal? wir uns nun etwas mehr mit Mathéma
besclaftigen missen, zuachst vor allem mit einigen Grundlagen der
Zahlentheorie.

b) Modulararithmetik

Die gangigen aus der Analysis bekannten bijektiven Funktioredeh
allesamt Umkehrfunktionen, deren Berechnung eiaknlichen Auf-
wand erfordert wie die der Funktion selbst; sie sind alsdtnals
Einwegfunktionen geeignet. Das liegt hauwatslich daran, dal3 diese
Funktionen stetig undber weite Teile auch monoton sind; eine echte
Einwegfunktion sollte schon vom ersten Eindruck her deltjwilder*
aussehen.

Die heute praktisch eingesetzten asymmetrischen Krydadvwen errei-
chen dieseWildheit* allesamt durch deblbergang zu Divisionsresten:
Ist x € Z eine ganze undV € N eine naiirliche Zahl, so bezeichnen
wir mit x mod N € {0,1,..., N — 1} den Rest bei der Division van
durch V; falls z undy beide denselben Divisionsrest haben, schreiben
wir kurz

a=bmodN

und sageng sei kongruenty modulo N. Das ist offensichtlich genau
dann der Fall, wenn die Differenz— = durch N teilbar ist.
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Lemma: Der Ubergang zu Divisionsresten ist vérglich mit der Ad-
dition, Subtraktion und Multiplikation; ist alsa = x mod N und
v =< modN, so ist auch

utv=xtymodN und w-v=x-ymodN .
Fir jede naiirliche Zahle ist aulRerdena® = b mod V.

Beweis:Dau = x mod N ist, ist die Differenzr — « durch N teilbar,
lal3t sich also in der Form—u = Nr schreiben mit einer ganzen Zahl
entsprechend igt — v = Ns mit s € Z. Damit ist

(zxy)—(uxtv)=@W@+Nr)£(w+Nt)—(utv)=N(=£a)
durchN teilbar und genauso auch
zy —uv = (u+ Nr)(v+ Ns) — uv = N(us +rv) + Nrs.

Dies beweist die ersten drei Behauptungen; die letzte fdlgth
vollstandige Induktion aus der Vedglichkeit der Kongruenz modu-
lo N mit der Multiplikation.

Die Funktionz — x mod N ist natirlich nicht als Einwegfunktion
geeignet; auf den Intervallen, auf denen sie bijektivssie stickweise
linear und damit leicht umkehrbar. Wibknen sie aber schachteln mit
einer anderen Funktion, zum Beispiel einer Potenzfunktion> x°.
Wie das Bild der Funktion: — z° mod 101 zeigt, &nnen wir auf diese
Weise zumindest recht wild aussehende Graphen bekommen.
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Es gibt allerdings keinen Grund, warum die Abbildung
f' Z/N — ZJN
. x — x° mod N

fur beliebige Werte vorV und e bijektiv sein sollte. In der Tat ist die
Abbildung etwa @r e = 2 und ungeraded’ > 1 mit Sicherheit nicht
injektiv, da dann stets

f(N—2)=(N —2) modN =(—x)° modN = (—1)°z° mod N
=z°modN = f(x)

ist. Wir miissen also einsciinkende Bedingungen an die Zahlah
unde stellen.

c) Potenzfunktionen modulo einer Primzahl

Als erstes beschnken wir uns auf den Fall, da® = p eine Primzahl ist.
Furp =2istZ/2 ={0,1} und ist fur jeden Exponenteneinfach die
Identitat; daher ist offensichtlich nur der Fall einer ungeradempahl

interessant. Wie der folgende Satz zeigt, gibt es auch pofenten,
fur die wir nur die identische Abbildung bekommen:

Kleiner Satz von Fermat: Fir jedesr € Z und jede Primzahp ist
P =x modp;
ist z nicht durchp teilbar, gilt auchz?~! = 1 modp .

Beweis:Wir betrachten zuachst nur nichtnegative Werte vanund
beweisen die erste Aussage igtafiurch vollsindige Induktion:

Furx = 0ist @ = 0, also erst recht kongruent Null modylpgenauso
ist furz = 1 auche? = 1.

Flr x > 1 schreiben wir

p
xp:((a:—l)Jrl)p:Z(Z;)(x—l)i mit <f>:ﬁ

1=0
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Falls 1< ¢ < p — 1, ist der Nenner voif?) nicht durchp teilbar, wohl
aber der Ahler. Somit ist aucl@f) durchp teilbar, also kongruent Null
modulop. Damit ist

2P = (p>(x—1)°+ (p>(:c—1)p=1+(:c—1)=xmodp
0 p

nach Induktionsannahme.

Dies beweist die erste Aussagé fx > 0. Fur z < 0 ist im Falle
p = 2 sowohl—z = z mod 2 als auchx? = (—x)?; fur ungeradegp ist
(—x)? = —(«P), so dal3 die Behauptung in beideallEn folgt.

Zum Beweis der zweiten Behauptung beachten wir, dal3

P —r=x@r -1,

wie wir gerade bewiesen haben, dugcteilbar ist. Fallse nicht durchp
teilbar ist, muR alsa” ! — 1 durchp teilbar sein, und genau das ist die
Behauptung.

Der frandsische Mathematiker IERRE DE FERMAT
(1601-1665) wurde in Beaumont-de-Lomagne im De-
partement Tarn et Garonne geboren. Bekannt ist er
heutzutage vor allemif seine 1994 von RDREW
WILES bewiesene Vermutung, wonach die Gleichung
™ +y™ = 2" furn > 3 keine ganzzahligedsung mit
xyz Z 0 hat. Dieser,groRe"* Satzes VOnHRMAT, von
dem FERMAT lediglich in einer Randnotiz behauptete,
dafd er ihn beweiserdkne, erkart den Namen der obi-
gen Aussage. ObwohHRMAT sich sein Leben lang sehr
mit Mathematik besdiftigte und wesentliche Beége
zur Zahlentheorie, Wahrscheinlichkeitstheorie und Ana-
lysis lieferte, war er hauptberuflich Jurist.

Der kleine Satz von ERMAT liefert auch einen Ansatz, wie wir gele-
gentlich eine Umkehrfunktion vom — z° modp finden kbnnen: Of-
fensichtlich ist @ir jede ganze Zah und jedesc € Z auch

k
2 1R(—=1) = (;Up_l) =z modp,

dennistz durchp teilbar, sind die rechte wie auch die linke Seite dyrch
teilbar, also kongruent Null moduja Andernfalls istz? 1 = 1 modp,
so daf} der zweite Faktor des mittleren Terms mogudme Eins ist.
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Falls wir also eine natrliche Zahld finden lkdnnen, {fir die gilt
de=1+k(p—1) mit keZ,
soistirallex € Z/p
(xe)d =g =g modp,
die Abbildungy — v modp ist also invers zu: — z¢ modp.

Wenn wir eine solche Zallfinden kdnnen, ist 1 =le — k(p — 1); daher
durfen die Zahlere undp — 1 keinen gemeinsamen Teiler haben, denn
der mif3te sonst ja auch die Eins teilen.

Diese Bedingung ist bereits hinreichendirReilerfremde naitrliche
Zahlene undp — 1 gibt es stets solche Zahldrund k. In der Tat gilt:

Satz: Zu zwei natirlichen Zahlenz, y gibt es stets néatliche Zahlen
a, b derart, daldz — by gleich dem gdl3ten gemeinsamen Teilevon x
undy ist. Diese Zahlen (wie audiselbst) lassen sich effizient mit Hilfe
des erweiterten EKLID ischen Algorithmus berechnen.

Da dieser Satz einigendtiern bereits bekannt seiiidte, ist sein Beweis
zum besserebdberlesen separat imaohsten Abschnitt dargestelit.

Wenn wir diesen Satz annehmeinken wir als Fazit dieses Abschnitts
zusammenfassen:

Ist p eine Primzahl un& eine zup — 1 teilerfremde naitrliche Zahl,
so gibt es eine einfach berechenbardidmhe Zahld derart, dal3 die
beiden Abbildungen

f:{Z/pHZ/p ind g:{Z/p%Z/p

x +— z° modp z — z% modp

zueinander invers sind. Insbesondere sjfidund ¢ dann bijektiv;
f kann als Verschisselungsfunktion verwendet werden undals
Entschiisselungsfunktion. Die ersten beiden Forderungen, digrwir
Abschnitta) an eine asymmetrische Versibhselungsfunktion gestellt
haben, sind damit diflt. Die dritte Forderung ist allerdings ganz ekla-
tant verletzt: Werf kennt, kennt insbesondere die Zahjeande, und
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daraus kann er dasif die Entschiisselung beitigte d nach obigem
Satz effizient berechnet. Soméfit sichf hochstens als symmetrische
Verschlisselungsfunktion benutzen, bei der die Parametand e als
Schlisselinformation geheimgehalten werden. Da eine Veisskelung
nach Triple-DES oder gar AES deutlich schneller geht, wies &aum
angewandst; lediglichiir ganz spezielle Anwendungen wie Skat oder
Poker per Telephobzw.Internet nutzt man aus, dafdiim Gegensatz
zu praktisch allen @ngigen symmetrischen Kryptoverfahren ein Homo-
morphismus bearlich der Multiplikation ist.

Auf der Suche nach einem asymmetrischen Kryptoverfahren/emt
schiusselungsfunktior — z° mod N konnen wir uns also nicht auf
den Fall besclamken, daf@V eine Primzahl ist. Intiberrachsten Ab-
schnitt werden wir unéberlegen, wie sich die Situation @rdert, wenn
N Produkt zweier Primzahlen ist. Zaaohst folgt aber der angékdigte
Anhang zu diesem Abschnitt.

d) Der erweiterte Euklidische Algorithmus

Hier geht es nur um den Beweis des letzten Satzes aus denenorig
Abschnitt; wer damit vertraut ist, kann weitegktern zum Achsten
Abschnitt.

Beginnen wir mit dem einfachsten Falljrfden der Algorithmus schon
als Proposition zwei im siebten Buch der Element&IED s zu finden

ist: Wir suchen den @fd3ten gemeinsamen Teiler zweier nichtnegativer
ganzer Zahlerr undy, d.h. die gbl3te ganze Zahi, die sowohlz als
auchy teilt. Fur x = y = 0 gibt es keirgro3tessolcheg; hier setzen wir

t = 0. Wir schreiben kurz = ggT(a, b) .

Grundidee des ELIDischen Algorithmus ist die Anwendung der Divi-
sion mit Rest: br je zwei naiirliche Zahlen: undy gibt es nichtnegative
ganze Zahle undr, so daldx = gy + r und 0< r < y ist. Alsdann ist
g9T(x,y) = ggT(y, r), denn wegen der beiden Gleichunger gy + r
undr = = — qy teilt jeder gemeinsame Teiler vanund y auchr,
und jeder gemeinsame Teiler vgnund r teilt auchx. Da aul3erdem
offensichtlich fir alle x € N der ggT vonz und Null gleichz ist,
konnen wir den ggT leicht rekursiv berechnen, indem wir digdRe
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g9T(r,y) = ggT(y, ) so lange anwenden, bis= 0 und damit der ggT
gleichy ist.

Es ist nicht ganz sicher, obUgLID wirklich gelebt hat;
das nebenstehende Bild aus dem 18. Jahrhundert ist mit
Sicherheitreine Phantasieul.ID ist vor allem bekannt
als Autor delElementein denen er die Geometrie seiner
Zeit systematisch darstellte und (in gewisser Weise) auf
wenige Definitionen sowie die bignmten tinf Postulate
zuriickfuhrte. Diese Elemente entstanden um 300 v. Chr.
und waren zwar nicht der erste, aber doch der erfolg-
reichste Versuch einer solchen Zusammenfassuuag. E
KLID arbeitete wohl am Museion in Alexandrien; aul3er
den Elementen schrieb er auch ein Budler Optik und
weitere, teilweise verschollendiBher.

In mathematischer Sprechweise bedeutet das:
Schritt O: Setzery =z undr, =y

Schritt ¢, ¢ > 1: Fallsr, = 0 ist, endet der Algorithmus mit dem
Ergebnis ggT{,y) = r,_;; andernfalls dividiere mam,_; mit Rest
durchr, und bezeichne den Divisionsrest mjt;.

Der Algorithmus bricht ab, da, (bzw.das zweite Argumeng in der
Scheme-Formulierung) in jedem Rekursionsschritt kleined, aber
stets eine nichtnegative ganze Zahl ist; nach endlich wiSlehritten
mul es also Null sein, und der Algorithmus bricht ab. Die Kktineit
des Ergebnisses ist auch klar, denn aus der Gleichung

99T(z,y) = 99Ty, mody)
folgt, daf3 in jedem Schritt gg¥(_,,7;) = 9gT(x, y) ist.

Zum Vergleich sei hier nochuikLID s Beschreibung seines (wahrschein-
lich schon mindestens 150 Jahréfer bereits den Pythagmrn bekann-
ten) Algorithmus angegeben. In Proposition 2 des siebtern8aeiner
Elemente steht (in ddybersetzung von EMENS THAER fiir Ostwalds
Klassiker der exakten Wissenschaftdand 235):

Zu zwei gegebenen Zahlen, die nicht prim gegeneinander, gind
groftes gemeinsames Mal3 zu finden.



Kap. 4: Das RSA-Verfahren 142

Die zwei gegebenen Zahlen, die nicht prim, gegeneinanddr seien
AB,T’A. Man soll das gifdte gemeinsame Mal3 von ABA finden.

A B

r A

WennI'A hier AB mif3t — sich selbst mif3t es auch — dandistgemein-
sames Mal3 vohA, AB. Und es ist klar, dal3 es auch das@te ist, denn
keine Zahl gof3erl’A kannT’A messen.

WennI'A aber AB nicht mif3t, und man nimmt bei ABA abwechselnd
immer das kleinere vom gReren weg, dann muf3 (schliel3lich) eine Zahl
ubrig bleiben, die die vorangehende mif3t. Die Einheit kaamirch nicht
Ubrig bleiben; sonst iif3ten AB I'’A gegeneinander prim sein, gegen die
Voraussetzung. Also mul3 eine Zaitlrig bleiben, die die vorangehende
mil3t. A lasse, indem es BE mil3t, EA, kleiner als sich selitstg; und
EA lasse, indem eAZ mildt, ZI", kleiner als sich selbsitbrig; undl'Z
messe AE.

A E B

Dal'Z AE mif3t und AEAZ, muRT'Z auchAZ messen; es mildt aber
auch sich selbst, muf} also auch das Gdnkemessen’A mifdt aber
BE; also mi3tl’Z auch BE; es mif3t aber auch EA, muf also auch das
Ganze BA messen. Und es mif$t adeh; I'Z mifdt also AB undl’A;

also istI'’Z gemeinsames Malf3 von ABA. Ich behaupte, dal? es auch
das gbl3te ist. Ware ramlichI"Z nicht das gol3te gemeinsame Mal3 von
AB, T'A, so nufite irgendeine Zahl gRerI'Z die Zahlen AB undl’A
messen. Dies geschehe; die Zahl sei H. Da H dakmale undl’A

BE mif3t, malle H auch BE; es soll aber auch das Ganze BA messen,
mufdte also auch den Rest AE messen. AE mif3t abéralso mildte

H auchAZ messen; es soll aber auch das Gandé messen, rifdte
also auch den Res$tZ messen, als gfiere Zahl die kleinere; dies ist
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unmoglich. Also kann keine Zahl gRRerI’Z die Zahlen AB undl’A
messen}'Z ist also das dgifdste gemeinsame Mal3 von AB); dies hatte
man beweisen sollen.

Der erweiterteEUKLID ische Algorithmus war BKLID selbst mit ziem-
licher Sicherheit nicht bekannt; hier handelt es sich une eiaf dem
Grundalgorithmus beruhende und meist nach dem &siszhen Ma-
thematiker EIENNE BEzouT (1730-1783) benannte Ideitif die dieser
1766 in einem Lehrbuch beschrieb (und auf Polynome verakgeer-
te). Fiur Zahlen ist diese Erweiterung jedoch bereits 1624 zu finden
der zweiten Auflage des BuclBoblemes plaisants etédectables qui
se fonts par les nombre®n BACHET DE MEZIRIAC.

CLAUDE GASPAR BACHET SIEUR DE MEZIRIAC (1581-
1638) verbrachte den @i8ten Teil seines Lebens in sei-
nem Geburtsort Bourg-en-Bresse. Er studierte zwar bei
den Jesuitenin Lyon und Milano und trat 1601 in den Or-
den ein, trat aber bereits 1602 wegen Krankheit wieder
aus und kehrte nach Bourg figk. Sein Buch erschien
erstmalig 1612, zuletzt 1959. Am bekanntesten ist B
CHET fur seine lateinisch&bersetzung dehrithmetika
von DIOPHANTOS In einem Exemplar davon schrieb
FERMAT seine Vermutung an den Rand. Auch Gedichte
von BACHET sind erhalten. 1635 wurde er Mitglied der
franzdsischen Akademie der Wissenschaften.

ETIENNE BEzouT(1730-1783) wurde in Nemours in der
lle-de-France geboren, wo seine Vorfahren Magistrate
waren. Er ging stattdessen an die Akademie der Wissen-
schaften; seine Hauptbe&dtigung war die Zusammen-
stellung von Lehrtichern fir die Militarausbildung. Im
1766 erschienenen dritten Band (von vier) sei@ears

de Mattematiques l'usage des Gardes du Pavillon et
de la Marineist die Identiait von BEzouT dargestellt.
Seine Bicher waren so erfolgreich, dal3 sie ins Englische
Ubersetzt und z.B. in Harvard als Lelidher benutzt
wurden. Heute ist er vor allem bekannt durch seinen
Beweis, dal} sich zwei Kurven der Gradeund m in
hochstensym Punkten schneiderdknen.

Die Gleichungu = qv + r zur Division mit Rest &f3t sich auch um-
schreiben als = u — qu; der Divisionsrest ist also eine ganzzahlige
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Linearkombination des Dividendem und des Divisorsy. Falls sich
diese wiederum als Linearkombination der beiden Ausgaidenx
und y darstellen lassen, erhalten wir eine entsprechende Margfe
farr:

u=ar+by und v=cx+dy =r=(a—qc)x+(b—qd)z.
Wir konnen also ausgehend von den Darstellungen
r=1-z+0-y und y=0-2+1-y,

bei jeder Division im BKLIDischen Algorithmus den Divisionsrest als
ganzzahlige Linearkombination vanundy darstellen und damit auch
den ggT als den letzten nichtverschwindenen solchen Rest.

Dies fuhrt zu folgendem Algorithmus:

Schritt 0: Setzerg=xz,r, =y, ay=06; =1unda; = 5, =0.Miti =1
ist dann

rio1=o;qr+ By und r,=ourt Gy
Diese Relationen bleiben in jedem der folgenden Schrittaltn:

Schritt 4, « > 1: Fallsr; = 0 ist, endet der Algorithmus mit
99T, y) =r; 1 =a; 12+ 05; qy.

Andernfalls dividiere mam, _; mit Rest durch-; mit dem Ergebnis
Tic1 = QT T Ti4q -

Dann ist

Tivy = — ;7 ¥ 1, 1 = —q;(ox + B,y) + (o, _1 + 5;_1y)

= (a1 — qyo)r + (8,1 — 4,8y,

man setze also

Qi = — gy und B =04 —q;5;.
Genau wie oben folgt, dal? der Algorithmiis &lle natirlichen Zahlen:
undy endet und dal3 am Ende der richtige ggT berechnet wird; aefderd
sind diea; und 3; so definiert, dal3 in jedem Schritt = o,z + 5,y ist,
insbesondere ist also im letzten Schritt der ggT als Lingaiknation
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der Ausgangszahlen dargestellt. Da er kleiner oder gleiahd y ist,
konnen nicht beide Koeffizienten positiv sein. Falls deregpsisitiv und
der zweite negativ ist, haben wir den Satz aus dem vorigemchi
bewiesen; andernfalls addieren wir so lange die Gleichung xy = 0,
bis dies der Fall ist.

Wenn es nicht nur um die blof3e Existenz einer Darstellung gehdern
wir zum praktischen Rechnen auch adgtichst kleinen Koeffizienten
interessiert sind, sollten wir besser mit dem kleinsten gjasamen
Vielfachen 2y

V)= 59T6, )
von z und y anstelle des Produktsy argumentieren; indem wir ein
geeignetes Vielfaches der Gleichung

y i
—_— . a:’ —_—
99T, v) 99T, v)
addieren oder subtrahieren, finden wir offenbar stets earstBllung

y:O

. Yy x
T, y) = ax — mt a< —— und < ———.
99T(e.y) By 99T, y) )

Als Beispiel wollen wir den ggT von 200 und 148 als Linearkamnation
darstellen. Im nullten Schritt haben wir 200 und 148 als digalen
Linearkombinationen

200=1-200+0-148 und 148=0200+1-148.

Im ersten Schritt dividieren wir, da 148 nicht verschwin@&0 mit Rest
durch 148:

200=1-148+52=52=1-200—1-148

Da auch 52# 0, dividieren wir im zweiten Schritt 148 durch 52 mit
Ergebnis 148 = 252 + 44, d.h.

44 =148—-2-(1-200—1-148) =3-148— 2- 200
Auch 447 0, wir dividieren also weiter: 52 = 144 + 8 und
8=52—-44=(1-200—1-148)— (3-148— 2-200)
=3-200—4-148.
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Im nachsten Schritt erhalten wir 44 =8 + 4 und
4=44—5-8=(3-148—2-200)—5-(3-200—4-148)
=23.148—-17-200.

Bei der Division von acht durch vier schliel3lich erhalterr Wivisi-
onsrest Null; damit ist vier der ggT von 148 und 200 und kanden
angegebenen Weise linear kombiniert werden.

e) Die RSA-Verschlisselungsfunktion

Wie angekindigt, wollen wir nun als neuen Kandidateir £ine asym-
metrische Versclilsselungsfunktion die Funktion

/ Z/N — Z/N ‘N
. mi =
x — ¢ mod N P

betrachten, wobei undg zwei verschiedene Primzahlen sind.

Falls die ganze Zahiteilerfremd zuV ist, kann sie weder ein Vielfaches
von p noch eines vory sein; deshalb ist nach dem kleinen Satz von
FERMAT aus Abschnitt)

zP"=1modp und z¢7!=1modg.

Bilden wir links die ¢ — 1)-te und rechts diep(— 1)-te Potenz, sehen
wir, dafd auch gilt

2@ D@1 = 1 modp und @ D¢ =1 modq.

Daher istz?~5@=1 _ 1 sowohl durctp als auch durcly teilbar, also
auch durchV = pq, das heil3t

2P~ DE-1) = 1 mod N .

(p — 1)(¢ — 1) ist nicht der kleinste Exponentijifden dies gilt; da das
kleinste gemeinsame Vielfache vgpn— 1 undg — 1 auch Vielfaches
sowohl vonp — 1 als auch vomg — 1 ist, folgt genauso auch die Formel

Z}VP—14-1) = 1 mod N .
Wie in Abschnittc) folgt daraus sofort, dafiif jedes solche auch gilt

21 kVe—19-1) — . mod N furalle kcZ.
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Letztere Formel gilt tatschlich sogariir allex € Z, denn wie wir aus
Abschnittc) wissen, ist @ir beliebige ganze Zahlen u,v € Z

210D = 2 modp und 29D =z modyg.
Setzen wir speziell
k(g — 1) k(p —1)
u= und v = ,
99T —1,¢—1) 99Tl —1,¢—1)

ist also insbesondere

pL1HR-kgV(p—1,9-1) — 1+k-kgV(p—1,q—1) —

xmodp und =z x modg.

Damit ist dann aber auch
gIRkoVl—1a-1) — » mod N .

Nachdem wir das wissenfknen wir genauso argumentieren wie in
Abschnittc): Wenne teilerfremd ist zu % — 1)(¢ — 1), liefert uns der
erweiterte DKLIDische Algorithmus ndlrliche Zahlend, k € N, so dal3

1=de—k-kgV(p—1,¢—1) unddamit (2°)* =2z modN .

Somit haben wir auch in diesem Fall eine einfach berecherilaakehr-
funktion zu f, namlich die entsprechende Exponentiation modilo

mit Exponentd, aber es gibt einen entscheidenden Unterschied zum
Fall eines Primzahlexponentenidiesen mufdten wir den erweiterten
EukLIDischen Algorithmus aué undp — 1 anwenden; jeder der in der
Lage sein soll, die Verscii$selungsfunktiorf anzuwenden, mul3 diese
Zahlen kennen und kann daher autdberechnen.

In den meisten Lehilchern wird vorgeschlagen] zu bestimmen
durch Anwendung des erweiterterutiDischen Algorithmus aut
und (p — 1)(¢ — 1). Auch dies liefert einen Exponenten, mit dem man
entschlisseln kann; allerdings ist er im allgemeinen(§gr: Dap undq
ungerade Zahlen sind, sind— 1 undg — 1 beide mindestens durch
zwei teilbar, so daf3 bereits { 1)(¢ — 1)/2 ein gemeinsames Vielfaches
ist. Wie ERNESTOCESARONOCh als Student bewies, ist das kgV zweier
zufallig gewahlter Zahlenm Mittel ungefihr 0,73 mal dem Produkt; der

genaue Faktor ist
=1 /X1
> @) 2
k=1 k=1
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siehe dazu seine Arbeit

ERNESTO CESARO: Etude moyenne du plus grand commun di-
viseur de deux nombregynnali di MatematicaXlll (1885),
235-250

ERNESTO CESARO (1859-1906) wurde in Neapel ge-
boren und wuchs auf in der nahe gelegenen Kleinstadt
Torre Annunziata, wo sei Vater einen landwirtschaftli-
chen Betrieb mit Hofladenthrte. Nach seiner Schul-
ausbildung in Neapel studierte er ab 1873 iadé Ma-
thematik. Nach dem Tod seines Vaters kehrte er 1879
nach Torre Annunziata ziick um den Betrieb weiter-
zufuhren. Dank eines Stipendiums konnte er ab 1882
sein Studium in Lége fortfihren; teilweise studierte
er auch in Paris und ab 1884 schliel3lich an der Uni-
versitat Rom. Obwohl er bereits zahlreiche Arbeiten

: veroffentlicht hatte, wurde er dort erst 1887 promoviert
und bekam dann gleich einen Lehrstuhl an der Univ@rsibn Palermo. 1891 folgte
er einem Ruf an die Universit Neapel, wo er bis zu seinem Tod lehrte. Der Grol3teil
seiner Arbeiten befal3t sich mit Differentialgeometriejedstete aber auch Bedtge zur
Zahlentheorie, unter anderem etwa zur Primzahlverteilung

Hier, fir N = pq, wenden wir den erweitertenJgLID ischen Algorith-
mus an aut und das kgV vomp — 1 undq — 1. Wer verscliisseln will,
muf3e und N = pq kennen; die Primzahlem ¢ mul3 er nicht kennen.

Wer diese nicht kennt, kann auch das kgV yoa 1 undg — 1 nicht
berechnen, denn die Kenntnis dieser Zahlagtiivalent zu der vop
undq: Zunachst einmal lassen sighundq leicht rekonstruieren aus

—Dg-1=pg—p—q+1=N+1)—-(p+q);

denn wer sowohlIV als auch p — 1)(¢ — 1) kennt, kennt sowohl das
Produkt N = pq als auch die Summ#& = p + ¢ von p und ¢q. Daraus
kann er die Primzahlen selbst problemlos berechnen @sihgen der
quadratischen GleichungS — z) = N oderz? — Sz + N = 0.

Wer das kgV vorp — 1 undg — 1 kennt, kann das Produki ¢ 1)(¢ — 1)
folgendermalien berechnen: Er dividiéft= pg durch das kgV; dies
fuhrt zu einer Darstellung

N=a-kgV(p—1,g—1)+r mit 0<r<kgV(p—14q—1).



149 Kryptologie HWS 2016

AndererseitsistV = (p — 1) (¢g—1)+(p+qg—1),und p — 1)(¢ — 1)

ist ein Vielfaches des kgV. Ist die kleinere der beiden Primzahlen, ist
das kgV mindestens gleieh— 1; es ist genau dann gleigh— 1, wenn

p — 1 ein Teiler vong — 1 ist wie etwa im Fallp = 17 undq = 257.
Andernfalls entlt p — 1 von mindestens einer Primzahl einéhlere
Potenz alg — 1. Da jede Primzahl mindestens gleich zwei ist, mul3 das
kgV in diesem Fall mindestens gleichg2¢ 1) sein. Wenmp — 1 kein
Teiler vong — 1 ist, muf}p > 2 sein; daherish < ¢ — 2 und

0<p+q—1<2¢g-3<2¢-2<kgV(p—1,¢q-1).

Wennp — 1 kein Teiler vorng — 1 ist, erhalten wir bei der Division mit
Rest vonN durch kgVp — 1,¢ — 1) also den ggT als Quotienten und
p + g — 1 als Rest; damit kennen wir auch in diesem Fall sowohl das
Produkt als auch die Summe vprundg.

Der kryptographischallig uninteressante Fafl = 2 ist leicht daran zu
erkennen, dal} dann und nur dann das kgV penl undq — 1 nicht
durch vier teilbar ist; beschnken wir uns also im Fall, dafs— 1 Teiler
von g — 1ist, auf ungerade PrimzahlenHier ist

kaV(p —1,¢q—1)=q¢—-1<p+q—1<2kgV(p -1, —1);

in diesem Fall erhalten wir bei der Division vav durch das kgV also
den um eins erdhten ggT als Quotienten updhls Divisionsrest, so dal3
wir auch hier leichpp undg berechnen @&nnen.

Falls es keinen anderen Weg gibkt,aus N und e zu berechnen als
denuber den erweitertenUkLiDischen Algorithmnus, m3te jemand,
der nur die Versclilsselungsfunktiorf(z) = © mod N kennt, N in
seine Primfaktoren zerlegen, was als schwierig gilt. Zulast in den
inzwischen fast vierzig Jahren, in denen das RSA-Verfalmistang
angewandtwird, hatte niemand eine bessere ldee; destRBAImMmer
noch eines der popailsten asymmetrische Kryptoverfahren.

Zu seiner Anwendung &hlt jeder Teilnehmer zwei Primzahlgrundg,

die er streng geheindlit (und am besten vergil3t, sobald er die folgenden
Rechnungen durchgéfirt hat). Daraus berechnet &r= pq und wahit
eine Zahle, die teilerfremd zug — 1) und zu ¢ — 1) ist. Das Paar
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(V, e) veroffentlicht er als seineiffentlichen Sclissel.Damit kann
jedermann Nachrichten an itmerschiisseln.

Der Teilnehmer, der aughundg kennt, wendet aul3erdem noch den er-
weiterten BJKLID ischen Algorithmus an adfund das kgV vop—1 und

g — 1 an; so erhlt er einerprivaten Schilsselden Exponented. Damit
kann er (und hoffentlich nur er) die Nachrichten aecitschlisseln.

Fur kleine Werte vore kannd auch ohne erweitertenUgLID ischen
Algorithmus berechnet werden: Wie wir wissen, gibt es statdrliche
Zahlend undk, so dafd

ed—k-kgV(p—1,q—1)=1 und d < kgV(p—1,¢q—1) und k<e

ist. Fir kleine Werte vore kann man also auch einfach ausprobieren,
fur welche der Zahleh = 1, ..., e — 1 der Quotient

k-kgV(p—1,q—1)

e
eine ganze Zahl ist; daund kgV({p — 1,q — 1) teilerfremd sind, gibt
es genau ein solchds Speziell im Fall des in der Praxis (leider) sehr
popubren Exponentea = 3 muld man nur diedle k¥ = 1 undk = 2
uberpiifen.

d=

83: Praktische Anwendung von RSA

Natirlich ist RSA mitp = 3 undq = 41 kein sicheres Kryptover-
fahren, und nalrlich wollen wir in der Kryptographie meist kei-
ne natirlichen Zahlenibermitteln, sondern allgemeinere Nachrichten.
AulRerdem getrt das Rechnen modulo einer adichen Zahl nicht zu
den Standardoperationen, die von jeder Programmierspralshein-
fache Befehle bereitgestellt werden. In diesem Paragrapbi kurz
erlautert werden, wie man mit diesen Problemen umgeht.

a) Wie grol3 sollten die Primzahlen sein?

Ein treu sorgender Staahldt seine Brger bei einer derart wichtigen
Frage ndlirlich nicht allein: Zwar gibt es noch keine oberste Bun-
desbebrde fur Primzahlen, aber das Bundesaiint Sicherheit in der
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Informationstechnik (BSI) und die BundesnetzageniurHlektrizitat,
Gas, Telekommunikation, Post und Eisenbahnen erarbeitis jJahr
ein gemeinsames Dokument mit dem &cén TitelBekanntmachung
zur elektronischen Signatur nach dem Signaturgesetz undSap
naturverordnung{bersichtiiber geeignete Algorithmen).

Das Signaturgesetz und die dazu erlassene Signaturveraydagen
fest, dald elektronische Unterschriften in Deutschlanchdgitzlich
zulassig und rechtgdtig sind, sofern gewisse Bedingungenigifsind.

Zu diesen Bedingungen gétt unter anderem, dal das Verfahren und die
Schlisselange gemeinsam einggeeigneten Algorithmus® im Sinne
der jeweils giltigen Velbffentlichung der Bundesnetzagentur darstellen.

Da Rechner immer schneller und leisturidsfier werden und auch
auf der mathematisch-algorithmischen Seite fast jedes Klaimere
oder golRere Fortschritte zu verzeichnen sind, gelten die jegeili
Empfehlungen nurifr etwa sechs JahreliF Dokumente, diednger
gultig sein sollen, sind elektronische Unterschriften hadrgesehen.

Offiziell geht bei den Empfehlungen allgemein um geeigndimAth-
men r elektronische Unterschriften sowie deren 8skkelangen, aber
wie die Entwicklung der letzten Jahre zeigte, drehen siehDiskus-
sionen, die zu den jeweiligen Empfehlungedrhifen, tatachlich fast
ausschlief3lich um die jeweils notwendige Sdelange tir RSA.

Natirlich hat in einer Demokratie bei so einer wichtigen Frageha
die Bewlkerung ein Mitspracherecht; deshalb beginnt das BSlijswe
zurachst einen Entwurf, zu dem es um Kommentare bittet; erst ein
ge Monate sater wird die endgltige Empfehlung verlindet und im
Bundesanzeiger veffentlicht. Die jeweils aktuellen Versionen sind via
haufig wechselnder Linkketten untefvw.bundesnetzagentur.de zu
finden; am schnellsten kommt man wohl mit Hilfe von Suchmamsasin
auf die jeweils aktuelle Seite.

Die interessiert®ffentlichkeit, von der die Kommentare zu den Efitw
fen kommen, besteht naturgafin erster Linie aus Anbietern von Hard-
und Software zur Kryptographie, und als erfahrene ExpditeDaten-
sicherheit wissen diese, daf} ein Verfahren nur dann wirldeeignet
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sein kann, wenn es die eigene Firma im Angebot hat. (Am ge&stgn
sind natirlich Verfahren, die kein Konkurrenzunternehmen anligte

Im letzten Jahrhundert unteiistten Hardware-Implementierungen von
RSA typischerweise nur Sdiidselangen von bis zu 1024 Bit; gRere
Schlissel waren eher ipublic domainSoftware wie PGP zu finden.
Dies erkhrt, warum es damals recht lebhafte Diskussionen gab:

Bis Ende 2000 galten 768 Bit als ausreichend®(er fir das Pro-
dukt N der beiden Primzahlen. Schon in den Richtliniém 1998
wurden 768 Bit jedoch ausilcklich nurtibergangsweise zugelassen;
langerfristig, d.h. bei Gltigkeit Uber 2000 hinaus, waren mindestens
1024 Bit vorgeschrieben.

Die Richtlinien fir 2000 erlaubten die 768 Bit ebenfalls noch bis zum
Ende des Jahres{if Dokumente mit einerangeren @ltigkeit ver-
langten sie bis Mitte 2005 eine Mindestffe von 1024 Bit, danach
bis Ende 2005 sogar 2048 Bit.

Anbieterprotesteifhrten dazu, dal3 nach den Richtlinien von 2001 eine
Schlisselange von 1024 dann doch noch bis Ende 2006 sicher war;
die Schiisselange 2048 war nur noclempfohlen®, also nicht mehr
verbindlich.

Im April 2002 erschien der erste Entwuidrfdie 2002er Richtlinien;
darin war fir 2006 und 2007 nur eine Mindegtige von 2048 Bit wirk-
lich sicher. Einspiiche fihrten im September 2002 zu einem revidierten
Entwurf, wonach 2006 doch noch 1024 Bit reichten, 2007 aber m
destens 1536 notwendig wurden. Die Mind&sge von 2048 Bit wurde
wieder zur, Empfehlung” zuiickgestuft.

Am 2. Januar 2003 erschienen endlich die offiziellen Riolgh des
Jahres 2002; véffentlicht wurden sie am 11. Btz 2003 im Bunde-
sanzeiger Nr. 48, S. 4202-4203. Danach reichten 1024 Bt aach

bis Ende 2007, erst 2008 wurden 1280 Bit erforderlich. Dié&Bit

blieben dringend empfohlen.

Nach diesem grof3en Kraftakt erschienen 2003 keine neuédrtliRien
mehr; erst fir 2004 gab es am 2. Januar 2004 neue Empfehlungen
(Bundesanzeiger Nr. 30 vom 13. Februar 2004, S. 2537-2b388jlen
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Zeitraum bis Ende 2008 wurden die alten Empfehlungen balbexh bis
Ende 2009 aber 1536 Bit gefordert. Diaamsten Richtlinienifr 2005
sahen in ihrem ersten Vorentwurf 2048 Bit bis Ende 2010 vachn
Einspiichen der Banken, dal3 das Betriebssyss&@COSder heute
Ublichen Chipkarten nur mit maximal 1984 Bit-Sakseln umgehen
kann, wurde die Bnge im zweiten Entwurf auf 1984 gesenkt; in den
endgiltigen Richtlinien vom 2. Januar 2005 waren es schliel3ich
noch 1728.

Die neuesten Richtlinien stammen vom 9. Dezember 2015 umdemu
auf den Internetseiten des Bundesanzeigersffatlicht unter BAnz
AT 01.02.2016 B5. Siempfehler2048 Bit; verbindlich sind aber nur
1976 Bit. (1976 unterscheidet sich nicht wesentlich von&@kr mini-
mal kleinere Wert wurde in Hinblick auf die oben &tlanten Probleme
mit SECCOSgewahlt. Mit Moduln der Lange 1976403t sich etwas ef-
fizienter arbeiten als mit den theoretisch noch implemendiieen 1984-
Bit-Moduln.)

Die beiden Primfaktorep, ¢ sollen zuéllig und unabhngig voneinan-
der erzeugt werden und aus einem Bereich stammen, in dem

g1 < [logyp —log, q| < e,
gilt. Als Anhaltspunktaverden dabei die Werte, ~ 0,1 unde, ~ 30
vorgeschlagen; igt die kleinere der beiden Primzahlen, soll also gelten

1,07177346% ~ V2p < g < 25% ~ 10°p.
Fur den Exponent wird empfohlen, daB® + 1 < e < 22 sein sollte;
verbindlich wird dies jedoch erst ab 2021. Im (noch nichtggrtigen)
Entwurf vom 15. November 201&if den Algorithmenkatalog 2017 ist

aulRerdem festgelegt, daf’ Module mit 1976 Bit nur noch bisER2022
ausreichen; danach sind mindestens drei Tausend Bit geford

Wenn wir der Bundesnetzagentur folgerijsaen wir somit Primzahlen
mit ungefihr 1024 Bit oder 309 Dezimalstellen finden. Wie wir dabei
vorgehen Bnnen ist Inhalt desachsten Paragraphen.
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b) Wie werden Nachrichten zu Zahlen?

RSA verschilisselt Zahlen aug/N; was wir Ubertragen wollen ist ein
Text, eine elektronische Zahlungsanweisung oder einiSshl fir ein
symmetrisches Kryptoverfahren. Diese Information mu@ndyvie in
eine Folge von Zahlen ai&/N Ubersetzt werden.

Heute, da fast alle Information in Bit- oder eher Byte-Fowniegt, gibt
es dazu ein kanonisches Verfahren: Um etwa Bytémrutragen, nimmt
man die goldte Zahln, fur die 256 < N ist, und fal3t die Nachricht
zusammen zu Bicken aus jeweils, Bytes. Jedes dieser Bytes wird
interpretiert als im Biarsystem geschriebene Zat| offensichtlich ist

0 < a; < 255. Die Zahlenu,, 4, ..., ay wiederum werden interpretiert
als Zahl im System zur Basis 256, d.h. als die Zahl

n—1
m = Z ;256 .
1=0

Wenn es nur um di&bermittlung von Texten geht, kann man auch
einfachere Verfahren zur Quellenkodierung verwenden: MJSRTIN
GARDNER 1977 das RSA-Verfahren irScientific Americarvorstellte,
bekam er von REST, SHAMIR und ADLEMAN als Beispiel-Modul die
129-stellige Zahl

114381625757888867669235779976146612010218296726288256184293
570693524573389783059712356395870505898907514 7609287954354 1

(seither bekannt als RSA-129), und dazu eine Zahl, die &laehricht
entsprach, iir deren Entsclilsselung die drei einen Preis von hundert
Dollar ausgesetzt hatten. Sie atrten, dal? eine solche Entdatgelung
etwa vierzig Quadrillionen (410%°) Jahre dauern irde. (Heute sagt
RIVEST, dal} dies auf einem Rechenfehler beruhte. Auch das ausgeset
Preisgeld von $100 spricht nicht geradeidatial® er diese Zahl sehr
ernst nahm.) Ta#hlich wurde der Modul 1994 faktorisiert in einer
gemeinsamen Anstrengung von 600 Freiwilligen, deren Caenpon-
mer dann, wenn sie nichts besseres zu tun hatten, daratesebheNach
acht Monaten war die Faktorisierung

4905295108476509491478496199038981334177646384883890820577
%X 327691329932667095499619881908344614131776429642929798288533
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gefunden, und wie sich zeigte, hattervie&sT, SHAMIR und ADLEMAN
ihre Nachricht einfach mit dem Schema= 01 bisZ = 26 und Zwi-
schenraum gleich 00 quellkodiert; diese Zahlen wurden #ifsré in
einem Zahlensystem zur Basis 100 interpretiert, also (w@heiellen
fuhrenden Nullen) einfach hintereinander geschrieben mare&fahl
Im Zehnersystem. Mit dieser Interpretation ist die Nadftritann, wie
jedermann auf dem aktuelledbungsblatt selbst herausfinden kann,
schnell entsclilsselt.

Beide Verfahren der Quellenkodierung haben allerdingsreantschei-
denden Nachteil: Wie wir im letzten Abschnitt gesehen habgrssen
wir aus Sicherheitsginden mit sehr groien RSA-Moduln arbeiten:
Derzeit angebracht sind Moduln mit mindestens 2048 Bit adbwiir bei
byteweiser Versclilsselung mindestens 128 Bytes pro Blatertra-
gen lonnen. Oft wollen wir allerdings deutlich wenigébertragen:
Im Vergleich zum Aufwandidr symmetrische Kryptoverfahren ist die
RSA Ver- und Entschilsselung mit einer Modudhge von 2048 Bit sehr
viel aufwendiger, so dal3 RSA in der Praxis (abgesehen vorekur
Nachrichten, wie sie etwa im elektronischen Zahlungsvarkefallen)
haupt&chlich dazu verwendet wird, um Sakkel fir ein symmetrisches
Kryptoverfahren zuibertragen; bei den heute als sicher geltenden Ver-
fahren sind das 128 odedbhstens 256 Bit. Die Nachricht ist also meist
erheblich Kirzer als die Blockinge.

Bei einer guten symmetrischen Blockchiffreame das nicht weiter

schlimm: Dort helfen uns gleich drei Sicherheitsfaktoren:

1. Der Lawineneffekt sorgt déf, daR jedeAnderung eines Bits der
Nachricht rund die Hlfte der Chiffrebits beeinfluf3t.

2. Die Permutationen auf der Menge alleoBke, die durch die ver-
schiedenen Schssel realisiert werden, wirken auf den Kryptanaly-
tiker (fast) so, als seien sie zufallsverteilt.

3. Der Kryptanalytiker kann im allgemeinen nicht verifiaar ob eine
vermutete Entsciikselung korrekt ist.

Bei asymmetrischen ChiffrenGkinen wir uns zumindest priori auf
keinen dieser drei Punkte verlassen:

Bei langen Nachrichten und groRen RSA-Exponenten habeawar
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einen durchaus beachtlichen Lawineneffekt, aber oftmatd RSA
zur Ubertragung kurzer Nachrichten benutzt, und der pérsté RSA-
Exponent ist (trotz mehrerer bekannter Nachteile) die:& meisten
Anwender suchen von vornherein nur nach Primzahlan fur die
wederp — 1 nochg — 1 durch drei teilbar sind, d.h. also nach Primzahlen
kongruent zwei modulo drei, so dal} dieser Exponent verwienelelen
kann. Wird aber eine Nachricht, deren Biige kleiner ist als ein Drittel
der Bitlange des RSA-Modul®/, durch ihre dritte Potenz moduly
ersetzt, so ist digdbermittelte Chiffre einfach die IN, berechnete dritte
Potenz, und natlich kann jeder Computer problemlos die Kubikwurzel
einer nafirlichen Zahl berechnen — mit einer Modifikation des aus der
Schule bekannten Divisionsalgorithmus ist das sogar naisBft und
Papier nichtibernal3ig schwierig.

Auch von einer zumindestuf alle praktischen Zwecke zifigen
Verteilung der Permutationerdknen wir nicht ausgehen: Ein wesentli-
ches Kriterium @ir die Beurteilung von DES war beispielsweise, dal3 die
Menge aller dadurch realisierter Permutationen weit dardfernt ist,
eine Gruppe zu sein. Das ist bei RSA selbstdardlich nicht der Fall:
Bei festgehaltenem ModW bilden die Permutationen eine Gruppe, die
ein homomorphes Bild der Gruppe der Xuteilerfremden Exponenten

e € Z ist. Schlimmer noch: Alle PermutationghZ/N — Z/N, die
durch RSA realisiert werden, haben die Eigenschaft, daBédliebige
Nachrichtenm,, m, € Z/n gilt f(m;m,) = f(m,)f(m,) mod V.

Die dritte Eigenschaft schliel3lich, dal? ein Gegner nichthpaifen
kann, ob eine vermutete Entsiabkelung korrekt ist, kann schon nach
Definition eines asymmetrischen Kryptoverfahrens nicliege

RSA ist also auf jeden Falldllig unsicher, wenn kurze Nachrichten mit
kurzen Exponentelbermittelt werden.

Leider werden kurze Nachrichten aber auch mitlangen Expenanicht
sicher versclilsselt: Hier hilft dem Kryptanalytiker oft dieselbe Art von
Angriff, mit der wir bereits den doppelten DES auf das (heute
nachhssigbare) Sicherheitsniveau des einfachen DES redoziere
nten: diemeet in the middle attack.
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Ausgangspunkt daf (wie auch spter fir andere Angriffe) ist die gerade
erwahnte Multiplikativitt der Verschisselungsfunktion:

Angenommen, wir wissen, dal3 die als Zahl betrachtete Naahwi
hochstens gleich/ ist und dal’ sie (ilN) das Produkt zweier Zahlen
m, undms,, ist, die beide bchstens gleich einer SchranKesind. Dann
konnen wir die Nachrichtn wie folgt aus dem Chiffretext = f(m)
entschilisseln: Wir berechnenif k = 1, ..., .S die Werte

f(k)=k*modN und c¢/f(k) modN .

Die Werte f(k) sortieren wird dann der GRe nach und schaueiirf
jedesc/ f(k) nach, ob es in dieser Liste vorkommt. Falls wir ein Paar
(my, m,) gefunden haben mit/ f(m,) = f(m,), istc = f(m,;m,); die
Entschlisselung vom ist alsom = mqym,.

Zur Division moduloN benutzen wir den erweitertenUELID ischen
Algorithmus: Falls ggTn, ¢(k)) = 1 ist, liefert dieser uns Zahlen b
mit ap(k) + bN = 1, d.h.ca - ¢(k) = ¢ modN. Falls der ggT nicht
gleich eins ist, kann er ngroderq sein; in diesem Fall haben wir sogar
den ModulN faktorisiert und Knnen aul3er auch noch jeden anderen
Chiffretext entschisseln.

Bei der obigen Vorgehensweisdissen wirS RSA-Verschiisselungen
durchtihren sowie5 Divisionen modulaV. Aul3erdem riissen wir eine
Liste mit.S' Werten sortieren undif bis zuS Werte nachschauen, ob und
gegebenenfalls wo sie in der sortierten Liste vorkommen Adéwvand
dafur ist ein kleines Vielfaches vof'log, .S, und dasselbe gilt somit
auch fir den Gesamtaufwand. Der Speicherbedarf liegt BeRSA-
Blocken, kann aber auf Kosten eines leicbhren Rechenaufwands
verringert werden, wenn wir anstelle derdBke geeignete Hashwerte
speichern.

Natirlich laf3t sich nicht immer eird finden, das wesentlich kleiner
als M ist, so daldn Produkt zweier Faktoren der &fbe lbochstensS
ist: Fallsm etwa eine Primzahl ist, kann es kein solclbes m geben.
Andererseits gibt es aber auch Zahtlen die sich als Produkt zweier
fast gleich grol3er Faktoren schreiben lassen; selbst wemSmur
geringfigig goRer alsy/'M wahlt, gibt es Werte vom:, fiir die obige
Attacke zum Erfolg @ihrt.
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DAN BONEH, ANTOINE Joux, PHONG Q. NGUYEN: Why Text-
book EIGamal and RSA Encryption are InsectgiaCrypt '00,

Lecture Notes in Computer Scient876 (2000), 30—44oder
crypto.stanford.edu/~dabo/abstracts/ElGamalattack.html ,

die diesen Angriff als erste vorgeschlagen hab&hrten Experimente
mit zufallig gewahlten 64-Bit-Nachrichten durchilES = 232 hatten sie
eine Erfolgsquote von 18%, bsi = 2°° waren es 40%. Nétlich sind
bereits deutlich kleinere Wertéirf ein sicheres KryptoverfahrerblNg
inakzeptabelRSA in Reinform sollte daher nie verwendet werden.

c) Probabilistische Verschlisselung

Ein Ausweg, der auch beim Problem erratener Klartexte, hdftdie
1984 von ®LDWASSERUNd MICALI vorgeschlagenen sogenanpte-
babilistische Versclilsselung.

Um zu kurze Nachrichten zu verhindernjréen wir Nachrichten,
die kiirzer als die Blockinge sind, nicht durch Nullen auf die volle
Blocklange ergnzen, sondern durch eine allige Folge von Null- und
Einsbits. Wenn wir verlangen, dal3 jeder Block mindester&skilche
Bits enthalt, ist das Problem mit erratenen Klartexten vom Tischynden
die Zufallsbits, so sie wirklich zddlig gewahlt sind, lassen sich weder
erraten noch durchprobieren: Schliel3lich gehen wir auclsyramet-
rischen Kryptoverfahren heute davon aus, dal3 das Durcigperbvon
2128 oder mehr Mbglichkeiten nicht realistisch ist.

Wennwir allerdings auch die Attacke aus dem vorigen Absahiteinen
Aufwand jenseits 28 bringen wollen, niissen wir zutzlich verlangen,
daR die Nachricht zusammen mit den Zufalsbit einer ZatRgr 2°°
entspricht; am besten sollten alle niclilr fdie Nachricht bedtigten
Positionen mit Zufallsbits géflt werden.

Bleibt noch das Problem, dal? der Erapfier erkennen muf3, welche Bits
zur Nachricht getiren und welche nur zaflig gewahlte Rillbits sind.
Ein menschlicher Leser sollte damit zwar nur selten Probléaben,
aber erstens mul} diese Entscheidung im allgemeinen ein @emp
treffen, und zweitensdnnen auch Zufallsbits gelegentlich einen Sinn
ergeben, der selbst einen menschlichen Leser verwirrem kan
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Die Art und Weise der Anwendung von Zufallsbits muf3 daheheor
vereinbart werden. Dazu gibt es Standards wie PKCS #1 (PKCS =
public key cryptography standaydnit denen wir uns i§7 besclftigen
werden; insbesondere werden wir sehen, dal3 auch diesea8targiit
Uberlegt sein riassen, da sonst ausgerechnet der Standard selbst neue
Angriffsmoglichkeiten ebffnet.

d) Wie berechnet man die RSA-Funktion effizient?

Wer sich nach den Empfehlungen des BundesaifitsSicherheit in
der Informationstechnik sowie der BundesnetzagerituEtektrizitat,
Gas, Telekommunikation, Post und Eisenbahrét) sollte tir RSA mit
einem ModulN arbeiten, der mindestens einarge von 2 048 Bit hat.

Damit haben auch die zibermittelnde Nachrichtenitke eine lange
von mindestens 2 048 Bit, also 256 Byte, unddie Potenz der entspre-
chenden Zahlen hat diefache Lange. kir die Verschiisselung knnen
wir einen kleinen Exponentenwahlen, fir die Entschisselung aller-
dings wird der Exponend mit an Sicherheit grenzender Wahrschein-
lichkeit in der GBRenordnung voiV liegen, so dain? eine Bitinge
von etwa (2 048) Bit hat, also ein halbes Megabyte.

Dafiir hat ein heutiger Computer i@lich mehr als genug Speicherplatz,
aber er mul3 die Zahlen auch berechnen, und zumindest wendasan
in der dimmstndglichen Weise durclihrt, indem man sukzessive die
Potenzenn, m?, m3, ... berechnetiiberfordern auch deutlich kleinere
Exponenten selbst die besten heutigen Supercomputer offeGord-
nungen.

Tatsachlich gibt es aber keinen Grund, dieiirdithe Zahbn? wirklich zu
berechnen: Wir brauchen schlieRlich naf mod N. AuRerdem Eme
hoffentlich auch kein Leser auf die dumme Idee, die Zalil ®irch
31-fache Multiplikation mit Drei zu berechnen: Da 32 Zi&t, laRt sich
das Ergebnis viel schneller als

(=)

durch nur tinfmaliges Quadrieren berechnen.
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Entsprechenddnnen wir fir jede gerade Zahi = 2m die Potenz:"

als Quadrat von:™* berechnen. & einen ungeraden Exponenterst

e — 1 gerade, wenn wir alse. als Produkt vonn undm®~! darstellen,
konnen wir zumindest imachsten Schritt wieder die Forméirfgerade
Exponenten verwenden. Da uns das Ergebnis nur maduheressiert,
konnen wir zudem nach jeder Multiplikation und jeder Quadmeg
das Ergebnis modul®v reduzieren; auf diese Weise entsteht nie ein
Zwischenergebnis, dasdger ist alsV?.

Dies fuhrt auf folgenden rekursiven Algorithmus zur Berechnuog v
m° mod N:

Fallse = 2f gerade ist, berechne man &shstn’ mod N nach diesem
Algorithmus und quadriere das Ergebnis modi¥lpandernfalls gibt es
im Falle e = 1 nichts zu tun, undifr e > 1 berechne man zéchst
m®~1 mod N und multipliziere das Ergebnis modulé mit m.

Fallse eine Zahl mitr Bit ist, erfordert dieser Algorithmus— 1 Quad-
rierungen und chsteng:, im Mittel rund /2 Multiplikationen mitm.
Fir einen Exponenten mit 2 048 Bit brauchen wir also im Mittetd
3072 Multiplikationen, auf keinen Fall aber mehr als 4 09&j damit
wird ein heutiger Computer problemlos fertig.

Bleibt noch die Frage: Wie multiplizieren wir zwei 2 048-Eitahlen?

Fir Taschenrechner wie auch 32- oder 64-BipiWér eines Compu-
ters sind sie nditlich zu grol3. Trotzdem ist die vielleicht erstaunliche
Antwort auf obige Frage, dal3 wir genau so vorgeh@mien, wie wir es

in der Schule gelernt haben: Zwar gibt es Multiplikatiogsaithmen,
die asymptotisch schneller sind als die Schulmethode, taksgchlich
schneller werden sie erst, wenn die Zahlen einéaBdke haben, die eher
bei Millionen liegt als bei blofen Tausendern oder Hunderte

Einen Unterschied zur Schule sollten wir freilich machenahiénd
uns in der Grundschule das kleinen Einmaleins eingepaukt, &iso
die Produkte der Zahlen von Eins bis Zehn untereinandatl, isiglen
CPUs unserer Computer Algorithmen implementiert, die Z8&Bit-
Zahlen zu einer 64-Bit-Zahl multiplizieren oder, falls d@omputer
hinreichend teuer war, zwei 64-Bit-Zahlen zu einer 128&ihl. Wir
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sollten die Zahlen also nicht im Zehnersystem betracht@mjesn im
Ziffernsystem mit Basis¥® oder 24,

Nach jeder Multiplikation muf3 das Ergebnis modNoreduziert wer-
den; wir missen also durckv dividieren. Auch dazu &nnen wirim
Prinzipgenauso vorgehen wie in der Schule, haben dabei allerdagys d
Problem, dal’ das in der Schule gelehrte DivisionsverfakeenAlgo-
rithmus ist: Wir missen schlie3lich in jedem Schritt diaahste Ziffer
des Quotienterrratenund sehen erst nach Multiplikation mit dem Di-
visor oder sogar erst nach Subtraktion dieses Produkts veitedden,

ob wir das korrekte Ergebnis haben.

Zum Gluck lafit sich diesegErraten” selbstiir beliebige Basen des Zif-
fernsystems zumindest insoweit algorithmisch machen ddalErgeb-
nis nie um mehr als zwei danebenliegt, und auch ein Fehlezwan
nur mit verschwindend geringer Wahrscheinlichkeit atiftiba es in-
zwischen viele Unterprogrammpakete und auch Programmnie igib
denen Algorithmen zum Rechnen mit Langzahlen implemergiad,
sei hier nicht auf Einzelheiten eingegangen; Interesseiiriden diese
zusammen mit allen Beweisen z.B. in Abschnitt 4.3 von

DoNALD E. KNUTH: The Art of Computer Programminggl. 2:
Seminumerical AlgorithmsAddison Wesley?1981

e) Konkrete Implementierungen

Zumindest kurz sei erahnt, wie diese Algorithmen in den Program-
miersprachen oder Programmsystemen implementiert sirtdjenen
die Horer dieser Vorlesung wahrscheinlich am ehesten vertnadt s

1.) Maple: Diejenigen, die keinerlei Erfahrung mit einer Programmier
sprache haben, benutzen zumindas8&eispiele nur zur Demonstration
am besten ein Computeralgebrasystem; die Beispiele in aldesving
wurden gbl3tenteils in Maple programmiert.

Alle Computeralgebrasystemeémnen mit Langzahlen rechnen — zu-
mindest bis zu Bngen, die weit jenseits dessen liegen, was heute in der
Kryptographie benutzt wird. Grundrechenarten werdenagimfdurch
dieublichen Zeichep+*, ,—*, ,** und , /* bezeichnet, die Potenzierung
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mit ,A“ und die Berechnung des Divisionsrests mmtod*. Wenn wir
allerdingsm A d mod N eingeben, wird diese Formel von links nach
rechts abgearbeitet, als erstes wird ailsb berechnet, wasiif rea-
listische Beispiele aus der Kryptographie jenseits démgh¢hkeiten
heutiger Computer liegt. Unm? mod N zu berechnen mu man da-
her die Auswertung des Operatqrs' zunachst verhindern; daf sorgt
ein vorangestellte*. Der Ausdruckm &\ d mod N veranlal3t, daf3 die
Berechnung vonn? mod N nach dem Algorithmus aus dem vorigen
Abschnitt erfolgt und damitifr die Zahlen, mit denen wir es in der
Kryptographie zu tun haben, ziemlich schnell geht.

Der BukLID ische Algorithmus sowie seine Erweiterung sind Maple (wie
auch jedem anderen Computeralgebrasystemrirat bekannt; die
Funktionigcd(x, y) berechnet den ggT zweier ganzer Zahiew,
genauso auchgcdex(x, y, ’a’, ’b’). Letztere Anweisung setzt
als Nebeneffekt noch die Variablenund b auf ganze Zahlenif die
ax+by = ggT(x, y) ist. Falls man nur an interessiert ist, kann man das
Argument’b’ auch weglassen.

2.) Maxima: Als kommerzielle Software ist Maple insbesondere in der
\ollversion sehr teuer; auch der Preis der Studentenvelisionicht

zu vernacldssigen. Eine kostenlose Alternative ist das Computeral-
gebrasystem Maxima, dessen neueste Versionen jeweils miabei-
ma.sourceforge.net zu finden sind, spezielif Windows als ein ein-
zelnes, sich selbst installierendes Programm. Es berdhflacsyma,
einem der ersten Computeralgebrasystéimerhaupt, das ab 1968 am
MIT entwickelt und unter anderem vom amerikanisctizgpartment

of Energy (DOE)esponsort wurde. 198bergaben die MIT-Forscher
eine Version an das DOE, das wiederum 1998 einem seiner &atwi
ler erlaubte, das Programm als freie Software zwffentlichen. Diese
Version ist unter dem Namen Maxima bekannt.

Am gewohnungsbeirftigsten an Maxima ist der Doppelpunkt als
Zuweisungsoperator: Um der Variablemen Wert 2° + 1 zuzuweisen,
muld man alsax : 2 A 16 + 1 eingeben. Die Operatoretiirf die
Grundrechenarten sind diglichen, potenziert wird wahlweise mit
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oder mitxx. Zur Berechnung von® mod /N dient die Funktion
power mod(a, e, N).

Den ggT zweier Zahlen oder Polynomeb berechnegcd(a, b). In
der Variantegcdex (a, b) wird eine Liste[c, d, e] zuruckgegeben
mit dem ggTe = ca + db.

3.) Scheme/RacketSchemébzw.Racket ist eine funktionale Program-
miersprache, die teilweise an Schulen in Rheinland-Pfalehgt wird.
Sie ist ein Dialekt der Programmiersprache LISP, in demdstednaflig

mit ganzen Zahl praktisch beliebigeahge gerechnet werden kaniar, f
Grundrechenarten sind also keine besonderen Befehle ndigveDer
Potenzierungsoperatexpt kann aber zumindesiif grof3e Exponenten
natirlich nicht verwendet werden: Eriwde die Potenz als ganze Zahl
berechnen. Ein Operatadirfdie Potenzierung modulo einer dichen
Zahl N ist standardraf3ig nicht vorhanden, aber der Algorithmus aus
dem vorigen Abschnitiéli3t sich problemlos in Schenibersetzen:

(define (modsquare x N) (remainder (* x x) N)
(define (modexp x e N)
(cond ((= e 0) 1)
((even? e) ( modsquare (modexp x (/ e 2) N) ))
( else (remainder (* base (modexp x (—e 1))) N) )

)

Mit dem BukLIDischen Algorithmus einschlief3lich seiner Erweiterung
gibtes auch keinerlei Schwierigkeiten: Der Grundalgonitis ist einfach
der Einzeiler

(define (ggT x y) (if (= y 0) x (ggT y (remainder y x))));

der erweiterte Algorithmusl3t sich beispielsweise folgendermalden pro-
grammieren: Wir betrachten Sechstupelv a b ¢ d) mit der Eigen-
schaft, dal} stets gilt

99T(x,y) =99T(u,v), w=ax+by und v=cr+dy.
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Das Anfangs-Tupel mit dieser Eigenschaftsty 1 0 0 1). Wenn wir
irgendein Sechstupéh. v a b ¢ d) mit obigen Eigenschaften haben
und zugtzlichv = 0 ist, wissen wir, dal% = ggT(x, y) ist, und nach
Konstruktion der Sechstupel gilt

u=99T(@,y) = azx+by.

In diesem Fall Bnnen wir also die Listéu a b) als Ergebnis zuirck-
geben.

Andernfalls dividieren wiru mit Rest durchv; wie die obige Rech-
nung zeigt, ist dandv r ¢ d a — gc b — gd) ein neues Sechstupel
mit den verlangten Eigenschaften. Seine zweite Komponeisieecht
kleiner als die zweite Komponentedes Ausgangstupels; somit muf3
der Algorithmus nach endlich vielen Schritten mit 0 abbrechen.

Eine vollsandige Implementierungdante somit etwa folgendermalien
aussehen:
(define (erwEuklid x y)
(define (iteration u va b c d)
(if (=v 0) (list u ab)
(let ((q (quotient u v)))
(iteration v (remainder u v) c d
(—a(xqc) (b (xqdN)
(iteration x y 1 0 0 1))

4.) Java:Hier sind standardafig nur ganze Zahlen vorgesehen, die in
ein Maschinenwort passen. lfava.math gibt es jedoch eine Klasse
Biginteger, die ganze Zahlen von (praktisch) beliebigande bereit-
stellt. Sie ist leider gnadenlos objektorientiert, d.hstatie vona + b,
a—b,a-b,a/bodera modb muld man

a.add(b), a.subtract(b), a.multiply(b),
a.divide(b) oder a.remainder(b)

schreiben, wasahgere Formeln schnell Ghbersichtlich werdenal3t.
Entsprechend braucht man zum Vergleich eine Methoeg@ls, usw.

Erzeugt werden Langzahlen durch eine Vielzahl von Methpdien
wichtigsten sindvalueOf (x) mit einer Zahlx vom Typ long und
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BigInteger(string), wobei die Zeichenkettstring aus den (beliebig
vielen) Ziffern der Zahl besteht; umgekehrt giftString () die Zahl
als Ziffernfolge aus. Auch verschiedene Algorithmen siimjebaut;
beispielsweise liefert die Method®dPow (e, N) die e-te Potenz des
Objekts modulaV nach dem Algorithmus aus dem vorigen Abschnitt.

Der ggT zweier Langzahlemundb kann alsa. gcd (b) berechnet wer-
den; der erweiterte EKLIDische Algorithmus ist nur intern als private
Methode der Klasse vorhanden, von aul3en ist er nicht artdpeedNer

Ihn benutzen rachte, mul} ihn also entweder selbst programmieren oder
aber in einer Kopie der Klassénderungen vornehmen und dann mit
dieser Kopie zu arbeiten.

5.) C, C++,...: Bei den meisten sdisen Anwendungen wird im Hin-
tergrund irgendein Programm in C, C++ oder einer verwang8fgache
stehen; auch stellen die meisten anderen Programmiehgoragne
Schnittstelle bereitijber die sich C-Unterprogramme einbinden lassen.

Als systemnahe Sprache untéitgt C natirlich vor allem die Daten-
typen, die von der Hardware bereitgestellt werden, und dgtriiren

— sofern man keine Spezialchips zur Signalverarbeitungiimesn Com-
puter hat — keine Langzahlen.

Dal3 trotzdem (abgesehen von Java-basierten Internetdowgen)
wohl die meisten Kryptoalgorithmen in C oder C++ implemeritsein
darften, liegt daran, dal3 sich gerade etwas so hardwaremabesne
Langzahlarithmetik hiermit am besten effizient implemer&n ARt —
jedenfalls fast am besteniiFhochste Effizienz wird man nicht daran
vorbeikommen, zumindest einen Teil der Rechnungen in Ablm
zu programmieren: Wenn man beispielsweise zwei 32-Bitefahd-
diert und das Ergebnighger als 32 Bit ist, meldet die Hardware einen
Uberlauf (neudeutscBverflow. Dieser &Rt zwar auch aus einem C-
Programm abfragen, aber einen Additionsbefehl, der atttsamaeins
addiert, wenn bei der letzten Addition eitberlauf aufgetreten ist, gibt
es zwar in der Maschinensprache wohl jedes hébliehen Prozessors,
von hoheren Programmiersprachen aus ist dieser aber nichteaspr
bar. (Compiler verwenden traditionellerweise nur einendBteil der
zur Verfugung stehenden Assemblerbefehle.)
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Als Beispiel einer Bibliothek iir Langzahlarithmetik sei etwa GMP
(GNU Multiple Precision Arithmetic Library) genannt, zu finden bei
gmplib.org, sowie PARI pari.math.u-bordeaux.fr), wobei letzteres
aul3er Langzahlarithmetik noch zahlreiche Funktionen aunZdhlen-
theorie sowie zum Rechnen auf elliptischen Kurven zurii@guhg stellt.
Mit dem zu PARI gebrenden Kommandointerpretgp konnen die
PARI-Funktionen auch ohne C-Programm in einer Art Tasabemmer-
modus verwendet werden. Hiedhknen Zahlen gleich als Elemente von
Z/N definiert werden: Setzt man = Mod(a, N), so werden alle Re-
chenoperationen mit automatisch modul®v ausgeiihrt. Der ggT von

x undy wird durchgcd (a, b) berechnet, undezout(a, b) berech-
net einen Vektord, d, e] mit ca + db = e = ggT(a,b). Gewdhnungs-
bedirftig bei der Benutzung vopp ist die Rolle des Strichpunkts: Ein
Strichpunkt am Ende der Eingabezeile bedeutet, dal’ dabiiisgecht
auf dem Bildschirm erscheint. Die Anweisurg= 2A100; weil3t zwar
der Variablen: den Wert von #° zu, bringt diesen im Gegensatz zur
Anweisung ohne Strichpunkt aber nicht auf den Bildschirm.

Praktisch alle Pakete zur Langzahlarithmetigtnken sowohl mit C
als auch mit C++ verwendet werden. C++ hat den grol3en pchlets
Vorteil, dal3 man dort viaperator overloadinglie entsprechenden Un-
terprogramme in der aus der Mathematik gewohnten Weisentnit |
operatoren+, ,-“, ,** und , /“ aufzurufen kann. Bei der Potenzierung
modulo N muf3 man naitrlich darauf achten, dal3 man einen Operator

verwendet, der in allen Rechenschritten moddiloeduziert.

84: Was lal3t sich mit RSA anfangen?

Mit symmetrischen Kryptoverfahren lassen sich Nachriclvirschiis-
seln, und im wesentlichen ist das auch schon alles, was nmait tan
kann. Asymmetrische Verfahren haben dagegen noch eine Reeikere
Einsatzndglichkeiten, die in der Praxis oft erheblichoffere Bedeutung
haben als die Versaigselung. Einige der wichtigsten sollen hier kurz
vorgestellt werden.
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a) ldentitatsnachweis

Hierzu &Rt sich prinzipiell auch ein symmetrisches Kryptoveréahr
nutzen, allerdings nur gegéber dem Partner oder den Partnern, mit
denen ein gemeinsamer Siksel vereinbart wurde, und es ist auch
nicht moglich zwischen diesen zu unterscheiden: Wer in der Lage ist
einen vorgegebenen Chiffretext zu entsidsleln, mul3 — falls man der
Sicherheit des Verfahrens trauen kann — denig&ddl kennen.

Bei asymmetrischen Kryptoverfahren wie RSA ist die Sitratleutlich
besser: Nur der Inhabér des geheimen Sdidselsd kann zu einem
gegebenemn eine Zahlb berechnen,ifr die b = a mod N ist, aber
jeder, der demffentlichen Schissel(/V, ¢) kennt, kann nachpfen, ob
er diese Aufgabe wirklich gékt hat.

Soll alsoA gegetiiberB seine Identiit nachweisen, verschafft siéh
den offentlichen Schissel(V, ) von A und schickt eine Zufallszahl
1 < < N anA. Dieser berechnet = ¢ mod N und schickt diese
Zahl anB. Dieser piift nach, ob) = = mod MV ist. Bei sicher gewhlten
ParametermV unde kann niemand aul3er ihm ein derartigesxzeugen.

Ahnliche Verfahren werden in Zugangskontrollsystememsatitlich
angewandt; zumindest wenn man seine Idahgegefiberjedermann
so etablieren richte, dirfen dazu aber auf keinen Fall dieselben RSA-
Parameter benutzt werden, die man zur Ver- und Enissklung
geheimer Nachrichten einsetzt:

Die offensichtlichste Sicherheitstke ist hier, daf3 ein Gegner, der einen
Chiffreblock ¢ auffangt, vom Emgdnger einen Iden@itsnachweis ver-
langt, bei dem der,Zufallsblock® = gleich ¢ ist. Die Antwort ware
natirlich der Klartext zu-.

Optimisten kbnnen hoffen, daf3 niemand so dumire;, einen sinnvollen
Klartext als Identiitsnachweis ziickzuschicken, aber erstensissen

wir angesichts der @if3e der Zahlen, um die es hier geht, davon aus-
gehen, daf3 tagshlich ein Computer oder (eher) eine Chipkarte auf die
Anfrage reagiert. Zweitens sollten wir, selbst wenn Meesanvolviert
sind, bei jedem praktisch eingesetzten Kryptosystemeiotshalber von
der fast unbegrenzten Dummheit zumindest eines Teils dereAder
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ausgehen. Drittens schlie3lich kann man selbst einenmextogsichti-
gen, vielleicht sogar paranoiden Anwender, der jeden Bilankdem
Abschicken genatberpiift, leichtUberlisten:

Ein Angreifer, der an der Entsdidselung des Chiffreblocks zum
Klartextm = ¢ mod N interessiert ist, erzeugt eine Zufallszahind
schicktx = »“c mod N als Herausforderung zum Idesgisnachweis
anA. Dieser berechnet

y=z?modN = modN = rc? modN = rm mod N

und schickt diese Zahl ziick: Bei einem wirklich zudllig gewahlten
kann er auch bei sorgftigster Untersuchung den Zahlemndy nichts
ansehen. Der Angreifer, der kennt, kann trotzdem problemias
berechnen, indem er einfach modwodurch: dividiert.

(Da N = pq keine Primzahl ist, kann es nmlich vorkommen, dafl3
modulo N nicht invertierbar ist: Das ist genau dann der Fall, wenn
durchp oder ¢ teilbar ist. Wenn wirp und ¢ jeweils als 1024-Bit-

Primzahlen v@ahlen, liegt die Wahrscheinlichkeitif ein solches: bei

etwa 21924 st also fir alle praktischen Zwecke verna@kkigbar: Die

Wahrscheinlichkeit, 43 Wochen hintereinander sechs Rjeltn Lotto

zu haben, ist etwa zehnmal so grof3. Sollte dieser Fall wotzeinmal

eintreten, ist der ggT von und N einer der beiden Primteiler vaN;

dann A3t sich also nicht nur der Chiffreblockentschlisseln, sondern
sogar der private Exponeritvon A berechnen, und damit kann dessen
gesamte énftige Kommunikation entscsselt werden.)

Weiterhin ist zu beachten, da&@mit diesem Verfahren zwar gegéner
seinem Herausforderer beweisen kann, dal3 er wirklich éstat,
dal} aber letzterer nicht gegdrer einem Dritten beweisen kann, dafl3
er wirklich mit A in Verbindung stand: Schliel3licibknte der Heraus-
forderer einfach eine Zufallszahl erzeugen und dann behaupten, er
habe; als Antwort auf die Herausforderung= »“ mod N erhalten.
Praktische Bedeutung hat deshalb vor allem eine anderantariir
den Identiatsnachweis:
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b) Elektronische Unterschriften

Hier geht es darum, dal3 der Erapfer erstens davaiberzeugt wird,
daf? eine Nachricht taashlich vom behaupteten Absender stammt, und
dal er dies zweitens auch einem Dritten gédpen beweisenkann.

(In Deutschland sind solche elektronischen Unterschwjfitge bereits
erwahnt, genauso rechtsverbindlich wie klassische Unteifts)

Um einen Nachrichtenblock mit 0 < a < N zu unterschreiben,
berechnet der Inhabér desoffentlichen Schilisseld NV, €) mit seinem
geheimen Sclilssell die Zahlu = «? mod N und sendet das Paar; (1)
an den Emginger. Dieseflberpiift, ob ©© = a mod N ist; falls ja,
akzeptiert er dies als unterschriebene Nachucliia er ohne Kenntnis
des geheimen Sdidselsd nicht in der Lage ist, den Blocka( ) zu
erzeugen, kann er auch gegéer einem Dritten beweisen, dal3die
Nachrichta unterschrieben hat.

Fur kurze Nachrichten ist dieses Verfahren in der vorgdstelForm
praktikabel; in vielen Bllen kann man sogar auf ditbermittlung vorz
verzichten, da.° mod N fur ein falsch berechnetesmit an Sicherheit
grenzender Wahrscheinlichkeit keine sinnvolle Nachreaigibt.

Falls dietibermittelte Nachricht geheimgehalten werden sallsgenm
undu natirlich noch vor det)bertragung mit deraffentlichen Schilssel

des Empéngers oder nach irgendeinem anderen Kryptoverfahren ver-
schlisselt werden.

Beilangen Nachrichten ist die Verdoppelung der Nachridiatege nicht
mehr akzeptabel, und selbst, wenn man auf diertragung vor:
verzichten kann, ist das Unterschreiben jedes einzelneokBlsehr
aufwendig. Deshalb wird man meist nicht die Nachricht delirder-
schrieben, sondern einen daraus berechneter HashwesgerDuert mul3
natirlich erstens von der gesamten Nachrichtaigen, und zweitens
mul3 es @ir den Empénger (praktisch) unaglich sein, zwei Nachrich-
ten zu erzeugen, die zum gleichen Hashwahrén. Mit der Theorie
und Praxis dieser sogenannten kollisionsfreien Hashiom&h werden
wir uns sgater bescéftigen.
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c) Bankkarten mit Chip

Traditionellerweise hatte eine Bankkarte nur einen Magjreiten, auf
dem die wichtigsten Informationen wie Kontenname und -n@mm
Bankleitzahl, Giltigkeitsdauerusw. gespeichert waren; dazu kam zu-
nachst mit DES, sgter mit Triple-DES und seit neuestem auch gele-
gentlich schon AES versdidselte Information, die unter anderem die
Geheimzahl entlt, aber auch von den oben genannten Dateiadpn

Der Schiissel dazu mul3 niatlich streng geheimgehalten werden: Wer
ihn kennt, kann problemlos die Geheimzahlen fremder Kaagtamtteln
und selbst Karten mit Veiligungsgewaliiber beliebige andere Konten
erzeugen.

Um eine Karte zulberpiifen, muf3 daher eine Verbindung zu einem
Zentralrechner aufgebaut werden, an den sowohl der Inbalvhgnet-
streifens als auch die vom Kunden eingetippte Geheimiziabitragen
werden; dieser wendet Triple-DES mit dem Systenisss#l an und
meldet dann, wie die Rfung ausgefallen ist.

In Frankreich hatten die entsprechenden Karten schon sighrzii-
satzlich zum Magnetstreifen noch einen Chip, in dem ebenfdié
Kontendaten gespeichert sind sowie, in einem auslesesitheeqi-
ster, Informationeriiber die Geheimzahl. Dort wird die ins Lesegfer
eingetippte Geheimzahl nicht an den Zentralreckibertragen, sondern
an den Chip, der sigberpiift und akzeptiert oder auch nicht.

Da frei programmierbare Chipkarten relativ billig sind, Bdafir Sorge
getragen werden, dal3 ein solches System nicht durch eigenaonten
Yes-Chipunterlaufen werden kann, der ebenfalls die Konteninforma-
tionen entklt, ansonsten aber ein Programm, dasjéte Geheimzahl
akzeptierend3t. Das Terminal muf also, bevorigserhaupt eine Ge-
heimzahl anfordert, zithst einmal den Chip authentisieren, d.h. sich
davonuberzeugen, dald es sich um einen vom Bankenkonsortium aus-
gegebenen Chip handelt.

Aus diesem Grund sind die Kontendaten auf dem Chip mit dem pri
vaten RSA-Scthissel des Konsortiums unterschrieben. Die Terminals
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kennen derffentlichen Schissel dazu unddnnen so die Unterschrift
uberpiifen.

Diese Einzelheiten und speziell deren technische Impléereng wur-
den vom Bankenkonsortium zéohst streng geheimgehalten. Trotzdem
(KERCKHOFFslaldt giiRen) machte sich 1997 ein B&ser Ingenieur
namens 8RGE HUMPICH daran, den Chip genauer zu untersuchen. Er
verschaffte sich dazu ein (im freien Verkauf aittiches) Terminal und
untersuchte sowohl die Kommunikation zwischen Chip undrilieal

als auch die Vorgnge innerhalb des Terminals mit Hilfe eines Logik-
analysators. Damit gelang es ihm nach und nach, die Furskieise
des Terminals zu entsdldseln und in eiaquivalentes PC-Programm zu
ubersetzen. Durch dessen Analyse konnte er die Authantngjsproze-
dur und die Fiflogik entschlisseln und insbesondere auch feststellen,
daf’ hier mit RSA gearbeitet wurde.

Blieb noch das Problem, den Modul zu faktorisieren. Dazwtugs er
sich ein japanisches Programm aus dem Internet, das zwamtkaotp

fur kleinere Zahlen gedacht war, aber eine Anpassung detanigs ist
natirlich auch fir jemanden, der den Algorithmus hinter dem Programm
nicht versteht, kein Problem. Nach sechs Wochen Laufzég kain PC
damit den Modul faktorisiert:

213598703592091008239502270499962879705109534182
6417406442524165008583957746445088405009430865999

=1113954325148827987925490175477024844070922844843
x 1917481702524504439375786268230862180696934189293

Als er seine Ergebnissdber einen Anwalt dem Bankenkonsortium mit-
teilte, zeigte sich, was dieses sich unter Sicherheitdatals vorstellt:
Es erreichte, dal3 bivPiICH wegen des Eindringens in ein DV-System
zu zehn Monaten Haft auf Bearung verurteilt wurde. Dazu kam
ein Franc Schadenersatz plus Zinsen und eine Geldstraféhe kon
12 000 Francs (1 829 Euro).

Ab November 1999 bekamen neu ausgegebene Bankkarten @itz-zus
liches Feld mit einer Unterschrift, die im Gegensatz zungehi320-
Bit-Modul einen 768-Bit-Modul verwendete. Natich konnte es nur
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von neueren Terminalgberpiift werden, so daf3 viele Transaktionen
weiterhin nuriiber den 320-Bit-Modul mit inzwischen wohlbekannter
Faktorisierunggescliitzt’ waren. Zahlen dieserdnge wurden, wie wir

im Abschnittiiber Faktorisierung sehen werden, erstmalig 2009 in der
offenen Literatur faktorisiert.

d) Elektronisches Bargeld

Zahlungen im Internet erfolgen meisgber Kreditkarten; die Kreditkar-
tengesellschaften haben also einen recht gutserblick iber die Aus-
gaben ihrer Kunden und machen teilweise auch recht guten@iesanit
Kundenprofilen.

Digitales Bargeld will die Anonymét von Geldscheinen mit elektro-
nischerUbertragbarkeit kombinieren und so ein anonymes Zahlungs-
system z.B.{ir das Internet bieten.

Eine ldee zur Realisierung eines solchen Systems beruhdeaufin
a) skizzierten Angriff auf RSA unter der Voraussetzung, dafselbe
Schlissel sowohl zur Idenétsfeststellung als auch zur Versiassgelung
benutzt wird:

Eine Bank, die elektronisches Bargeld ausgeben will, gz&u jede
angebotene 8tkelung einerbffentlichen Schissel(V, €), der allen
Teilnehmern des Zahlungssystems mitgeteilt wird. Ein&tedaische
Banknote ist eine mit dem zugéhgen geheimen Sciésel unter-
schriebene Seriennummer.

Die Seriennummer kann riatich nicht einfachjede Zahl sein; sonst
ware jede Zahl kleinelN eine Banknote. Andererseitsiden die Seri-
ennummern aber auch nicht von der Bank vergeben werden so&sh
wil3te diese, welcher Kunde Scheine mit welchem Seriennuminaer
Als Ausweg wahlt man Seriennummern einer sehr speziellen Form:
Ist N > 10Y° kann man etwa als Seriennummer eine 150-stellige
Zahl wahlen, deren Ziffern spiegelsymmetrisch zur Mitte sinth, db

der 76. Ziffer werden die vorherigen Zifferickwarts wiederholt. Die
Wahrscheinlichkeit, dal3 eine allige Zahl x nach Anwendung des
offentlichen Exponenten auf so eine Zabihft, ist 107° und damit
vernachéssigbar.
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Seriennummern werden von den Kunden (unter Beachtung dar Sy
metrie) zubllig erzeugt. kr jede solche Seriennummer erzeugt der
Kunde eine Zufallszaht, schicktmr® mod N an die Bank und egit
(nach Belastung seines Kontos) eine Unterschrfiir diese Nachricht
zuriick. Wie ina) berechnet er daraus durch Multiplikation mit* die
Unterschrifty = m? mod N fur die Seriennummer.. Mit dieser Zahb
kann er bezahlen.

Der Zahlungsemginger berechnet® mod /V; falls dies die Form einer
gultigen Seriennummer hat, kann praktischsicher sein, einen von
der Bank unterschriebenen Geldschein vor sich zu haberartr &ller-
dings noch nicht sicher sein, dal? dieser Geldschein nitlarnseinmal
ausgegeben wurde.

Deshalb mul3 er die Seriennummer an die Bank melden, die rett ih
Datenbank bereits ausbezahlter Seriennummern vergldieliis die
Zahl darin noch nicht vorkommt, wird sie eingetragen undtdi@ndler
bekommt sein Geld; andernfalls weigert sich die Bank zuezahl

Bei 10’° moglichen Nummern liegt die Wahrscheinlichkeit dgfdal
zwei Kunden, die eine (wirklich) zaflige Zahl wahlen, dieselbe Num-
mer erzeugen, bei etwa 1#°. Die Wahrscheinlichkeit, mit jeweils
einem Spielscheiniinf Wochen lang hintereinander sechs Richtige im

Lotto zu haben, liegt dagegen t(éoi’)_s ~ 5-10, also etwa um den
Faktor sechzig dher. Zwei gleiche Seriennummern sind also praktisch
auszuschliefl3en, wenn auch theoretis@glich.

Falls wirklich einmal zuélligerweise zwei gleiche Seriennummern
erzeugt worden sein sollten, kann das System nur funktienjevenn

der zweite Geldschein mit derselben Seriennummer nichtkanat
wird, so dald der zweite Kunde sein Geld verliert. Dies mulais
zusatzliche Gelihr gesehen werden, die mit an Sicherheit grenzender
Wahrscheinlichkeit niedilig wird, aber trotzdem nicht ausgeschlossen
werden kann.

Da digitales Bargeld allerdings nur in kleineni&kelungen sinnvoll
Ist (Geldscheinen im Millionenwert &en auf Grund ihrer Seltenheit
nicht wirklich anonym und \irden, wegen der damit verbundenen



Kap. 4. Das RSA-Verfahren 174

Moglichkeiten zur Geld@sche, auch in keinem sésen Wirtschafts-
system angeboten) are der theoretischagliche Verlust ohnehin nicht
sehr grol3.

Die hier skizzierte ldeelir elektronisches Bargeld wurde von ihrem
Erfinder Dwib CHAauM auch kommerziell realisiert mit einer Firma
namens DigiCash. Er konnte mit mehreren Banken, daruntdr der
Deutschen Bank, ins Gesifth kommen.

Die Deutsche Bank allerdings fand genau 26 Gafiskunden, die be-
reit waren, Bezahlung in DigiCash zu akzeptieren, darueten die
Aktion ,Brot fur die Welt*, die auf digitale Spenden hoffte und nach
mehreren Monaten Laufzeit auf knapjpnf Mark kam, oder die Uni-
versi@at Frankfurt, die Java-Applets vermarkten wollte. Ob dieslar
Gelihrenpolitik der Deutschen Bank lag oder daran, dal3 dagrBed
nach Bezahlung kleiner Bé&ige im Internet damals noch deutlich kleiner
war als heute A3t sich von aulRerhalb nur schwer beurteilen. Vielleicht
lag der eigentliche Grund auch einfach darin, dal3 Kundéditgrkiir
einige Banken und Kreditkartenunternehmen zu wertvoll,sats daf3
sie ein echtes Interesse an anonymen Zahlungssysteitten.h

CHaumMs Firma DigiCash beantragte 1998a@bigerschutz; die Deut-
sche Bank stellte ihren Versuch mit elektronischem Barg®elil ein.

85: Wie findet man Primzahlen fir RSA?

Zur praktischen Anwendung von RSA brauchen wir zwei Printerah
p undgq, die nach derzeitigen Sicherheitsanforderungen etwa B@24
also 309 Dezimalstellen haben sollten. Die findet maiiniah nicht in
Primzahltafeln.

a) Wie man es nicht machen sollte

Im Land der unbegrenztendglichkeiten gibt es trotzdem keine grof3en
Probleme: Dort kann man Primzahlen, wie alles andere aticfach
kaufen. Unter Sicherheitsgesichtspunkten ist das freilicht unbedingt
die beste Strategie, denn erstens kann dann deé\verkder Primzahlen
die gesamte versdindselte Korrespondenz de&ifers lesen und auch
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dessen elektronische Unterschrift nachmachen, und avgeitegd man
nie ganz sicher seindnnen, ob Billiganbieter wid hrifty Primesoder
Primes for a Buckicht gelegentlich dieselbe Primzahl an mehrere Kun-
den verkaufen, so daf’ ein Kunde versuchen kanrjftkatlich bekann-
ten Moduln seiner Konkurrenten durch die gerade gekauftiem@hlen

zu teilen und damit zumindest einen Teil davon zu faktorgsie Auch
wer selbst keine Primzahlen kauft, kann versuchen, dBtgn gemein-
samen Teiler der Moduln seiner Konkurrenten zu berechrodrgld er

bei zwei verschiedenen Moduln einen Wert ungleich ein&lgrkann

er beide Moduln faktorisieren.

Sowohl aus Sicherheitsgmden als auch weil wir Mathematiker sind,
sollten wir also unsere Primzahlen selbst erzeugen. Lgithees keine
einfache Formel, die uns Primzahlen einer vorgegebenédé€xarzeugt,
insbesondere keinedglichst zuélligen einer vorgegebenen @e. So

Ist zwar sgtestens seit BEKLID bekannt, dafld es unendlich viele Prim-
zahlen gibt: Gbe es amlich nur endlich viele Primzahlen, ..., p,.,

so warep; ---p, + 1 weder eine Primzahl noch durch eine Primzahl
teilbar, was offensichtlich unaglich ist.

Das heil3t nun aber nicht, dal’3 auch Primzahlen beliebiigegé bekannt
waren; zwar hat di&lectronic Frontier Foundatiorgie uns bereits beim
DES-Cracker begegnet ist, Preise ausgeschridbatid erste Primzahl
mit mindestens einer Million, zehn Millionen, hundert Nbihen bzw.
einer Milliarde Dezimalstellen; bezahlen muf3te sie biglaber erstim
Jahre 2000 die $50 0001f eine Million Stellen und 2009 die $100 000
fur zehn Millionen Stellen.

Die groRte derzeit bekannte Primzahl ist #5161 1 mit 17425170
Dezimalstellen; sie wurde am 25. Januar 2013 im RahmerGdeat
Internet Mersenne Prime Sear(BIMPS) gefunden; siehe derbome
pagewww.mersenne.org. Wie bei allen Rekord-Primzahlen der letz-
ten Jahre ist sie eine sogenannteR4ENNEBChe Primzahl, d.h. eine
Primzahl der Form'2 — 1. Nur zwischen 1989 und 1992 war eine an-
dere Zahl (3915812216193 _ 1) gi¥Rte bekannte Primzahl; ansonsten
war der Rekordhalter seit 1952 stets eineRENNEZah.

2" — 1 kann ldchstens dann eine Primzahl sein, wenn augiim ist:
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Laft sichn namlich als Produkt.v zweier Zahlen:, v > 1 schreiben,
soist2 =1mod 2 — 1, d.h.

2"=2""=1"=1mod2 -1 und 22—1=0mod?2 —1
ist durch 2 — 1 teilbar.

Die Zelle des franasischen Mnchs MARIN MERSENNE(1588-1648) war ein Treffpunkt
fur Mathematiker wie ERMAT, PASCAL und andere. MRSENNESelbst besdiftigte sich
auller mit seinen Primzahlen auch mit Mechanik, wo er alee®iLILEI S Ideen aul3erhalb
Italiens bekannt machte. AuRerdem schrieb er ein Bilmdr Musik, Musikinstrumente
und Akustik.

Fur RSA sind MERSENNEBche Primzahlen freilich ungeeignet: Erstens
sind im Augenblick nur 47 solche Zahlen bekannt, und zwsisend fast
alle entweder viel zu grof3 oder viel zu klein um als Faktoreheser
und praktikabler RSA-Moduln in Frage zu kommen. Da das Belsp
der MERSENNEZahlen aber zeigt, dal? man selbst bei Millionen von
Dezimalstellen entscheiden kann, ob eine Zahl prim ishnen wir
guter Hoffnung sein, dal3 es bei ddir RSA beritigten Primzahlen
mit gerade einmal ein paar hundert Dezimalstellen keirmialol3en
Schwierigkeiten geben sollte.

b) Wie man es idealerweise machen sollte

Wie auch bei den klassischen Kryptoverfahren wird ein Geglee RSA
knacken will, unter anderem versuchen, statistische lyaniaiten
auszunutzen. Damit kann er Erfolg haben, wenn wir Verfabegtutzen
die bestimmte Primzahlen (im Extremfall etwa nuERSENNESChe
Primzahlen) bevorzugen. Idealerweise sollte also jedazinl exakt
dieselbe Chance haben.

Das einzige Verfahren, dafld dies garantiert, besteht ddaf3, man
solangeechteZufallszahlen erzeugt, bis man eine Primzahl gefunden
hat. Wie wir noch sehen werden, ist die Erzeugung solcheledaihne
Spezialhardware ziemlich aufwendig; man bigginsich daher, wie so
oft in der Kryptographie, meist mit Zahlen, die sich bglch der als
realistisch erachteten Rechebvgtichkeiten der zu erwartenden Gegner
wie wirklich zufallige Zahlen verhalten.
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Algorithmisch erzeugte Zahlen, die sich Bgiich gewisser meist sta-
tistischer Kriterien wie echte Zufallszahlen verhalteazéichnet man
als Pseudo-Zufallszahlen; alle Computeralgebrasystemie slie Un-
terprogrammbibliotheken der Betriebssysteme enthaltéspeschende
Routinen. Diese erzeugen Folgen ).y meist einfach durch Iterati-
on einer Funktionf, d.h.z,,; = f(z,). In Maple beispielsweise ist
f(x) = ax modp mit a = 427419669081y, ist die gibl3te zwlfstellige
Primzahl, d.hp = 102 — 11 = 999999999989. Die entstehende Folge
ist natirlich periodisch; da nur Zahlen zwischen 0 ynd 1 auftreten,
und jede Zahl durch ihren Voémger bestimmt istal3t sich das nicht
vermeiden. Man kann aber zeigen, dal3 (abgesehen vom Startwe,
der auf lauter Nullenithrt) die Periode gleiclp — 1 ist, was fir kryp-
tographische Anwendungen mehr als ausreicht.

Der Generator liefert uns grunazlich nur Zufallszahlen kleiner, aber
auch das it nicht weiter, denn wenn wir Zufallszahlen mitofgerer
Stellenzahl brauchenfkinen wir beispielsweise einfach Summen der
Form>" x,,,;p" betrachten. (Maple berechnet stattdessen die Summe
S o T 107070 und reduziert diese anschlieRend auf das Intervall,
in dem das Ergebnis liegen soll.)

Das grol3e Problem bei dieser Vorgehensweise ist, dal3 es Aut
Startwerter, gibt. Daher gibt es auch, selbst wenn wir dreihundertstel-
lige Zufallszahlen erzeugen, nur knappd8& 2%° Moglichkeiten. Die
kann ein entschlossener Gegner mit vertretbarem Aufwanchguo-
bieren.

Ein Zufallsgenerator, deiiif RSA-Primzahlen benutzt wird, muf3 also
mehr verschiedene Startwerte zulassen als ein Gegnerptalséren
kann. Wenn wir, wie bei symmetrischen Blockchiffren, dasosgehen,
daR 2?8 Moglichkeiten auch den entschlossensten Gegjberfordern,
brauchen wir also einen Startwert mit mindestens 128 Bitnaidrlich
auch einen kryptographisch guten, d.h. schwer durchsehnantisene-
rator. Im Kapiteliber Hashfunktionen werden wir solche Generatoren
kennenlernen und uns auch kurz mit der Erzeugweahter’ Zufalls-
zahlen befassen.

Im Augenblick gehen wir einfach davon aus, daf3 wir uns irgead
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Zufallszahlen oder Pseudozufallszahlen der igesehten Gildenord-
nung verschaffen dnnen; unser &chstes Problem ist dann, wie man
herausfindet, welche davon Primzahlen sind.

Damit wir realistisch abs@izen knnen, wie grol3 der Aufwand zur
Primzahlsuche ist, wollen wir uns aber Aahst mit einer anderen Frage
besclaftigen:

c) Wie dicht liegen die Primzahlen?

Dies ist ein sehr altes Problem, das immer noch nicht vit$ig gebst
ist; die bekannte Antwort ist abeiilf praktische Zwecke gut genug. Die
Mathematik, die im Beweis der folgenden Aussagen steckteider
jenseits des zeitlichen Rahmens dieser Vorlesung — obwoigjeeder
Beweise inzwischen vergleichsweise sehr elementar genidd. Wer
einigermal3en mit Funktionentheorie vertraut ist, solitder Lage sein,
die Darstellung in

HELMUT KocH: Einfuhrung in die klassische MathematikAlkademie-
Verlagund (in Lizenz)Springer-Verlag;1986,527

zu lesen; alle notwendigen Voraussetzungen aus Funktioeene,
Zahlentheoriaisw.sind im Buch selbst zu finden.

Wir bezeichnen die Anzahl der Primzahlen, die kleiner odigich einer
Zahl z sind, mitmw(z). Demnach ist als@(2) = 1 und=(3) =7(4) = 2
und so weiter. Der englische Mathematikert&SsTER bewies 1892
folgende Verscarfung einer etwa vierzig Jahi@dteren Ungleichung
von TSCHEBYSCHEFF

0,95695-—— < 7(z) < 1,04423 -,

Inz Inx

m(x) verhalt sich also asymptotisch ungdir wie z/Inx. (Ein sehr
elementarer Beweis einer scAgheren Ungleichung, bei der links und
rechts anstelle konkreter Zahlen nur irgendwelche Konstes, c,
stehen, ist in meinem Zahlentheorieskriptum zu finden.)

Nach dem Primzahlsatz, dem@svermutete und den AbAMARD und
DE LA VALL EE POUSSIN1896 bewiesen, ist die Asymptotik sogar exakt,
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d.h. ()
. T\T
xlmqoo x/|nx

Numerisch besser ist die (ebenfalls awuSs zurickgehende) Appro-
ximation durch den Integrallogarithmus:

x

— d€ —cVingz
m(x) = | — +O(ze )
2/Ing

mit einer (im Prinzip berechenbaren) Konstanten 0.

Die angegebene Fehlerschranke ist wahrscheinlich zumpissisich;
falls die REMANNsche Vermutungdiber die Nullstellen der sogenannten
Zeta-Funktion/(s) wahr ist, erfalt man eine deutlich bessere Schranke.
Diese Vermutung ist allerdings bislang immer noch offeas;ist eines
der sieben Millennium Problemsiiif deren bsung das Clay Mathe-
matics Institute einen Preis von jeweils einer Million Rolausgesetzt
hat.

Fir uns wichtig ist diese Folgerung: Unter den Zahlen deb(3én-
ordnungN haben der Primzahlen die Dichté lh N, d.h. der Abstand
zwischen zwei Primzahlen liegt im Mittel bei etwa Fur NV = 10" ist
dies In10 = nIn 10 =~ 2,3n; bei hundertstelligen Zahlen ist also etwa
jede 230ste prim und bei 1024-Bit-Zahlen urigef jede 710. Aller-
dings sind dies nétlich nur grobe Anhaltspunkte, denn die tatkliche
Verteilung der Primzahlen zeigt enorme Schwankungen: Smaa bis-
lang in allen untersuchten Gieenordnungen sowohl Primzahlzwillinge
gefunden, d.h. Paare,(p + 2) von Primzahlen, als auch primzahlenfreie
Intervalle, die deutlichdnger sind als I&v: Am anderen Ende sagt uns
der Satz von BRTRAND nur, dal3 es zwische®v > 1 und 2V stets
mindestens eine Primzahl gibt; neuere Veestlmgen zeigen, dal} es
fur hinreichend groR& mehr geben mul3, aber viel mehr wissen wir
nicht.

Wenn wir so sicherheitsbewul3t sind, echte 1024-Bit-Zsfalhlen auf
Primalitat zu testen, sagt uns die obige Ab&tAung also auch, dafl3
wir im Mittel 710 Zahlen testen fssen, bevor wir die erste Primzahl
gefunden haben.
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d) Das Sieb des Eratosthenes

Das wohlalteste Verfahren, das Primzahlen effizienter als durchd?ro
divisionen liefert, ist das vVONnBATOSTHENESangegebene Siebverfahren.
In seiner klassischen Form dient es dazu, alle Primzahlesrhalb ei-
ner SchrankeéV zu bestimmen. Dazu schreibt man die Zahlen von Eins
bis N (oder auch nur die ungeraden darunter) in eine Reihe, Btreic
die Nicht-Primzahl Eins und sodann, solange die kleinstehnucht
gestrichene Zahl nicht gRer alsy/N ist, deren amtliche Vielfache.
Was am Endéibrigbleibt, sind genau die Primzahlen aus der Liste.

ERATOSTHENES (EpatooBévec) wurde 276 v.Chr. in
Cyrene im heutigen Libyen geboren, wo er @ahst von
Schilern des StoikerseiNo ausgebildet wurde. Danach
studierte er noch einige Jahre in Athen, bis ihn 245
der Pharao PoLEMAIOS Ill als Tutor seines Sohns nach
Alexandrien holte. 240 wurde er dort Bibliothekar der
bertihmten Bibliothek im Museion.

Heute ist er aul3er durch sein Sieb vor allem durch
seine Bestimmung des Erdumfangs bekannt. Er berech-
nete aber auch die Alistde der Erde von Sonne und
Mond und entwickelte einen Kalender, der Schalt-
jahre enthielt. 194 starb er in Alexandrien, nach eini-
genUberlieferungen, indem er sich, nachdem er blind
geworden war, zu Tode hungerte.

In dieser Form ist das Sielaif uns nutzlos: Wenn wir eine dreihundert-
stellige Primzahl brauchenpknen wir unnaglich zuréchst eine Liste
aller Primzahlen unterhalb von 18 erzeugen. Trotzdem kann es uns
auch da eine Hilfe sein: Wenn die Liste anstelle der erAteratirlichen
Zahlen die Zahlen aus einem Suchintervall [V +¢] enthéalt, kbnnen wir
immer noch die Vielfachen kleiner Primzahlen aussieben;miissen
nur fur jede Primzahp, mit der wir sieben, ihr erstes Vielfaches im
Suchintervall bestimmen. Dieses ist offensichtligh p — (N modp),
und ab dort wird jedep-te Eintrag in der Liste gestrichen.

Natirlich missen hier die Primzahlgnaus einer separaten Liste kom-
men, undp wird um Gid3enordnungen Kleiner sein afsV + /. Somit
konnen wir nicht erwarten, daf3 alle nicht ausgestrichenstehele-
mente Primzahlen sind, undissen diese Zahlen weiteren Tests un-
terziehen. Da diese, wie wir sehen werden, erheblich aufigen sind
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als das Sieb desHATOSTHENES lohnt es sich aber trotzdem, mit dem
Sieb zu beginnen.

Die Feinverteilung der Primzahlen ist sehr inhomogen; dabkte man

bei der Wahl der Intervalinge/ eine gewisse Sicherheitsreserve einpla-
nen und so wahlen, dafl? im Durchschnitt etwa drei bis zehn Primzahlen
in [N, N + /] zu erwarten sind, d.l¥. =~ aIn¢ mit einema zwischen
drei und zehn. Der Intervallanfany muf3 naiirlich zufallig gewahlt
werden.

Die Primzahlen, die wir bei einem solchen Verfahren erwakiannen,
sind nicht gleichverteilt: Istp eine Primzahl und; die gtoldte Prim-
zahl echt kleinep, so gibt es offenbar genau— ¢ AnfangswerteN,
die zup als erster Primzahl inY, N + /] fuhren. Um jeder Primzahl
dieselbe Chance zu geberijdte man Zufallszahlen auf Primalitesten
und, sofern eine Zahl den Test nicht besteht, Achsten Zufallszahl
ubergehen. Der Aufwand hiénf ist erheblich gbl3er als deriir das
Sieb, da wir im Mittel Inp Zahlen testen fiissen, bevor wir eine Prim-
zahlp finden. Da bislang keine Verfahren bekannt sind, wie ein egn
die bei Verwendung des Siebs resultierenden Abweichungereiner
Gleichverteilung ausnutzen kann, wird dieser Nachteilesrahts der
gewaltigen Zeitersparnis oft in Kauf genommen.

e) Der Fermat-Test

Unabléngig davon, ob wir das Sieb des&0STHENESbenutzen oder
nicht, brauchen wir auf jeden Fall noch weitere Primzahl@sr kleine
Satz von ERMAT gibt uns sofort eine Aussage dder, wann eine Zalpl
nicht prim ist:

Falls fur eine natirliche Zahll < a < p — 1 gilt aP~t Z 1 modp,
kannp keine Primzahl sein.

Beispiel: IstF,g = 22 + 1 eine Primzahl? Falls ja, ist nach dem kleinen
Satz von ERMAT insbesondere

32071 = 1 modF,,.
Nachrechnen zeigt, daf3
3F20-1/2 o 11 mod Fyy,
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die Zahl ist also nicht prim. (DadNachrechnen® ist bei dieser 315653-
stelligen Zahl nairlich keineUbungsaufgabeif Taschenrechner: 1988
brauchte eine Cray X-MP dazu 82 Stunden, eine Cray-2 immeadgh
zehn; sienéevath. Comp.50 (1988), 261-263. Die anscheinend etwas
weltabgewandt lebenden Autoren meinten, das sei die teueidang
produzierte 1-Bit-Information.)

Die Umkehrung der obigen Aussage gilt leider nicht: Es gilag man
inzwischen weil3, unendlich viele Nichtprimzahlenfir die trotzdem
a" 1 = 1 modn ist fur jedes zun teilerfremdeq; das sind die so-
genannten ERMICHAEL-Zahlen. Trotzdem wird esif grof3e Zahlen
zunehmend unwahrscheinlich, dal3 eine Zahlr auch nur eiru den
obigen Test besteht, ohne Primzahl zu sein. Rechnungen von

SU HEE KiM, CARL POMERANCE The probability that a Random Prob-
able Prime is CompositdJath. Comp53(1989), 721-741

geben folgende obere Schranke flie Fehlerwahrscheinlichkeit

p~ 10°° 1070 10°0 10% 10190
£<716-102287-103846-10° 1,70-10° 2,77- 1078
p~ 1020 1040 100 10180 10790
£<528-1012108-10°181-101°276-10%23,85-10 %'
p~ 10°% 10" 10°%° 10°%° 10"
£<58-10%° 57-10% 23-10> 1,7-10% 18. 1078
DA 10800 10900 101000 102000 103000

£<54.-10% 10-1071°12.1071%%86 10262381073

(Sie geben nétlich auch eine allgemeine Formel an, jedoch ist diese
zu grausam zum Abtippen.)

Selbst wenn wir noch mit 512-Bit-Moduln arbeiteten und ddmapp
achtzigstellige Primzahlen &uchten, dge also die Fehlerwahrschein-
lichkeit bei nur etwa 10°; um sie weiter zu erniedrigen, irasten wir
einfach mit mehreren zaflig gewahlten Basen testen unéitten dann
beispielsweise be drei verschiedenen Basen eine Irrtuhisalzein-
lichkeit von lchstens etwa 10°, daR alle drei Tests das falsche Ergeb-
nis liefern. (Dieses Argument gilt strenggenommen nuroge\Voraus-
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setzung, dal3 es sich bei fehlgeschlagereMAT-Tests mit verschiede-
nen Primzahlen um unakhgige Ereignisse handelt, was wahrscheinlich
nichtder Fall ist. Die allgemeine experimentelle Erfalgamt Primzah-

len zeigt jedoch, dal? sie sich zumindest in déerpiiften Bereichen
oft wie zufallsverteilt verhalten.)

Bei den etwa 155-stelligen Zahlen, die winf1024-Bit-Moduln brau-
chen, hat schon ein einziger Test eine geringere Fehlesatadin-

lichkeit als 10°1°, so daR es sich nur selten lohnt, einealRgren Auf-

wand zu treiben. Die Bundesnetzagentur empfiehlt alles]ingj proba-
bilistischen Primzahltests eine Irrtumswahrscheinletkon bchstens
2100~ 7.89.1073! zuzulassen. Bei deiif 2048-Bit-Moduln notwendi-
gen uber dreihundertstelligen Primzahlen wird selbst le&taiert

schon bei einem einzigereRMAT-Test unterschritten.

Gelegentlich werden Zahlen, die eineeRMAT-Test bestanden haben,
als,,wahrscheinliche Primzahlen bezeichnet. Das istir@&h Unsinn:
Eine Zahl ist entwedesicher prim odersicher zusammengesetztiif
Wahrscheinlichkeiten gibt es hier keinen Spielraum. Bassder gele-
gentlich zu lbdrende Ausdruckindustrial grade primes*, alsdndus-
trieprimzahlen®, der ausdcken soll, dal’ wir zwar keinen Beweis daf
haben, dafl? die Zahl wirklich prim ist, daf} sie ald@rihdustrielle An-
wendungen gut genug ist.

Man kann das ERMAT-Verfahren ohne grofRen Aufwand noch etwas
verbessern zu einem Test, den erstmalRFAAVHOV 1966/67 vorschlug.
Die Grundidee ist folgende: Faliseine Primzahl ist, ist. /p ein Korper.

Ist dorta™ = 1 fur eine gerade Zahh = 2m, so erfillt = = o™ die
Gleichungz? = 1. Da ein quadratisches Polyndiber einem Krper
hochstens zwei Nullstellen haben kann, mul3 alse +1 sein. (Falls
Z/p kein Korper ist,p also keine Primzahl, gilt dies nicht: &ve etwa

p das Produkt zweier ungerader Primzahlen, &beges vier bsungen
der Gleichunge? = 1 in Z/p, fur p = 15 beispielsweise = 1,4, 11
und 14.)

Dies laf3t sich folgendermal3en ausnutzdir. &ine zu testende ungerade
Zahlp schreiben wip — 1 = 2"u mit einer ungeraden Zahl. Sodann
wahlen wir eine Basia zwischen 2 ungh — 2 und berechnea” mod p.
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Ist diese Zahl gleich eins, so ist erst reeht! = 1 modp, und der Test
ist bestanden. Dasselbe gilirfdas Ergebnip — 1 = —1 modp, denn
r > 1 fur eine ungerade Zall

Andernfalls quadriere man das Ergebniéchstens: — 1 mal modu-

lo p; dies liefert die Potenze®® “ modp firs = 1,...,r — 1. Sobald
ein Ergebnis gleictp — 1 wird, bricht der Test ab mit dem Ergebnis
bestandenpffensichtlich ist danm?~! = 1 modp. Falls keines der
Ergebnisse gleich — 1 ist, kannp keine Primzahl sein, denn dann ist
entweder?~! % 1 modp, oder aber wir haben eine Zahl gefunden, die
von 1 verschieden ist, aber trotzdem Quadrat Eins hat, was enein
Korper nicht ndglich ist.

Wie MoNIERuUNd RABIN 1980 gezeigt haben, ist die Anzahl der Bagen
die einfalschesErgebnis liefern,iir die eine zusammengesetzte Zahl
also den Test besteht, kleiner aJgt; so etwas wie BRMICHAEL-Zahlen
kann esiir diesen versdirften Test daher nicht geben.

Natirlich kennt die Mathematik auch Verfahren, um exakt zu s
den, ob eine Zahl prim ist oder nicht; das einfachste beslzim, alle
potentiellen Primteiler einfach auszuprobieren. Wie m@ammieinem
Zahlentheorieskriptum im Kapitélber Primzahltests nachlesen kann,
lalt sich auch dere#RMAT-Test zu einem solchen Verfahren ausbauen,
allerdings nur falls man die Zapl-1 in ihre Primfaktoren zerlegen kann,
was fur RSA-Primzahlen nur selten der Fall seiirftie. Dort wird auch
ein Verfahren beschrieben, dasaMNDRA AGRAWAL, NEERAJ KAY-

AL und NTIN SAXENA im August 2002 vorstellten: Sie entwickelten
auf der Grundlage vonH#RMAT einen Test, der zumindest asymptotisch
schneller ist als alle anderen bislang bekannten Verfakigmlie Praxis
von RSA freilich ist dieses Verfahren bedeutungslos aayige, asymp-
totisch langsamere Alternativen, bei den hierdtegten Gol3enordnun-
gen deutlich schneller sind.

Diese anderen Algorithmen benutzen anspruchsvollere énadilik als
FERMAT; die meisten arbeiten mit Charaktersummen und/oder iellipt
schen Kurven. Da sichHRMAT, wie wir gesehen haben, nur selten irrt,
sei auf ihre Behandlung verzichtet.



185 Kryptologie HWS 2016

86: Sicherheit und Sparsamkeit

Nicht erst seit McKinsey & Co sind Industrieunternehmerr s&sten-
bewul3t. Angesichts der hohen &den, die durch Industriespionage
entstehen &nnen, sollte man daher meinen, dalf? sie lieber die deutlich
niedrigeren Kostentir kryptographische und sonstige Sicherheitsstan-
dards aufwenden. Tatshlich geschieht das aber oft erst nach dem ersten
erfolgreichen Angriff, denn bis dahin sind eben Sichedaisgaben ein
laufender Bilanzposten, Satlen aber nur eine vageddlichkeit, von

der man hoffentlich verschont bleiben wird. Von daher istveuoste-
hen, dal? auch beim Einsatz von Kryptographie gespart wearddh

wo man nur kann. Gerade bei RSA zeigt sich allerdings, dafjdds
Sparndglichkeit gleichzeitig ein Sicherheitsproblem ist. Baikdeinen
Moduln ist das klar; in diesem Paragraphen soll diskutieatden, wo
sonst noch Probleme auftauchémken.

a) Primzahlen sind Wegwerfartikel

Die Suche nach einer Primzahl mit 1024 Bit kann auf einemtraoh-
derlich leistungsihigen PC rund eine Minute dauern; wenn man viele
Schlissel erzeugen mul3, bietet sich also an, mit den teuren &hierz
sparsam umzugehen.

Genau das darf man aber adich, wie bereits er&@hnt, auf keinen
Fall tun: Wenn jemals zwei unterschiedliche Moduliy N dieselbe
Primzahlp enthalten, kanm leicht als ggT vonM und N berechnet
werden, so dal3 beide Moduln faktorisiert sind. DeEDische Al-
gorithmus erfordert auchif 2048-Bit-Zahlen auf einem Standard-PC
einen Aufwand, der@échstens im unteren Sekundenbereich liegt; es ist
also problemlos mglich, auch bei einer Liste von mehreren Tausend
Moduln fur jedes Paar den ggT zu berechnen.

Der sichere Umgang mit Primzahlen besteht darin, die Pienasofort
nach Berechnung deédfentlichen und des privaten Scisisels zu ver-
nichten. Die Wahrscheinlichkeit, dal3apr wieder einmal eine dieser
Primzahlen als Zufallsprimzahl auftaucht, liegt bei \@rftiger Imple-
mentierung desZufalls* deutlich unter 101°° und kann daheiii alle
praktischen Zwecke ignoriert werden.
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b) Jeder braucht seinen eigenen RSA-Modul

Da die Erzeugung von Primzahlen teuer ispnkte ein sparsames
Unternehmen versucht sein, einen gemeinsamen Maddlir alle
Mitarbeiter zu erzeugen und jedem Mitarbeiter einen irchiliellen
offentlichen Exponentea zusammen dem zugéhgen privaten Ex-
ponentend zuzuordnen. Die Verteilungdnnte etwa so realisiert sein,
dalR nur der Sicherheitschef, der ohnehin alles lesen darfaktori-
sierung vonN kennt; er erzeugt daniif jeden neuen Mitarbeiter einen
geeigneten Exponentenund berechnet dazu den privaten Exponen-
tend.

Zumindest im Bankenbereich, wo ein Grol3teil der Nachrichakek-
tronische Zahlungsanweisungen sind, mul3 es eine Instdrengdie
alles lesen und kontrollieren kanrjrfsich allein betrachtet sind die
Befugnisse degSicherheitschefs* also nicht unbedingt ein Nachteil.

Tatsachlich kennt in diesem Modell aber nicht nur der Sichesobief

die Faktorisierung vov, sondern auch jeder Mitarbeiter mit Interesse
an der Zahlentheorie oder einem kompetenten Bekanntebesns-
dere kann also zumindest prinzipiell jeder Mitarbeiter Bigst eines
jeden anderen lesen und sich audh diesen ausgeben. Die gleichen
Moglichkeiten latte ein Aul3enstehender, der nur einen einzigen priva-
ten Exponented kaufen oder ausspionieren kann.

Der Grund dair ist, daf? die Kenntnis dégfentlichenunddes privaten
Exponenten zur Faktorisierung vén flhrt:

N = pq sei Produkt zweier Primzahlea sei deroffentliche Exponent
undd der private. Dann istiir allea € Z

(ae)d =a*“=amodN :
fir ein zuN teilerfremdes: ist also
a“~1 =1 modN.

Wir schreibenie — 1 = 2" -« mit einer ungeraden Zahlund betrachten
die Folge der Zahlen

a*modN, a®modN, ..., a®“modN.
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Die letzte dieser Zahlen ist stets gleich eins; wenn wir Pedden, istifir
das gerade betrachtaieauch schon die erste gleich eins. Wenn nicht,
gibt es einen kleinsten Exponenterso dal3

a®*#1modN und o % =1modN .

Es kbnnte sein, daR danif *“ = —1 mod N ist, aber daV eine zusam-
mengesetzte Zahl ist, muf das nicht der Fall sein: ModulcstLbai-
spielsweise auch vier eine Zahl mit Quadrat eins.

Modulo einer Primzahl hat die Eins riglich nur die beiden Zahleit1
als Quadratwurzeln, denn die ddtchen Zahlen modulo einer Prim-
zahl bilden einen Krper, und in einem HKrper kann das quadratische
Polynomz? — 1 hochstens zwei Nullstellen haben.

Ist aberz? = 1 modN = pq, so ist auche? = 1 modp und modg,

alsoxr = +1 modp undx = +1 modg, wobei nicht in beiden &len

das gleiche Vorzeichen stehen muf3. In déifteé aller Ralle werden
beide Vorzeichen gleich sein; dann ist= +1 mod N mit demselben
\orzeichen.

Ist aber etwar = 1 modp undz = —1 modg, so ist
nggT(Jf—l,N) Und nggT(x+17N)’
sobald wir eine solche Zahl kennen, haben Wialso faktorisiert.

Wenn wir mit einem zuillig gewahltena so wie oben verfahren, werden
wir in etwa der Hilfte aller Ralle eine vont1 verschiedene Quadrat-
wurzel der Eins erhalten. Mit nur wenigen Wertém & bekommen wir
daher praktisch sicher eine Faktorisierung yon

c) Der chinesische Restesatz

Das Argument im vorigen Abschnitt kann auch zu einer sclenatl
Durchfuhrung der RSA Ver- und Entsdldselung zu schnelleren elek-
tronischen Unterschrifteriihren: Die Berechnung van® mod N bzw.
m? mod N besteht aus Quadrierungen und Multiplikationen modvjo
der Aufwand daifir steigt quadratisch mit der Ziffeig@hge vonV. Kennt
man also die Faktorisierungy = pq, kann man die beiden Werte
a® modp undm? modgq in jeweils einem Viertel der Zeit berechnen,
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die fur m? mod N berbtigt wiirde, und beide zusammen somit in der
halben Zeit. Sie bestimmen das Gesamtergebnis eindeetmy) dap
undgq teilerfremd sind, ist jede Zahl die modyaind modula; bekannt
ist, auch modulaV eindeutig bestimmit.

Dies At sich leicht konstruktiv durcthren: Mit dem erweitertenUle
KLID ischen Algorithmus findet man Zahlen 3, so daf3

ap+Bq=1

ist; dann ist
Bg=1modp und ap=1modgq.

Fur zwel beliebig vorgegebene Zahlerb ist entsprechend
afqg=amodp und bap =bmodp

eine Losung der Kongruenz
r=amodp und xz=b (modg).

Da « und 8 nur einmal fir p und ¢ berechnet werden ssen, ist
der Aufwand fir das Zusammensetzen der Restklassen mqdulad
modulog zu einer Restklasse modulo sehr gering.

Mit diesem Verfahrend(3t sich der Aufwandifr eine elektronische
Unterschrift also praktisch halbieren, was vor allem dasmBedeutung
ist, wenn die Unterschrift mit einer Smartcard geleistetiwi

Leider ist das Verfahren aber mit einem potentiell katggteden Risiko
verbunden: Falls bei einer der beiden Rechnungen

a—mémodp und b mmodg

ein Fehler auftritt, ist das Ergebnigrfm? mod N korrekt modulo der
einen, nicht aber modulo der anderen Primzahl. Nehmen wia an,
das Ergebnis modulg sei falsch; dann wird also eine Unterschuift
berechnet, die modulekongruent ist zun?, nicht aber modulq.

Zum Uberpiifen der Unterschrift berechnet der Erapferu® mod N
und vergleicht dies mitn; im vorliegenden Beispiel stimmen die bei-
den Zahlen nur modulp tberein, nicht aber modulg, sie sind also
insbesondere verschieden, so dal3 die Unterschrift nicefiert wird.
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Dau®—m aber durchp teilbar ist und nicht durch, kann der Rifer nunp
als den ggT von® — m und N berechnen und somiY faktorisieren;
er kann also knftig die Unterschrift des anderen nachmachen.

Hardwarefehler, die bei der Berechnung von einem der béidigrgeb-
nisse zu einem falschen Ergebnighfen sind sicherlich sehr seltene
Ereignisse, allerdings kann man dem nachhelfen: Durch Elégider,
Mikrowelle, Hitze, mechanische Belastung uathliches &3t sich die
Karte durchaus so beeinflussen, dal3 Fehler wahrscheiaheln,nicht
zu wahrscheinlich werden. Dann besteht eine realistis¢tan€e, dald
genau eines der beiden Zwischenergebnisse falsch betegindaind
die Faktorisierung vov gelingt.

Sicherer ist es also auf jeden Fall, trotz des rund doppehdeen
Aufwands direkt modulaV zu rechnen; die oben aufgestellte Regel,
wonach man die Primzahlen so schnell wiégiich vergessen sollte,
beralt auch hier ihren Sinn.

Nicht vergessen sollten wir allerdings die Methode, einel AaoduloN
aus ihren Restklassen modulo gewisser TeilerNau bestimmen, denn
sie hat noch viele andere, auch kryptographisch wichtigeekdungen.
Daher nochte ich den dahinter stehenden sogenan@ieinesischen
Restesathier allgemein formulieren. Er wurde angeblichilfier von
chinesischen Geng&len benutzt, um Truppersken zu berechnen, in-
dem sie die Soldaten in Reihen verschiedener Breite antliefeen und
dabei jeweils nur die Anzahl der Soldaten in der letzten &anlten.

Chinesischer RestesatzDie natirlichen Zahleni,, .. ., d,. seien paar-
weise teilerfremd undV = d,---d, sei ihr Produkt. Dann hat das
Gleichungssystem

r=a,modd;, ..., x=a,modd,

fur jede Wahl den, eine modulaV eindeutig bestimmte tsung; diese
kann mit Hilfe des erweiterten UkLID ischen Algorithmus berechnet
werden.

Beweis:Fur nur zwei Zahleni; = p undd, = ¢ haben wir das oben
nachgerechnet, wobei offensichtlich nur eine Rolle spjelal}p undq
teilerfremd sind, nicht aber, daf3 sie Primzahlen sind. Dgemneine Fall
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folgt durch vollstindige Induktion, dennauehi - - - d, undd; - - - d d .4

sind teilerfremd. .

d) Kleine offentliche Exponenten und Kettenbriefe

Da der Versclilsselungsaufwand bei RSA proportional zur Ziffernzahl
des Exponenten ansteigt, sind kleine VeraskElungsexponentesehr
beliebt; besonders pogarsinde = 3 unde = 216 + 1.

Wie wir bereits gesehen haben, ist so etwas katastrophain wér
einen kleinen Block mite = 3 verschiisseln; aber nétlich wissen
wir bereits seit langem, dal3® man (auch aus anderémdean) jeden
Block vor der Verschisselung durch Zufallsbits aiiffen muf3. Bei
der Betrachtung von Normeiiif elektronische Unterschriften werden
wir sehen, dal3 es bei unsachgd$ar Handhabung auch noch weitere
Probleme insbesondere rait= 3 geben kann.

Hier wollen wir einen Fall betrachten, in dem es Problemesgahul3:
Wenn ramlich dieselbe Nachricht (oder derselbe Nachrichtenied
z.B. eine Anlage oder ein Block ASCII-Kunst am Ende) an meshre
Empfanger gent.

Nehmen wir an, die Nachricht: werde an drei Em@hger geschickt,
deremdffentliche Schilissel (V,, 3), (/V,, 3) und (V3, 3) seien. Verschickt
werden also die drei Bcke

m3®modN,, m*modN, und m>*modNs;.

Ein Gegner, der alle drei adgt, kann dann nach dem chinesischen
Restesatzn® mod N, N, N, berechnen, und da kleiner als jedesV,
sein muR, kennt er damit.®. Die Berechnung der Kubikwurzel auch
einer sehr groRen Zahl ist vom Aufwand her mit einer Divisuan-
gleichbar, liegt also échstens im unteren Sekundenbereich.

(Falls N;, N,, N5 nicht paarweise teilerfremd sein sollten, merkt man
das bei der Anwendung des erweiterteukEDischen Algorithmus
und hat dann sogar eine Faktorisierung von mindestens zwduM,
was danniber die privaten Exponenten insbesondere auf die Nachrich
fuhrt.)
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Allgemein sollte man keine identischen Nachrichten ancleeslene
Empfanger senden, da auch schon die Information, dafld zwei €hiffr
texte zum gleichen Klartext géren, einem Gegner eventuell aidiche
Ansatze zur Kryptanaylse liefern kann. Auch dies spricht wietidur,

in jedem Nachrichtenblock eine gewisse Anzahl von Postdiir Zu-
fallsbits zu reservieren, allerdingsiissen diesélir jeden Empdnger
neu erzeugt werderso dal3 die Verschikselung jedes Mal auf einen
anderen Block angewandt wird.

e) Kleine private Exponenten

Da elektronische Unterschrifterabfig mit Smartcards oder in Zukunft
vielleicht auch Mobiltelephonen un@hnlichen Geate mit vergleich-
sweise schwacher Rechenleistung erzeugt werden, bieleasj nicht
denoffentlichen, sondern den privaten Exponentebgiithst klein zu
wahlen. Ein privater Exponent dreiare naiirlich unnbglich, denn der
private Exponent ist schliel3lich geheim und darf nicht duggstemati-
sches Durchprobieren kleiner Zahlen gefunden werden.

Systematisches Durchprobieren ist aber, wie wir bei dekudision
symmetrischer Kryptoverfahren gesehen haben, mit heufeshnolo-
gie nur bis zu etwa® Fallen ndglich; 22?8 Mdglichkeiten gelten nach
Ansicht praktisch allebffentlich publizierender Experten heute als si-
cher. Ein privater Exponent mit 128 statt 2048 Bihft zu einer Reduk-
tion des Rechenaufwands um den Faktor 16, was gerade beticandar
splrbar sein sollte.

Leider gilt aber auch hier wieder, dal3 Rechenerleichtexnizg Sicher-
heitsnmangeln fihren; ein privater Exponent mit 128 Bitide bei einem
Modul von 1024 oder 2048 Bit innerhalb von Sekunden zu deRBsemn
faktorzerlegungiihren.

Der Grund ist folgender: Debffentliche Exponent und der private
Exponentd erfullen die Gleichung

de—k(p—1)(g—1)=1
mit einer naiirlichen Zahk. Division durchd(p— 1)(¢—1) macht daraus
e k 1
CP-1Dg-1) d dp-1-1)
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Der linke Bruch hat einen Nenner in der unglefen GoRenordnung des
Moduls N = pq; davon subtrahiert wird ein Bruch mit Nennérund
die rechte Seite der Gleichung sagt uns, dal3 die Differdmzbein ist.

Ist also der private Exponedtklein, so kann der linksstehende Bruch
durch einen Bruch mit sehr viel kleinerem Nenner sehr gut@pmiert
werden. Damit kann ein Gegner noch nichts anfangen, denerertk
den Nennerg — 1)(¢ — 1) nicht; andererseits kennt ar = pq, und die
Differenzandert sich nicht sehr, falls man den Nenner duycarsetzt:

e _ki_je_ ¢ ‘ ¢ _k
N d] I[N (@-Dig-1) @-De-1) d
e(p —1)g—1)—epg| . 1
] Npe-D@-1) dip —1)(¢— 1)
e(p+q—1) 1

“Nep_DG-1) dp D1

Da p und ¢ in der GBRRenordnung vor/ N liegen, ist auch das noch
eine recht kleine Zabhl.

Bei kleinemd kann sich das ein Gegner mittels des folgenden Satzes
zunutze machen:

Satz: Fur die reelle Zahk > 0 gebe es teilerfremde riatiche Zahlen
a,b derart, dal3

1

2% °

Dann ista/b eine Konvergente der Kettenbruchentwicklung won

Tl
x__
b

Beweise f@ir diesen Satz findet man in Leliikhern der Zahlentheorie
oder auch in meinem Zahlentheorieskriptum.

Um mit diesem Satz etwas anfangen Zinken, niissen wir zuachst
wissen, was die Kettenbruchentwicklung einer reellen ZsthiDiese
berechnet sich nach folgendem Algorithmus, in defif{ir eine reelle
Zahlz stets die gbldte ganze Zahi < x bezeichnet:

1. Schritt:Setzer, = x undag = [z].
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n-ter Schritt,n > 1: Fallsx,,_, = a,,_4 iSt, bricht der Algorithmus an
dieser Stelle ab; andernfalls setze

x, = und a, =[z,].

Die n-te Konvergente dieser Kettenbruchentwicklung ist dieorate
Zahl

(IS + 1
Ap—1 t—
Qany,

Der Beweis des obigen Satzes ist elementar, aber langwietégessen-
ten finden ihn unter anderem im meinem Zahlentheorieskriptu

Falls man diesen Satz anwenden karafdtlsichd also bestimmen,
indem man die Nenner der Konvergenten der Kettenbruchekitwig
von e/N bestimmt und jeweils durch Ausprobieren nadlfprob fur
einen Zufallsblock: die gewiinschte Beziehung® = « mod N gilt.

Eine einfache Absdktzung zeigt, dal efif p und g von etwa gleicher
Grol3e anwendbar ist, soferhhochstens die Gf3enordnung von et-
wa v/N hat; neuere, etwas aufwendigere Untersuchungen zeig8n, da
auch mani auch nochiir d < N%2® rekonstruieren kann. Fachleute
erwarten, daR iglicherweise sogar allé < v/N unsicher sind.

Private Exponenten assen also immer grol3 sein. Falls man von ei-
nem vorgegebendiffentlichen Exponenten ausgeht, ist dasrealisti-
scheN mitan Sicherheit grenzender Wahrscheinlichkeité\orsicht

Ist nur geboten, wenn man mit dem privaten Exponenten ttarte

87: RSA im wirklichen Leben

Wie bereits zu Beginn der Vorlesung exiant, ist es oft einfacher, ein
Kryptoverfahren nicht direkt anzugreifen, sondeber sein Umfeld. Bei
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RSA (wie auch bei praktisch allen anderen asymmetrischgptiver-
fahren) gibt es dazu eine offensichtliche Methode: Wenn sshafft,A
davon zulberzeugen, daf3'. - ) deroffentliche Schilissel vorB ist, wird
A seine Nachrichtem anB alsc = m" mod '\ verschiisseln, und nur
wird in der Lage sein, diese Nachricht zu entsisiskeIn. Genauso wird
glauben, jede Unterschrift mit +* = »» mod '\ sei die Unterschrift
von B unter die Nachricht:. Zur Anwendung von RSA undhnlichen
Systemen im wirklichen Leben mul3 also durch eine geeigmétas-
truktur sichergestellt werden, d& der eine Nachricht aB schicken
mochte, sich den korrekten Séisksel vorB verschaffen kann.

a) Allgemeine Struktur einer public key infrastracture

Asymmetrische Kryptoverfahren bieten im Unterschied zo dgm-
metrischen auch die dylichkeit einer elektronischen Unterschrift. Da-
durch wird es miglich einendffentlichen Schlissel durch Unterschrift
zu besétigen — vorausgesetzt man bekam déantliche Schiissel zur
Unterschrift aus vertrauensmdiger Quelle. Dazu gibt es im wesentli-
chen zwei Vorgehensweisen:

1.) Hierarchische Modelle:iIn diesem Modell gibt es Zertifizierungs-
stellen, bei denen jemand (gegen Vorlage von Personal@s@e-
werbeschein, Handelsbucheintrag, ) seinendoffentlichen Schiissel
zertifizieren lassen kann, d.h. die Zertifizierungsstatlerschreibt eine
Nachricht, die die Identit des Antragstellers beschreibt und dessen
offentlichen Schissel enthlt. Gleichzeitig legt sie einen Datensatz vor,
in dem die achstidhere Zertifizierungsstelle auf dieselbe Weise den
offentlichen Schilssel der unteren Stelle bekanntgibt und gleichzeitig
beshtigt, dal3 es sich hier um eine Zertifizierungsstelle handel

Das Verfahren muf3 néatlich irgendwo enden; hier in Deutschland ist
die Bundesnetzagentuirf Elektrizitat, Gas, Telekommunikation, Post
und Eisenbahnen oberste Zertifizierungsstelledttantlicher Schilissel
ist nicht nur auf ihrehome pageu finden, sonderntdfte wohl auch in
eine ganze Reihe sicherheitsrelevanter Software eingjebau Sicher-
heitsbewul3te Unternehmen, die wissen, wie einfach esrsiandem
eine Webseite oder ein Programm zu unterschieben, werdeerkch
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noch auf andere Weidberpiifen, dal’ sieliesenSchlissel definitivim
Original haben.

2.) Grassroot ModelleZertifizierungsstelle sind keine Wohttgkeit-
sorganisationen; siedkinen nuriberleben, wenn sie sich ihre Arbeit
bezahlen lassen. Die geforderten Preise sind nicht biichon vor
mehreren Jahren las ich, dal3 sie bei bis zu 300$ pro Jahr. |[BgEn
ist selbst Universéten wie Mannheim oder Karlsruhe zuvidly fPri-
vatpersonen, die einfach almsichere E-Mails an ihre Freunde schicken
mochten, ist es (meist) unerschwinglich.

Speziell fir die Kommunikation unter Privatleuten entwickeltalfr R.
ZIMMERMANN das Programm PGP Bretty Good PrivacyDer typische
Anwender, @ir den er dieses Programm schrieljainte weder solche
Summen ausgeben noch traut er Zertifizierungsstellenetigith von
einer Regierungsinstitution ahgen. Sein Sicherheitsmodell war daher
ein Wllig anderes: Jedermann traut seinen engsten Freundeas et
weniger seinen entfernteren Freunden, und wenn es zu Feeuwmh
Freunden geht, nimmt das Vertrauen naturgBrab.

Bei PGP &3t jeder Teilnehmer seindiffentlichen Schiissel von sei-
nen Freunden zertifizieren. Diese wiederum sind doBn Freunden
zertifiziert. WennA mit B Kontakt aufnehmen will, sucht er nach dem
offentlichen Schilssel vorB. Er weil} nailirlich, dal dieser gafscht sein
kann; er traut ihm aber, wenn sein bester Freund ihn unteeben hat,
und er hat auch ein bil3chen Zutrauen, wenn ihn einer seitferegteren
Freunde unterschrieben hat.

Es kann nairlich auch vorkommen, dal3 er eine Nachricht bekommt
von jemandem, der ihmolig unbekannt ist. Wenn er @Gtk hat, ist
deroffentliche Schilissel des Absenders aber von einem seiner Freunde
unterschrieben. Falls nicht, hat er vielleicht die Untergtvon einem
weiteren Unbekannten, desséffentlicher Schilissel von jemandem
unterschrieben ist, dem er traut, und so weiter. Anhancediasorma-
tionen kann er dann entscheiden, wieviel Vertrauen er denfiiSsel
entgegenbringen kann.
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b) SSL, TLS & Co

Ein typischer Fall fir die Kommunikation zwischen zwei einander un-
bekannten Partnern ist ein Kauf via Interneta®@stens diéJbermitt-
lung der Informationen zur Abwicklung der Bezahlungissen kryp-
tographisch geschzt werden; auch mufd der Kunde sicher séinren,
dai3 er diese Informationen wirklich an die Firma schickt) a@r er
etwas kaufen rixchte und nicht an jemanden, der nur abkassieren will.

Zur Realisierung dieser Ziele wurde der Standard §stcure Sockets
Layer) sowie sein Nachfolger TL$Transport Layer Security@ntwi-
ckelt. Sie wurden zwar in erster Lini@rfht tps konzipiert, die gleichen
Ideen werden jedoch auch &ips, ssh undahnlichen Diensten ange-
wandt.

Allen Verbindungen gemeinsam ist, dal3 sich die Partnefacust
auf Verschlisselungsverfahren einigenissen. Hier machen sich im-
mer noch alte amerikanische Exportbegetungen bemerkbar: Bis
September 1998 galt alle Kryptographie als Munition diemiiEinzel-
genehmigung ins Ausland verkauft werden durfte. Diese Gmagung
wurde in der Praxis nur erteilt, wenn bei symmetrischer Kogpa-
phie die Schilsselange ldchstens gleich vierzig war und bei asym-
metrischer Kryptographie zumindeatie Verschilisselung mihnlich
schwachen Algorithmen gearbeitet wurdeli(fFeine Authentisierung
durften auch starke Algorithmen exportiert werden.)

Da die beiden damals am meisten verbreiteten Browser, &lgtsand
Windows Explorer beide aus USA kamen, untétaten diese zumindest
in ihren Exportversionen daher nur schwache Kryptograpghieh bei
den Servern von Netscape waren Versionen mit starker Kgyaphie
(die natirlich nur innerhalb der USA verkauft werden durften) dietit!
teurer als die Exportversionen, so dafl3 viele Unternehmersawer
mit schwacher Kryptographie unterhielten. Auch heute siatht alle
Server auf dem neuesten Stand der Kryptographie, von densgra
ganz zu schweigen.

Nimmt ein Client Kontakt auf zu einem Server, teilt er ihm dah
zunachst einmal mit, welche Kryptoverfahren er kennt. Dazu gb
eine Liste von genormten Nameiirfdie verschiedenen symmetrischen,
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asymmetrischen und Unterschriftsverfahrair;, TLS etwa ist diese in
den Anlangen zu RFC 2246 zu finden. Asgbig ist bei den meisten Pro-
tokollen auch jeweils der WerKeines*, was zur Folge hat, dal3 keine
entsprechende Versdldselung stattfindet.

Der Server vergleicht die erhaltene Liste mit den Kryptéseren, die er
beherrscht, und &hlt dann eines aus —oder aber beendet die Verbindung,
falls es kein von beiden beherrschbezsv.akzeptiertes Verfahren gibt.

Der entsprechende Austausch findet selbsta&eddich im Klartext statt
und ist daher ein d@glicher Angriffspunkt &ir einen Gegner: Indem er
die Liste des Clients ahhgt und alle starken Verfahren daraus streicht,
kann er die Verwendung schwacher Kryptographie erzwingen.

Im nachsten Schritt identifiziert sich der Server und schickbese
offentlichen Schissel. Da auch hier ein Angreifer sich als Server aus-
geben nnte, sollte dieser Schritt mit einer Authentisierundoverden
sein, d.h. der Server legt dem Client ein unterschriebergsiKat vor,

das sowohl seine Iderdit als auch seinedaffentlichen Schiissel und
das dazugairige Verfahren entht.

Dadurch ist das Problem rimtich nur um eine Stufe verschoben, denn
ein Angreifer bnnte sich auch als Zertifizierungsloetie ausgeben.
Theoretisch ist dies dadurch @gst, daf} diedffentlichen Schiissel
der (relativ wenigen) anerkannten Zertifizierungsinsittuen im Pro-
grammcode der Browser enthalten sind. Wer sich freilicheseBrowser
einfach von irgendeiner Internetseite holt, hat keine G@adald dort
nicht auch zuatzlich Schlissel eines Angreifer stehen.

Ein weiteres Problem besteht darin, dal3 ZertifizierungStokdn relativ
hohe Preise verlangen; ein einziges Zertifikat kann betdies 300$
kosten. Eir amazon. com undahnliche Unternehmen sind dasanuts;
kleinere Betriebe oder auch Institutionen wie etwa die Ersiat Mann-
heim aber schrecken vor diesen Kosteruzirund stellenidr inr Subnetz
eigene Zertifikate aus.

Grundstzlich gibt es auch die Blichkeit, daf’ sich solche selbster-
nannte Zertifizierungsstellen von einer offiziell anerkanrzertifizieren
lassen mit einem Zertifikat, das ihnen (im Gegensatz zu deablern
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»ublicher* Zertifikate) auch das Recht esumt, selbst in einem gewis-
sen Namensraum zu zertifizieren. Eine solche Lizenz istiriat noch
teurer und wird daher nicht oft vorgelegt. In einem solchal, Fvenn
die Identitat des Servers nicht zweifelsfrei festgestellt werden kaima
Ublicherweise der Benutzer gefragt, ob er trotzdem wegehan will
und ob er gegebenenfalls die Unterschrift der dem Browdaekennten
Zertifizierungsstelle énftig anerkennen will.

Bei ssh-Verbindungen drfte es wohl die Regel sein, dal3 der Server
kein Zertifikat vorlegen kann; hier speichert der Client @&ahlissel
bzw. einen Fingerabdruck davon, nachdem der Benutzer beimnerste
Mal gefragt wurde, ob er sich sicher sei, mit dem richtigercher
verbunden zu sein. i ftig werden dann Verbindungen zu diesem Server
nur noch aufgebaut, wenn der Server den richtigeniissiell schickt.

Wenn der Client defffentlichen Schissel des Servers kennt, kann er
nun zufllig einen Sitzungsscissel fir das vom Server ausgahite
symmetrische Verfahren erzeugen und diesen mit dem asysahsn
Verfahren versclilsselt an den Server schicken. Die weitere Kommu-
nikation erfolgt dann symmetrisch versihselt, wobei gegebenenfalls
noch zuatzlich eine Rilfsumme zur Sicherung der Nachrichtenintegrit
ubertragen wird. (Wie man solchetPsummen kryptographisch sicher
erzeugt, werden wir weiter hinten sehen.)

c) PKCS #1v1.5

Wie so ziemlich alles im Internetiassen nairlich auch die Nachrichten,
die Client und Server austauschen, in einem standareisiEdrmat sein
Bei Verwendung von RSA als asymmetrischem Verfahren legtde
RSA Data Security Inc. entwickelte Standard PKCS #1 festalther
Form der Schissel fir das symmetrische Verfahréabermittelt wird. In
seiner alten Versiopv1.5%, die auf Grund einer imachsten Abschnitt
beschriebenen Sclaghe inzwischen nicht mehr empfohlen wird und
durch eine Alternative ersetzt ist, geht man folgendermafde:

Wird RSA mit einemm-Bit-Modul N verwendet, so sei zéchstk =
[m /8] der bei ganzzahliger Division mit ignoriertem Rest egttignde
Quotient. Gesendet werden jeweil)Bke aus: + 1 Bytes.
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Da nicht alle durcht + 1 Bytes darstellbare rialiche Zahlen kleiner
als N sind, &Rt sich das erste Byte nicht wirklich nutzen, denn die
Verschlisselung soll selbstvesstdlich injektiv sein. Daher wird dieses
Byte stets auf 00 gesetzt.

Das rachste Byte gibt an, worum es sich bei demihermittelnden
Block handelt. Im Falle einer RSA-versdéiskelten Nachricht wird es auf
02 gesetzt, @hrend beispielsweise Oldrfeine elektronische Unterschrift
steht.

Danach folgt ein Block von mindestens acht Zufallsbytes allie einen
von Null verschiedenen Wert haberigsen; dies realisiert die §B)
geforderte probabilistische Versdlskelung. Das Ende dieses Blocks
wird durch ein angedngtes Nullbyte angezeigt; die restlichen Bytes
sind fur die eigentliche Nachricht vorgesehen.

d) Der Angriff von Bleichenbacher

Bei Verwendung eines Kodierungsverfahrens wie dem gerasiehie-
benen Standard entspricht nicht mehr jede Zakl @ < N — 1 einer
Nachricht. Damit kann es vorkommen, daf z.B. dudiertragungs-
fehler ein Empénger Nachrichten erdlt, deren Entsclikselung sich
nicht sinnvoll entsprechend der Norm interpretierét!

Ein menschlicher Emgihger wird solche Nachrichten, insbesondere
wenn sie ge&uft auftreten, wohl einfach ignorieren oder vielleichtlau
beim ersten Mal noch eine Nachricht an den Absender schideéher
dessen Nachricht nicht lesen kann; ein Server, der solcbleri¢aten im
Rahmen eines SSL-Verbindungsaufbausaktylwird jedes Mal genau
das tun, was der Programmierér fliesen Fall vorgesehen hatiiRer
war dies die kanonische Reaktion, die man in solchéier erwartet:
eine Fehlermeldung.

Eine solche Fehlermeldung kann ein Angreifer als eineGketkel be-
nutzen: Wenn er eine Zahl & ¢ < N — 1 an den Server schickt,
interpretiert dieser dies als eine verdigddelte Nachricht = ¢ mod V
und entsctilsselt sie als. = ¢ mod N, wobei (V, ) der dffentliche
undd der private Sclilssel des Servers ist. Fallsnicht die erwartete
Form hat, kann der Server die Nachricht nicht interpretiemed schickt
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eine Fehlermeldung zuck. Da Computer sehr geduldig sind, wird er
dies nicht nur einmal, sondern gegebenenfalls auch mektidirenen
Mal fur denselben Absender tun, so dafl? dieser beliebig vieleeAahl
testen kann.

Hier setzt der Angriff von BEICHENBACHER an: Man kann zeigen, daf3
bei RSA jedes einzelne Bit so sicher ist wie der gesamte Blouk
anderen Worten: Falls jemand ein Verfahren hat, mit demrefesites

Bit der Nachricht, z.B. das letzte oder das dritte, bereshgann, so
kann er daraus ein Verfahren machen, um die gesamte Natchtich
entschlisseln. Die wesentliche Idee des Beweis besteht darin, idal3 d
RSA-Verschilisselungz — a° mod M ein Gruppenhomomorphismus
Ist, was wir ja bereits bei den blinden Unterschriften unoirbelektro-
nischen Bargeld ausgenutzt hatten.

PKCS #1v1.5 liefert einem Angreifer, der den Server als @rakitzen
kann, so etwaghnliches wie die Entscdselung gewisser Bits: Er kann
fur gewisse Zahlen & ¢ < N — 1 erfahren, dal3 sie mit den beiden
Bytes 00 und 02 beginnen. Er weif dann also, dafiod NV in einem
gewissen IntervallB,, B,] liegt, wobei wir etwa

B;=2"1+2" und B,=3-2F-1

setzen Bnnen. Falls bekannt ist, wie viele Zufallsbytes verwenadat
den, kann man eventuell auéh noch etwas sdirfer abschtzen, ande-
rerseits bringt das nicht sonderlich vieLEBCHENBACHER begrugt sich
sogar bei der unteren Grenze einfach Byjt= 2*1,

Ziel der Attacke von BEICHENBACHER ist €S, zu einer vorgegebenen
Zahl0< ¢ < N — 1 die Zahlc¢? mod N zu bestimmen, um entweder
eine abgefangene Chiffretextnachriehwie den Sitzungssctsel tir
eine SSL-Verbindung zu entscisiseln oder aber die Unterschrift des
Serversir eine konstruierte Nachricht zaléchen.

Falls ¢ ein abgefangener Chiffretext ist, muf mod N in [By, B,]
liegen. Andernfalls sucht der Angreifer nach einer Zatierart, daf3ir
co = c¢s® mod N die Entschilisselung

cd mod N = (¢s°)! mod N = ¢s°d mod N = cs mod N
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vom Server akzeptiert wird.

Die Wahrscheinlichkeit déf, dal diesir ein zufllig gewahltess der

Fall ist, lal3t sich einigermal3en ab&tkhen: Wir kbnnen davon ausge-
hen, daRiir zufalligess auch die Zahleag mod V zufallig im Intervall

[0, N — 1] verteilt sind. Die Wahrscheinlichkeit, da§ mod B im In-
tervall [By, B,] liegt, ist daher das Veditnis der Intervalingen, also
ungefihr V/2*. Je nach Kongruenzklasse der Bitanzahl ddmodulo
acht liegt dieser Wert zwischen® = 1 : 65536 und 28 = 1 : 256. Da

die Bitlangen von RSA-Moduln meist Vielfache von acht sindrfte

sie sich eher in der &he der unteren Grenze bewegen. Dazu kommt
noch, dal auf die beiden Bytes 00 und 02 mindestens acht viin Nu
verschiedene Bytes folgenirssen und dann irgendwann ein Nullbyte,
was die Wahrscheinlichkeit der Akzeptanz noch etwas we#gingert,
wenn auch um keinen sonderlich grof3en Faktor: Falls wir etw2048
Bit-Modul arbeiten, besteht ein Block aus 256 Bytes; winken also
mit einer ziemlich hohen Wahrscheinlichkeit davon ausgelal? ir-
gendeines davon zwischen den Positionen elf und 256 dadytkill
Ist.

Bei einem automatisierten Angriff kann man somit in rel&tivzer Zeit
eine Zahls finden, so dafé, = cs®* mod N vom Server akzeptiert wird.
Falls man danm, = ¢ mod N bestimmen kannaRt sich leicht auch

a=c?*modN =s"tay, mod N

berechnen. Wir &hnen uns daher im folgenden auf das Problem
beschéanken, zu einem, das einer korrekt versddselten Nachricht
entspricht, deren Entsaidselung: = ¢® mod NV zu ermitteln.

Dazu bestimmt BEICHENBACHER, wieder durch Probieren so lange, bis
der Server keine Fehlermeldung mehr schickt, eine FolgeZabiten

O<s <8< - <N
derart, dalg, = cs{ mod N vom Server akzeptiert wird. Dann ist
a; =c; modN =as; modN € [By, B,],
es gibt also eine Zahi, derart, daf3
Bi+r,N B,+r,N

)
Si Si

as;, —r;N € [B,B,] oder ac
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Damit liegta auch im Durchschnitt eines dieser Intervalle ndi [ B.],
so dal} wira weiter eingegrenzt haben.

Im Hinblick auf die weiteren Schritte wollen wir annehmerr, wiil3ten
bereits, dalx in einem Intervall {i, v] liegt. Dann bnnen wir nun
genauer sagen, daflsogar im Durchschnitt von} v] mit der Vereini-
gung der obigen Intervalle liegt, d.h. in der Vereinigung

U ({Bl :TN, B, :TN] ﬂ[u,v]) |

TGZ (2 1

Tatsachlich sind nairlich fast alle diese Durchschnitte leer; ein nicht-
leerer Durchschnitt ist nur aglich, wenn
B,+rN B,+rN

S; S;

>u,

also

BZ<T<siv—Bl
N TSN

ist.

Damit ist BLEICHENBACHERS Vorgehensweise zumindest im Prinzip
klar: Wir betrachten eine Mengevon Intervallen derart, dafiin einem
Intervall aus der Liste sein mul3; zu Beginn bestelgenau aus dem
Intervall [B;, B,]. Aul3erdem setzen wis, = [IN/B,]; man uberzeugt
sich leicht, dafa fur s < sy hochstens gleicliv aber naifirlich grof3er
als B, ist, so daf&is dann unnaglich akzeptiert werden kann.

Im ¢-ten Schritt fir: > 1 wird durch Serveranfragen eine Zahi> s,
ermittelt derart, dal@s, in [ B, B,] liegt; sodann wirdL ersetzt durch
die Menge aller Intervalle der Form

Bi+rN B,+rN

: N [u,]

S; S;

: u — B v — B
mit [u,v] € L und %STSM.

Dieses Verfahren wird so lange fortgesetzt, bisur noch ein Intervall
der Lange eins entit, das dann notwendigerweise gleiahd] ist.
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Tatsachlich optimiert REICHENBACHER noch etwas: Durch geschickte
Wahl ders; kann man amlich r noch etwas genauer unter Kontrolle
bekommen. Mit einer solchen Strategie kann er zeigen, dafcimitt
etwa Z°, also rund eine Million, Serveranfragen geyen.

e) Elektronische Unterschriften nach PKCS#1

RSA-Verschilisselungen langer Texte sind teuer, elektronische Unter-
schriften eher noch teurer, da kura#fentliche Exponenten bei RSA
zwar relativ problemlos sind, kurze private Exponenterr,alvee wir
gesehen haben, katastrophal. Einderer Text wird daher praktisch nie
blockweise unterschrieben.

Stattdessen bildet man nach Verfahren, mit denen wir unsniene
eigenen Kapitel beséftigen werden, einen kryptographisch sicheren
Hashwert und unterschreibt diesen. Die hdiltéchen Verfahren zur
Berechnung solcher Hashwerte liefern Ergebnisse eiaegé von 160,
256, 382 oder 512 Bit; verglichen mit deéhge eines auch nur einiger-
mal3en sicheren RSA-Blocks ist das recht kurz.

Damit ist auch hier Aufiillen unvermeidbar, allerdings gibt es einen
bedeutenden Unterschied zum Fall der Nachrichten: Ber Biaehricht
bestimmt der Absender, was sie enthalten soll; je wenigen ha
dabei einschankt und je undurchschaubarer er arbeitet, desto weniger
Ansatzpunkte hat ein Gegner zur unbefugten Entssdlung. Von daher
sind vom Absender festzulegende Zufallsbits hier die bb&tthode
zum Auffullen.

Bei einer elektronischen Unterschrift dagegen muf der Bngs#r die
Korrektheitiberpiifen, indem er einéffentlich bekannte Funktion an-
wendet und das Ergebnis mit einem erwarteten Wert verdleltier
wirde das Aufiillen mit Zufallsbits einem &scher die Arbeit erleich-
tern, denn Zufallsbits kann der Engpiger ndirlich nicht verifizieren.

Nehmen wir beispielsweise an, der zu unterschreibendewash
ausk Byte sei ungerade — durch Probieren mit minimaleravieerun-
gen am Dokumen@lit sich dies ziemlich schnell erreichen. Aul3erdem
nehmen wir an, daf3 der zu unterschreibende RSA-Block Rlatanih-
destens B + 3 Byte bietet — das ist beiéggigen Kombinationen heute
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Ublicher Verfahren meist automatisch der Fall. Schlidf3ollen wir
noch annehmen, dafl} dé&ffentliche Exponent zur Verifikation der Un-
terschriftu gleich drei sei — was auch heute leider immer noch viel zu
haufig der Fall ist.

Ein Angreifer kann dann folgendermaf3en eine Unterschifiiter den
Hashwerth falschen: Er berechnet eine Zahk 28¢*1) mit

u® = h mod 2¢+D)

Wie das folgende Lemma zeigt, ist dies stetggiich, und der Beweis
gibt auch ein Verfahren, mit demeffizient konstruiert werden kann:

Lemma: Fir jedesn € N und jedes ungerade < 2" gibt es ein
z < 2", so dak® = a mod 2° ist.

BeweisFlurn = 1 ist notwendigerweise = 1, und die losung istc = 1.
Furn > 1 kénnen wir induktivannehmen, daR wir bereits eift 271
gefunden habeniif dasz® = « mod 2*~1ist. Die Zahlz® — a ist dann
durch 2~ teilbar, es gibt also eih € Z, so dalk® = a +b- 2" 1 ist.
Zur Konstruktion vornz machen wir den Ansatz = z + 2"~ 1y; dann ist

333 — 23+3' 2TL—1 y+3 22(n—1) . y2+23(n—1)
=23+3y- 2" 1=a+(b+3y)- 2" mod 2.

Fallsb + 3y gerade ist, folgt als@® = ¢ mod 2*. Das lnnen wir aber
immer erreichen: & geraded setzen wir beispielsweisg = 0, fur
ungerade$ nehmen wiry = 1. Wegenz < 2"~ 1 ist in beiden Rllen

z=z+2" 1y < 2" das Lemma ist also bewiesen. .

Wir kdnnen also zu einer ungeraden Zakdtets eine Zahi < 28¢+Y

finden mitu® = h mod 2¢**Y_ Falls NV, wie angenommen, mindestens
8(k + 1) Byte hat, istV > «3, alsou® mod N = «°. Die letzten § + 1)
Byte von «® bestehen wegen obiger Kongruenz aus einem Nullbyte
gefolgt von denk Byte vonh. Damit istu eine diltige Unterschrift
unterh.

Um so etwas zu verhindern, darf der Unterschreibende keomtr&lle
uber die Bits zum Aufiillen haben. Der Standard PKCS#1 setzt fest,
dal’ genau das folgende Wort zu unterschreiben ist:
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Links steht ein (eventuell unvolishdiges) Nullbyte, darauf folgt ein
Byte 01 um anzuzeigen, dal3 es sich um eine elektronischeddhtét
handelt, sodannillbytes, die aus lauter bamen Einsen bestehen, d.h.
sie haben den hexadezimalen Wert FF und den DezimalwerOzstHh

folgt zunachst ein Nullbyte, danach der Name des verwendeten Hashver
fahrens geral3 der Norm ASN.1 sowie der Hashwert selbst, dessen
Lange durch das Hashverfahren bestimmt ist.

Hier ist offensichtlich alles festgelegt, und die Wahrsohehkeit dafur,

dall die dritte Potenz einer alichen Zahl entsteht, liegt bei praktisch
null. Falls etwaV genau 2 048 Bit hat und die Folge aus Nullbyte, Algo-
rithmenname und Hashwert aus 288 Bytes besteht (wie es bamer
noch popuhren SHA-1 der Fall ist), dann liegt der zu unterschreibende
Wert zwischen 241 — 2289 ynd 2941 _ 2288 |n diesem Intervall gibt es
keine einzige Kubikzahl.

f) Bleichenbachers Angriff dagegen

Trotzdem konnte BEICHENBACHERauch hier eine Angriffsstrategie fin-
den; sie funktioniert allerdings nicht immer und aul3erdeihstens
dann, wenn die Verifikation der Unterschrift schlampig pesgmiert

ist — was leider in einer ganzen Reihe von Browsern der Fall is
Ein auf Effizienz bedachter Programmierémite die Verifikation ei-
ner PKCS#1-Unterschrift folgendermal3en implementieEgnyvendet

die offentliche Verschilsselungsfunktion auf die Unterschrift an und
uberpiift zurnachst, ob das erste Byte des dabei erhaltenen Blocks den
Wert 00 und das zweite der Wert 01 hat. Danach ignoriert erBajtes

mit Wert FF und verifiziert, dald das erste davon verschie8steden
Wert 00 hat. Die darauf folgenden Bytes versucht er als Namese
Hashverfahrens zu interpretieren; falls diedgiich ist, liest er nach
Ende des Namens die Anzahl von Bytes, die der entsprechehde A
gorithmus produziert und interpretiert sie als einen Hastw . Nun
bearbeitet er den angeblich unterschriebenen Klartextdemn ange-
gebenen Hashverfahren und berechnet den Hashwéidlls h = A/,
akzeptiert er die Unterschrift. Bei Daten, die aus vertnswéirdiger
Quelle kommen und bei denen man sicher sein kann, daf} sigpder S
ifikation entsprechen, mag so eine Vorgehensweise vibtlajerade
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noch angehen, obwohl man bei einer realistischen Sichévekss heute
vorherrschenden Softwarequatitauch da lieber einen Test zuviel als
einen zuwenig machen sollte. In der Kryptologie allerdimijsserwir
jedem ankommenden Text mif3trauen — wenn wir allen tragemien,
brauchten wir schlief3lich keine Kryptographie &pstens unter diesem
Gesichtspunkt hat die gerade skizzierte Vorgehenswerseneganz
gravierenden Nachteil: Siéberpiift nicht, ob der Block wirklich mit
dem Hashwert endet, oder ob danach noch weitere Bytes folgen

Dadurch hat ein &scher pbtzlich wieder Manipulationsiglichkeiten,
da nuner festlegen kann, wie vieletfbytes FF verwenden will und er
im Ubrigen wllige Freiheit hat beiglich der Bytes, die ehinter dem
Hashwert platziert.

BLEICHENBACHER gab auf der Crypto’2006 in einer Abenddiskus-
sion eine nigliche Strategie an, wie man dies in manchatien zur
Falschung von Unterschriften ausnutzen kann; er hat atigstanschei-
nend bislang noch nichts v@fentlicht. In Diskussionslisten zur Kryp-
tologie sind allerdings Hinweise auf seinen Ansatz zu find@mach
geht er aus von der Formel

(2" —g)3=2%" —3.22 . p+3.2" . 22 — 43,

Ist h der zu unterschreibende Hashwert (einschliel3lich ddmehden
Nullbyte und dem Namen des Hashverfahrens), unchhaihe Lange
vonr Bit (wobeir natirlich ein Vielfaches von acht sein muf3), so setzt
er hierx auf y/3 mit y = 2" — h. Natirlich gibt es keinen Grund,
warumy durch drei teilbar sein sollte, aber wieder ist es kein Ry
eine sinngleiche Modifikation der Nachricht zu konstruner@r deren
Hashwert dies der Fall ist. Dann ist

n 3 _ n3n 2n nyz y3 — n3n 2n+r n nyz y3
(2" —x)° =2 27"y + 2 3 27—2 2T+ 2"h+ 2 3 27
Furn > 2rist y? < 2" undy® < 2?*; falls uns also nur die Bits
bis zur Position von 2 interessieren, énnen wir die letzten beiden
Summanden vergessert"2- 2°"*" st eine Zahl, die im Bi&rsystem
mit n — r + 1 Einsen beginnt, darauf folgem 2 r Nullen, und 2'h ist
der Wert vonh um 2n nach links verschoben. Wer diese Verschiebung
nicht bemerkt, wird 2 — x als Unterschrift unteh, akzeptieren. Dies
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funktioniert natirlich nur, wenn der RSA-ModuV eine Bytenger hat
mitr = 2 mod 3, aber erstens wird so etwas immer wieder vorkommen,
und zweitens ist der gerade skizzierte Angriff, derEBHENBACHER

in einer Abenddiskussion auf der Crypto’2006 skizziert, lsatherlich
nicht die einzige Mglichkeit, eine Kubikzahl kleinel zu produzieren,
die im Binarsystem mit lauter Einsen beginnt, dann nach einem Nellbyt
einen vorgegebenen Wertenthalt und danach beliebige Bits enthalten
darf. Ein noglicher Schutz vor diesem Angriff besteht indich darin,
dal? man keinen Browser und auch kein sonstiges Programnenden
sollte, das bei der Verifikation einer Unterschrift niciiierpiift, ob der
Hashwert wirklich rechtslindig steht. Angesichts der Vielzahl heute
erhaltlicher Browser und der Tatsache, dal3 kaum ein Benutgestédlen
kann, wie seiner eine Unterschriiberpiift, ist das aber leider nicht
sonderlich realistisch. Besseare es, wenn digUnterschreiber” keine
offentlichen Schissel mite = 3 verwenden \irden; da aber meist nicht
sie, sondern ihre Kunden einen etwaigen Schaden tragesan, ist das
leider fast noch unrealistischer.

§8: Faktorisierungsverfahren

Der offensichtliche Angriff auf RSA ist die Faktorisierudgroffentlich
bekannten ZahlV; sobald man diese in ihre beiden Primfaktopen
und ¢ zerlegt hat, ist das Verfahren gebrochen. Wir wollen daher i
diesem Paragraphen sehen, welch&ghthkeiten es gibt/V in seine
Primfaktoren zu zerlegen.

a) Mogliche Ansatze zur Faktorisierung

Grundstzlich gibt es zwei Klassen von Verfahren, mit denen maearein
Teiler einer ndirlichen ZahlN finden kann: Einmal Verfahren, deren
erwartete Laufzeit von derdnge des Faktors aéhgt, zum anderen
solche, deren Laufzeit nur vaN abhangt.

Bei der Anwendung von RSA wird man, um Verfahren der ersteieKa
gorie auszubremsep,undq ungefhr gleich grol3 whlen, so dal? diese
Verfahren im schlechtestiglichen Fall arbeiten issen.
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Die einfachste Art der Faktorisierung ist das Abdividieven Primzah-
len, vor allem €ir kleine Primfaktoren. Mindestens bis etw? &t dies
auch die schnellste und effizienteste Methode, da die anderéahren
Schwierigkeiten haben, Produkte kleiner Primzahlen zuniee.

Fur etwas golRere Faktoren bis zu etwa acht Dezimalstellen ist die
PoLLARDSche Monte-Carlo-Methode odgrMethode sehr gut geeig-
net: Man erzeugt mit einem quadratischen Generator (popstl z.B.
;4,1 = 27 +c mod N) Zufallszahlen und berechnet deren ggT mit der zu
faktorisierenden Zahl. Da derdgLiDische Algorithmus im Vergleich
zur Erzeugung der Zufallszahlen relativ teuer ist, empfiesisich, die
erzeugten Zufallszahlen zachst modulaVv miteinander zu multiplizie-
ren und dann erst in etwa jedem hundertsten Schritt den ggTVvmit
diesem Produkt zu berechnen. (Dies setzt voraus, dal3 ali&kisemen
Faktoren bereits abdividiert sind; sonst ist die Gefahr mf3gdal im
Produkt von hundert Zufallszahlen mehr als ein Primfaktecld.) Bei
Faktoren mit mehr als acht Dezimalstellen wird die Methodens!|
langsamer, so dal3 man dann zu alternativen Verfaltsergehen sollte.

Die nachste Klasse von Verfahren beruht auf gruppentheoretisch
Uberlegungen, im wesentlichen dem kleinen Satz vie’RvAT im Falle
zyklischer Gruppen und Verallgemeinerungen auf weitergp@en wie
die multiplikative Gruppe eines ttpersF . oder einer elliptischen
Kurve. Diese Verfahren sind sehr effizient, wenn die Gruppeémnung
nur relativ kleine Primteiler hat. Aus diesem Grund wurdanér Faufig
empfohlen, dalfr die Primteilemp eines RSA-ModulsV sowohlp — 1
als auchp + 1 jeweils mindestens eineygrofRen* Primfaktor haben
sollen; auch heute ist diese Empfehlung noch in einigdohrn zu
finden. Da die genannten Verfahren ihrai®e jedoch bei Faktoren mit
einer Lange von bis etwa 30 oder 35 Dezimalstellen haben unt emit

70 Dezimalstelleniir RSA heute nairlich vollig unsicher ist, hat diese
Empfehlung inzwischen ihre Berechtigung verloren, und mirssen
uns insbesondere auch nichaher mit den Faktorisierungsverfahren
besclaftigen, vor denen sie sitzen sollte.

Umso interessanter ist dagegen ein Verfahren, dessekeSbei na-
he beieinander liegenden Primfaktoren liegt. Es wurde VeRAE DE
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FERMAT vorgeschlagen und beruht auf der Formel

¥ =yt = (r+y)z—y).

Ist N = pq Produkt zweier ungerader Primzahlen, so ist

N=@+y)@—y) mit ng und y =21
zusammen mit obiger Formel folgt, daR daNnt+ y? = 22 ist. FERMAT
berechnet daheiif y = 0,1,2, ... die ZahlenN + y?; falls er auf ein
Quadratz? stit, berechnet er gg™, = + y) und ggT(V, = — y). Wenn
er Pech hat, sind dies die beiden Zahlen einsAindenn er Glick hat,
sind e undgq. Fur zufallig gewahlte Paarex, y) kommt beides jeweils

mit flnfzigprozentiger Wahrscheinlichkeit vor.

Falls p und ¢ nahe beieinander liegeniiHrt schon ein kleineg zur
korrekten Faktorisierung; bei der Wahl der Primzahlen ma@ darauf
geachtet werden, dal3 sie zwar die glei@rél3enordnundpaben, aber
nicht zu weit beieinander liegen. Liegt etwan der Gibl3enordnung
von 2y, hat die Differenz die gleiche GRenordnung wie, und FER-
MATS Verfahren bauchte etwa Rechenschritte, wird also vom Aufwand
her vergleichbar mit der Faktorisierung durch Abdividier8omit kann
man sich auch gegen diese Attacke recht guiitasn.

Wirklich gefahrlich sind eine Klasse von Siebverfahren, die agg-F
MATS Methode aufbauen. Diese Verfahren sind die schnellstezeder
bekannten zur Faktorisierung von RSA-Moduln; die Wahl esngheren
Ziffernlange langt also davon ab, welche Zahlen diese Verfahren fak-
torisieren kbnnen.

b) Das quadratische Sieb

Das quadratische Sieb ist der Grundalgorithmus der ganiass&; es
ist logisch einfacher, allerdings vor alleiirfgrof3e Zahlen auch deutlich
langsamer als die Variationen, mit denen wir uns #amsten Abschnitt
kurz beschftigen werden.

Bei allen diesen Verfahren geht es darum, Zahlenpaarng ¢u finden,
fur die 22 = y?> mod N ist. Fir diese erwarten wir, daR in etwa der
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Halfte aller Ralle ggT@ + v, N) und ggT{ — y, N) nichttriviale Teiler
von IV sind.

Beim quadratischen Sieb betrachten wir dazu das Polynom

fla) = (x+ [\/N])Z—N.

Offensichtlich ist tir jedesr

f(x) = <:1:+ {\/NDZ mod N ,

allerdings stehen links und rechts verschiedene Zahlesbhebondere
steht links im allgemeinen keine Quadratzahl.

Falls wir allerdings Werter,, z,, ..., x, finden ldnnen, @r die das
Produkt derf(x;) eine Quadratzahl ist, dann ist

ﬁf(a:z) = ﬁ <x+ {\/NDZ mod N

=1
eine Relation der gesuchten Art.

Um diex, zu finden, betrachten wir eine Men@evon Primzahlen, die
sogenannte Faktorbasis. Typischerweise @nth fur die Faktorisie-
rung einer etwa hundertstelligen Zahl etwa 100-120 TauBenakzah-
len, deren gil3te somit, wie die folgende Tabelle zeigt, im einstelligen
Millionenbereich liegt.

n n-te Primzahl n n-te Primzahl
100000 1299709 600000 8960453
200000 2750159 700000 10570841
300000 4256 233 800000 12195257
400000 5800079 900 000 13834103
500000 7368787 1 000000 15485863

Beim quadratischen Sieb interessieren mtMerte, Tir die f(x) als
Produkt von Primzahlen aus (und eventuell auch Potenzen davon)
darstellbar ist.

Natirlich ware es viel zu aufwendigiif jedesx durch Abdividieren
festzustellen, oy (z) als Produkt von Primzahlen aus geschrieben
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werden kann:f(x) ist eine Zahl in der GiRenordnung vorV, und
wenn auch die Primzahlen aBserhaltnismalig klein sind, kostet doch
jede Division ihre Zeit. Wenn wir eine ung#fr hundertstellige Zahl
faktorisieren, nissen wir aul3erdem davon ausgehen, daf’ nur etwa einer
aus einer Milliarde Funktionswertgfifz,) Uber3 vollstandig faktorisiert
werden kann; wir rissen also sehr viele Funktionswerte testen. Dazu
dient die Siebkomponente des Algorithmus:

Der Funktionswerif (x) ist genau dann durchteilbar, wenn
f(x) =0 modp
ist. Dafurz,y,a,b € Z und mitaz = y modp unda = b modp qilt
atx=b+ymodp und a-z=0b-ymodp
und fur n € N auch
2" =y" modp,
ist fur jedes Polynonf mit ganzzahligen Koeffizienten

f(z) = f(y) modp.
Ist also insbesonder&x) = 0 modp, so ist auch
f(x+kp)=0modp furallek € Z.

Es geriigt daher, im Bereich & = < p — 1 nach Werten zu sucheriirf
die f(z) durchp teilbar ist.

Dazu kann maif auch als Polynoriaber dem Krperl,, mit p Elementen
betrachten und nach Nullstellen in diesef@rger suchen. i Polynome
grof3en Grades und grol3e Werte yokann dies recht aufwendig sein;
hier, bei einem quadratischen Polynomijseen wir nairlich einfach
eine quadratische Gleichungsen: InfF,, wie in jedem anderen &tper
auch gilt

= (s~ [v3])" - =04 (o [V =,

und diese Gleichung ist genau dabsbar, wenn es ein Elemente

gibt mit QuadratV, wenn also irZ die Kongruenzv?> = N modp eine
Losung hat. Brp > 2 hatf(z) = 0 in[F, dann die beiden Nullstellen

z= [VN| +w;
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andernfalls gibt es keinedsung. Im Fallep = 2 ist jedes Element
vonF, = {0, 1} sein eigenes Quadrat; hierist N +[v/N]| mod 2 die
einzige Losung.

Insbesondere kann als@{xz) nur dann durchp teilbar sein, wennV
modulop ein Quadrat ist; dies istif etwa die Hilfte aller Primzahlen
der Fall. Offensichtlich sind alle anderen Primzahlen lostzund wir
konnen sie aus der Faktorbasis streichen.

Fur die verbleibendem konnen wir die beiden &sungen der Glei-
chungf(z) = 0inF, berechnen: Im Vergleich zum sonstigen Aufwand
der Faktorisierung ist die Nullstellensuche durch Pramedurchaus
vertretbar, allerdings kann man Quadratwurzeln moguloit etwas
besseren Zahlentheoriekenntnissen auch sehr viel sehbellechnen
bzw.zeigen, dal’ sie nicht existieren. Als Beispigbahte ich nur den
einfachsten Fall betrachten:

Falls es fir p = 3 mod 4 einw € Z gibt mit w?> = N modp, sagt uns
der kleine Satz von#RMAT, dalw?* = wP~1.w? = N modp ist. Mo-
dulop 4Rt sich die linke Seite auch schreibenzsi&*?/?2 mod p, wobei
der Exponenty + 1)/2 wegen der Voraussetzupg= 3 mod 4 immer
noch eine gerade Zahl ist. Somibknen wir auch mitx + 1)/4 poten-
zieren, undvV®*Y/4 = +4 mod p. Damit ist eine Quadratwurzel voyi
modulop als Potenz voV dargestellt und somit berechenbar. Wenn wir
nicht wissen, ob die Gleichung = N modp eine Losung hat, &nnen
wir auch das leicht entscheiden: Wir berechner N®*1/4 mod N
und testen, olw? = N modp. Falls ja, ist die Gleichungdsbar, und
wir haben auch gleich einedisung gefunden. Ist aber” # N modp,
so kann es keinedsung geben, denrabe es eine, iifdte — wie wir uns
geraddiberlegt haben — aucdi®*1/4 mod IV eine sein.

Fir p = 1 mod 4, gibt es aufwendigere, aber durchaus handhabbare
Verfahren, mit denen diedsbarkeit der KongruenZ = N modp fest-
gestellt werden kann und, mit etwas mehr Aufwand, die Quaadrzel

auch berechnet werden kannirfEinzelheiten sei auf die Zahlentheo-
rievorlesung verwiesen.

Da die Primzahlen in der Faktorbagiblicherweise bchstens in der
GrolRenordnung einer Million sindiihrt aber auch das einfachste und
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offensichtlichste Verfahren relativ schnell zum ErfolgaMteste einfach
die Quadrate der Zahlen von Eins bis{ 1)/2 modulop. Falls eines
davon kongruentV ist, haben wir eine Wurzel gefunden; andernfalls
gibt es keine, denn die Zahlen van 1)/2 + 1 bisp — 1 sind einfach
die Negativen der Zahlen von Eins bjs-{ 1)/2 und haben somit die
gleichen Quadrate.

Sobald eine Wurzel voi¥ modulop gefunden ist, knnen wir die beiden
Nullstellen z,, z, von f modulop bestimmen und wissen, daf§x)
genau dann durchteilbar ist, wenne = x; modp oderz = x, modp.

Wir legen ein Siebintervall fest; dieses kann beispielsealle na-
turlichen Zahlen von Eins bis zu einer gewissen Grehzenthalten
oder aber alle ganzen Zahlen vei/ bis M. Falls N keine Quadrat-
zahl ist, kannf(x) nicht verschwinden; somit existierif jedesx aus
dem Siebintervall der Logarithmus v@fi(x)|. Diese Logarithmerl,,
(zu irgendeiner festen Basis) berechnen vih@rungsweise und spei-
chern sie. Aus Effizienzginden arbeitet man hier zweckfigerweise
mit Festkommaarithmetik; oft bes@mnkt man sich einfach auf einen
ganzzahligen Bherungswertifr den Logarithmus zur Basis zwei.

Nun betrachten wir nacheinander die Primzahleaus der Faktorba-
sisB, berechnen jeweils die beidesungen:; undzx, der Kongruenz
f(x) = 0 modp und ersetzen ausgehend vbp und vonL,, jedes

p-te L, durchL_ — logp.

Falls f(x) ein Produkt von Primzahlen auist, sollte L, nach Ende
des Siebens bis auf Rundungsfehler gleich null sein; unekéahler zu
machen, untersuchen wir dahér alle L, mit Betrag unterhalb einer
gewissen Grenze durch Abdividieren, ob das zagele f(x) UberB
wirklich komplett faktorisiert und bestimmen auf diese ¥ésauch noch,
wie es faktorisiert. Wenn wir mit einem Intervall der Form J/, M]
arbeiten, kanryf(x) auch negative Werte annehmen; um dies ziidler
sichtigen, betrachten wir danm = —1 bei den Primzerlegungen als
zusatzliches Element der Faktorbadis

i
Fur f(a,) =[] po» ist [ ] fl@)® = szm‘“e“’ genau dann ein
peEB =1 peEB

Quadrat, weni}_;_, g;e;, fUrallep € B gerade ist. Diesdngt nailirlich
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nurab vondes; mod 2und dem;, mod 2; wir kbnnere, unde,,, daher
als Elemente desdtpers mit zwei Elementen auffassen und bekommen
dannuberT, das Gleichungssystem

> e, =0 furallep e B.

=1
Betrachten wir dies; als Variablen, ist dies ein homogenes lineares
Gleichungssystem in Variablen mit soviel Gleichungen, wie es Prim-
zahlenin der Faktorbasis gibt. Dieses Gleichungssysténidiatriviale
Losungen, falls die Anzahl der Variablen die der Gleichurigeersteigt,
falls es also mehr Faktorisierungen von Funktionswerfgng) gibt als
Primzahlen in der Faktorbasis.

FUr jede nichttriviale bsung €4, .. ., ¢,.) ist
[[r@y =] (x+ {\/NDZEZ‘ mod N
i=1 i=1

eine Relation der Form? = y? mod N, die mit einer Wahrscheinlich-
keit von etwa ein halb zu einer Faktorisierung vdnfuhrt. Falls wir
zehn linear unaldmgige losungen des Gleichungssystems betrachten,
fuhrt also mit einer Wahrscheinlichkeit von etwa 99,9% mstdes eine
davon zu einer Faktorisierung.

Dazu brauchen wir allerdings nicht undy?, sondern die Wurzeln

= %Z;lsieip = - VN Si.
x Hp und y E<x+{ N])

peEB

wobei beide Produkte nur modulg berechnet werden iassen. Falls
wir Gluck haben, sind ggk(+y, N) echte Faktoren vofv; andernfalls
mussen wir anhand einer anderedsung des Gleichungssystems neue
Kandidatenz undy bestimmen.

Zum besseren Vei&nhdnis des Verfahrens wollen wir versuchen, damit
die Zahl 5352 499 zu faktorisieren. Dies ist zwar eine seliypische
Anwendung, da das quadratische Sibhcherweise erstir mindestens
etwa vierzigstellige Zahlen angewandt wird, aber zumihdas Prinzip
sollte auch damit klar werden.
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Als Faktorbasis®3 verwenden wir die Menge alletdchstens zweistel-
liger Primzahlernp, modulo dererN ein Quadrat ist; als Siebintervall
nehmen wir die ndfrlichen Zahlen von 1 bis 20 000. Da die Quadrat-
wurzel von N ungefihr 2313546844 ist, betrachten wir das Polynom
f(z) = (x — 2313% — 5352 499.

Als erstes rnissen wir seine Nullstellen moduldestimmen. Nachrech-
nen zeigt, dafVv fur 14 der 25 Primzahlen kleiner 100 ein Quadrat ist;
die Nullstellen vonf(x) modp sind in der folgenden Tabelle zu finden:

p= 3 5 11 13 17 19 23
.= 1,2 04 05 411 6,9 2,8 0,20
p= 31 41 43 53 59 83 89

T1,=27,28 3,4 26,35 39,52 2,33 35,70 23,68

Damit konne wir sieben; von den 20 000 Werten aus dem Siebintervall
bleiben 18ubrig, fur die f(x) Uber der Faktorbasis zéitt; sie sind in

der Tabelle auf derachsten Seite zusammengestellt uidrén zum
folgenden Gleichungssystem:

p=3. erteptestest et egtegt  enrterpteigteigtersterpterrteig = 0
p=05: eqtr et egt g1t e1eterrteig= 0
p =11 gxtegt g7t e1nterpt et epterzters= 0
p=13: et e4t  eptert €1pte13t €16 =0
p=17: et egteqt egt g1zt et e17 =0
p =19 g4t et g1otert €14t e1etery =0
p=23. et ggt €11t eizteigterst e18= 0
p=31: ext egtegt gt g1t c18= 0
p =4l est g7t e1pte1zt €15t c18= 0
p =43 gxt getertegtegteipterst €15 =0
p =53: gqtest €7t egteiot €14t €16 =0
p = 59: ezt egt egt 11t €17 =0
p = 83: ezt €gt €12% €15te16 =0
p=89: et g0t g13teat €17te18= 0

Dieses System dnnen wir nach dem &uss-Algorithmus bBsen; da
wir Uber dem Krper mit zwei Elementen arbeiten, ist das auch
bei dieser Gol3e leicht mit Bleistift und Papier aéglich, denn die
Elimination einer Variablen geschieht hier ja einfach datu dal3
wir eine andere Gleichung, in der dieselbe Variable vorkamad-
dieren. Beim vorliegenden Systerirknen wir zum Beispiel die Glei-
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x; f(z,) = Faktorisierung
23 104397 =317-23-89
121 571857 =311-13-31-43
533 2747217 =311-17-59-83
635 3338205=35-13-17-19-53
741 3974417 = 3141-53-59
895 4938765 =35-13-19-31-43
2013 13361777 =1113-41-43-53
2185 14879505 =35-17-23-43-59
2477 17591601 =331-43-53-83
10 2649 19268945 =519-43-53-89
11 4163 36586077 =311-19-23-43-59
12 4801 45256497 =311-13-31-41-83
13 5497 55643601 =313-17-23-41-89
14 6253 68023857 =311-19-23-53-89
15 10991 171643917 =317-23-41-43-83
16 11275 179281245=3%-11-13-19-53-83
17 14575 279852045=-3%-11-17-19-59-89
18 18535 429286605=-3F%-11-23-31-41-89

O©OCooO~NO UL, WNE =

chung ftir p = 3 zu deneniir p = 17,p = 23 undp = 89 ad-
dieren; danach kommt die Variablg nur noch in der ersten Glei-
chung vor, und so weiter. In der Endgestalt lassen sich di@alan

€12, €145 €15, €16, €17 UNd g frei wahlen; wir erhalten also einen sechs-
dimensionalen tisungsraum. Er besteht aus allen Vektoren der Form
(b, e+c e+c e+ b+c+a b+d, c+f, b, e+d+f b+e+a+db+e+af,d+b,e d,c, b, a)

mit a,b,c,d, e, f € F,. Setzen wir hier beispielsweise=b = f =1
undc = d = e = 0, fuhrt dies auf den Vektor

(17 17 17 17 17 17 17 17 07 07 07 17 17 17 07 07 17 O) ;

wir mussen also das Produktderz, und — nach der obigen Formel —
die Wurzely des Produkts def(x;) miti < 8, sowie: = 12 13,14,18
berechnen. Moduldv erhalten wirz = 3 827 016 und; = 1 525 483;
leider istz +y = N undz — y ist teilerfremd zuV, so dal3 wir mit dieser
Losung nichts anfangerdknen.

Setzen wir stattdessen=d = 0unda = b = e = f = 1, erhalten
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wir den Vektor (11,1,1,1,0,1,1,1,1,0,1,0,1,1,0, 1, 0), der uns auf

x =4093611 und; = 1020903 @ihrt. Hier hatr — y = 3072708 den
ggT 1237 mitN, wir haben also einen Faktor gefunden. Der andere ist
N/1237 = 4327; damit ist die Faktorisierung 5352 499 = 1 28327
gefunden.

Bei realistischen Anwendungen des quadratischen Siebsnkonwir
natirlich nicht auf ein lineares Gleichungssystem mit nurzed¢m Glei-
chungen und achtzehn Unbekannten; da bewegen sich beiddl&nz
mindestens im sechsstelligen Bereich, bei neueren Rekdadfsierun-
gen sogar im neunstelligen.#rer konnten solche Gleichungssysteme
nur auf Supercomputern @eit werden (\ehrend das Sieben ralkich
problemlos auch mit einfachen PC#gtich ist); heute kann auch dieser
Schritt bei geschickter Parallelisierung auf PCs augggfverden.

c) Varianten des quadratischen Siebs

Der Rechenaufwand beim quadratischen Sieba#htrof3tenteils auf
das Sieben: Nur ein verschwindend kleiner Teil aller Zakkfallt Gber
der gevéhlten Faktorbasis, und jedg?erxz wird, desto weniger dicht
liegen diese Zahlen. Bei einer Zahl um*{%und einer Faktorbasis aus
10000 Primzahlen etwa kann mair f: < 10 etwa finf vollstandig
faktorisierbare Werte voyi(x) erwarten, im neunmal so grof3en Intervall
[10'°, 10'Y] nur noch etwa 23 und so weiter.

Zumindest qualitativ ist dies klar, denn jetfger die Zahlen werden,
desto gofRer wird die Wahrscheinlichkeit grof3er Primfaktoren e=i-
schatzung mit (teils nur heuristischen) Forméilpber die Verteilung von
Primfaktoren zeigt, dafd man in einem solchen Fall ein latésieben
muf, das bigiber 16* hinausreicht. Verbesserungen des quadratischen
Siebs konzentrieren sich daher darauf, die Siebphase auie@n um

so in kirzerer Zeit mehr Relationen zu finden.

1.) Die MultipolynomialversionDie Multipolynomialversion des quad-
ratischen Siebs optimiert dieses an zwei Stellen: Einmiabletet sie

auer dem Polynonfz — [\/N])2 — N noch weitere Polynome, um
Relationen zu bekommen, so dal3 man jedes dieser Polynonideur
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ein kiirzeres Intervall sieben muf3; zum andern betrachtet skersega-
tive Werte vonz, so dal — bei geschickt gaiWwlten Polynomerf — der
Betrag vonf(x) fur ein langeres Intervall klein bleibt.

Als Polynome betrachtet man quadratische Polynome der Form
f(x)=az?+2bz+c mit 0<b<a und b¥*>—ac=N.

Furdieseist f(x) = (az+b)?>—b?+ac = (ax+b)?— N, so dafk f () zwar
kongruent ¢z + b)? ist, aber nicht gleich. Auch diese Polynome liefern
also die Art von Relationen, die wir brauchen, und giaken genauso
gesiebt werden wie das spezielle Polynom aus dem letztechilit

Ein gewisser Nachteil dabei ist, dal? man vor dem Sielienedes
neue Polynomf und jede Primzahp neu die Nullstellen vory mo-
dulo p ausrechnen muf3. Da aber alle Polynome quadratisch sind mit
DiskriminanteN, steht in der bsungsformeliir die quadratische Glei-
chungen stet®V unter der Wurzel, so dal3 man nur einmal die Wurzeln
von N modulop berechnen mul3; danach lassen silidbd quadratischen
Gleichungen mit wenigen Rechenoperationiseh. Verglichen mit der
Siebzeit &llt dies praktisch nicht ins Gewicht. Daher verwendet man
typischerweise sehr viele Polynome undidatelativ kurve Siebinter-
valle.

Zur Konstruktion von Polynomerf wahlt man zuachst eine Zahé

so, dal3 das Polynom in einem Intervalll}/, M] moglichst beschankt
bleibt. Fallsa, b, ¢ deutlich kleiner sind ald/, liegt der Maximalwert
von f(z) an den Intervallenden, liegt das Maximum bei

f(=M) ~ %(aZM2 — N);

das Minimum wird beir = —b/a angenommen und ist

f< b) b>  2b° —b*+ac _ N

_——— — C_—___

a a a a a

Fira ~ v2N /M haben beide Zahlen unggfr denselben Betrag, aber
entgegengesetzte Vorzeichen; alséhen wira in dieser Goldenord-
nung.
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Dab? — 4ac = N werden muR, kommeriif b nur Werte in Frage,ifr
dieb?> = N moda ist, uns sobald ein solchégyewahlt ist, liegt auch:
eindeutig fest.

Die Anzahl der Polynome, die Polynome selbst und die Adldollten
iIdealerweise so geahlt werden, dal? die Rechenzeit minimal wird. De-
ren Absclatzung langt ab von einer ganzen Reihe voroGen, die teils
nur mit groRem Aufwand berechnet werdeinken, teils nur modulo
unbewiesener Vermutungen wie etwa deNR\NN -Vermutung bekannt
sind und fir die teils sogar nur rein heuristische Formeln existielem
mochte auf die damit verbundenen Probleme nicht eingehadeso nur
das Ergebnis angeben, wonach der Rechenaufwand zum KSakteni
einer ZahIN mit der Multipolynomialvariante des quadratischen Siebs

proportional ist zue®V" NN N mit einer Konstanter, die von der
Wahl der verschiedenen Parameteraainjt.

2.) Das Zahllorpersieb:Die derzeit schnellste Verbesserung des quad-
ratischen Siebs ist d@ahllkorpersiebdas nicht mehr mit quadratischen
Polynomen arbeitet, sondern mit Polynomen beliebigen &rad

Der Gradd dieser Polynome wird in Akdmgigkeit der zu faktorisieren-
den ZahlN festgelegt, sodannalt man fihnrende Koeffizientea, und
eine naiirliche Zahl

m~ ¢/ —

Qq

Alle Polynome sind homogen, haben also die Form

d—1

_ d d—1 d
F(x,y) =agx” +ag_x° "y +---+axy® ~ +agy”,

wobei diea; mit i < d hochstens Betrag:/2 haben.

Hinzu kommt das homogene lineare Polyn6itr, y) = + — my; das
Sieb sucht nach Zahlenpaaren ), fur die sowohlF'(x,y) als auch
G(x,y) Uber der Faktorbasis zerfallen. Da die Polynome von zwet Var
ablen abBAngen, mufd man entweder jeweils eine Variable festhaltén un
Uber die andere sieben, oder aber ein zweidimensionalbge®iahren
anwendeniiblich ist eine Kombination beider Methoden.
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Gesucht sind Paare (y) teilerfremder ganzer Zahlerjifdie
F(z,y) und G(z,y)

beideUiber der gewhlten Faktorbasis zerfallen, und das Ziel ist, wie
beim quadratischen Sieb, eine Relation der Form

H F(x,y) = H G(z,y) modN,
(z,y)eM (z,y)EM
in der rechts und links Quadrate stehen.

Die besten derzeit bekannten Strategien zur Polynomalisuai
fuhren auf eine Laufzeitabs&atzung proportional

6C(|n]\r)%(lnlnN)% mit c= 3 %@ 1,923

fur die Faktorisierung einer ZalN' nach dieser Methode.

Fur hinreichend gro3&/ ist diese Methode offensichtlich schneller als
das quadratische Sieb, bei demNmals Quadratwurzel im Exponenten
steht; in der Abbildung, wo der Aufwandiif die Faktorisierung einer
Zahl 10° aufgetragen ist, sieht man, dal3 das Zahdersieb (rote Lin-
ie) ab etwa 125-stelligen Zahlen dem quadratischen Sigéhlinie)
uberlegen ist.

22%
20
18%
161
14

12

76(‘) 80 100 120 140 160 180 200
Zeitaufwand fii quadratisches Sieb und Zahlkorpersieb
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d) Faktorisierungsrekorde

Neue Faktorisierungsverfahren werden meist vorgestelit aimem
Faktorisierungsbeispiel, das den bisherigen Verfahremogé hat.
Berihmt sind dabei die sogenannten most wanted factorisationes
Cunningham-Projektsyo es vor allem um Zahlen der Fortfi + o fUr
kleine Werte voru undb. Mit diesen Problemen befal3ten sich die algo-
rithmischen Zahlentheoretiker schon lange vor der prelkéa Bedeu-
tung von Faktorisierungen im Zusammenhang mit dem RSAaVieeh.

Im Zusammenhang mit der Kryptographie interessantemdtiste von
challengesdie RSA Computer Security Incorperatedher regelraflig
zusammenstellte, denn hier geht es um Zahlen, die&@tiggéinter kryp-
tographischen Gesichtspunkten ausgelwurden. Die gil3te im Rah-
men derchallengeerfolgreich faktorisierte Zahl war RSA-200, eine
200-stellige Dezimalzahl (entsprechend 663 Bit), derekidfasierung
am 8. Mail 2005 beendet war; zwei Jahraty beendetRSA Computer
Security Incorperateden Wettbewerb.

Die Zahlen sind allerdings weiterhin im Netz zu finden, und am
3. Dezember 2009 wurde mit RSA-768 die bislangl$je davon fak-
torisiert, die 232-stellige Dezimalzahl

12301866845301177551304949583849627207728535695953
34792197322452151726400507263657518745202199786469
38995647494277406384592519255732630345373154826850
79170261221429134616704292143116022212404792747377
94080665351419597459856902143413

mit den beiden Faktoren

p =3347807169895689878604416984821269081 770479498

37137685689124313889828837938780022876147116525317
43087737814467999489

q = 3674604366679959042824463379962795263227915816

43430876426760322838157396665112792333734171433968
10270092798736308917

Die dreizehn an der Faktorisierung beteiligten Autoren kwn von
Universitaten in Amsterdam, Bonn, Lausanne, Nancy und Tokyo und
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brauchten dazu etwa zweieinhalb Jahre. Sie verwendeteiatid®rper-
sieb, wobei sie das erste halbe Jahr damit verbrachterzigdétiozes-
soren nach geeigneten Polynomen suchen zu lassen. Derntélbdet
Arbeit, das Sieben wurde ayViele hundert* Computer verteilt und
dauerte zwei Jahre(if die restlichen Aufgaben reichten wenige Tage
und eine zweistellige Anzahl von Prozessoren. Intergsdieiser finden
einen genaueren Bericht untgsrint.iacr.org/2010/006.pdf oder in
den Proceedings der Konferenz Crypto 2010¢ffentlicht in denLec-
ture Notes in Computer ScienBand 6223, Springer Verlag, 2010, auf
den Seiten 333-350.

Wer zurickblattert zug3a) wird dort finden, dal? RSA-Moduln mit 768
Bit nach den in Deutschland geltenden Standards bis Ende&8®in-
reichend sicher angesehen wurden — wenn auch schon 19§84t
wurde, dal} dies nurbergangsweise und definitiv niaiber Ende 2000
hinaus gelte.

Dies zeigt wieder einmal deutlich, dal3 kryptographischeh&iheit
zeitablangig ist und sollte uns warnen, dal3 auch die heute als sicher
angesehenen Parameterwertelstwahrscheinlich in einigen Jahren
geknackt werdendnnen. Die Achste kritische &nge von RSA-Moduln
sind die 1024 Bit, die bis Ende 2008 askig waren. Die Autoren der
RSA-768-Faktorisierung sind sich ziemlich sicher, da3msiteihren
Methoden in den &chsten @inf Jahren nicht in der Lage sein werden,
denchallengeModul RSA-1024 zu faktorisieren; danach, sagen sie, sei
alles offen.

Wie lange die heute als sicher geltenden 2048-Bit-Modulrkiigh
sicher sind, kann natlich niemand vorhersagen; eirdglicher Durch-
bruch etwa bei denam Ende der Vorlesung betrachteten Qicamtgout-
ern kbnnte nicht nur sie, sondern das gesamte RSA-Verfahreriziem
schnell unbrauchbar machen. Rein spekulabinrien wir allerdings die
Ergebnisse der letzten Jahre extrapolieren und so zu eaggEmvADb-
schatzung kommen, wann RSA-Moduln welcher Bitge ndbglicher-
weise faktorisiert werdendanen.

Am 22. August 1999 wurde die RSAhallengeZahl RSA-155 mit
512 Bit faktorisiert. Die 17 Autoren verglichen in ihrem Bzt (EURO-
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CRYPT 2000 Lecture Notes in Computer Scient®07(2000), S. 1-18)
Faktorisierungsrekorde der bis dahin vergangenen dréddige, ange-

fangen von der 1970 faktorisierten 39-stellig@arMAT-Zahl v 1, die
ein heutiges Computeralgebrasystem auf einem hainoleleen Com-
puter in weniger als zehn Sekunden faktorisiert, bis hin damaligen
Rekord RSA-155. Sie fanden, daf3 sich das Jahr, in dem ergtenaé
(schwierige)I-stellige Zahl faktorisiert wurde @herungsweise berech-
nen ARt als

13,24v/d + 19286 .

Setzen wir einige der heute und in naher Zukunft oder Vergahgit in-
teressanten Biingen in diese Formel ein, erhalten wir folgende Tabelle:

Bit: 768 1024 1280 1536 2048 2560 3072 4096
Jahr: 2010 2018 2025 2031 2041 2050 2057 2070

Der einzige Wert, den witiberptifen kbnnen, ist deriir 768 Bit; hier
hat die zehn Jahre alte Formel den Termin sehr genau vossgge
Trotzdem kann sie uns riatich nicht garantieren, dal3 die heute rat-
samen 2048-Bit-Moduln nicht doch schon deutlich vor 204tdasiert
werden. Fortschritte bei der Faktorisierung kamen zunahdésher

zu ungedhr gleichen Teilen aus drei Entwicklungen: Neue mathema-
tische Algorithmen, schnellere Computer und bessere imgteierun-
gen. Auch in Zukunft wird es wohl auf allen drei Gebieten Bolritte
geben, auch wenn bei den mathematischen Algorithmen ddsatpbr-
sieb nun schon seit ungéhnlich langen zwanzig Jahren der beste be-
kannte Algorithmus ist,

e) Faktorisierung mit Spezialhardware

Faktorisierungen mit dem quadratischen oder Zatgkrsieb bedtigen
zwar zumindestir einige Schritte wie die @isung des linearen Glei-
chungssystems leistun@séfige Rechner mit viel Speicheiirfdie Haupt-
arbeit, das Sieben, gégen aber einfachste Rechner, von denen dann
allerdings zumindest bei Rekordfaktorisierungen sehleviegne sehr
lange Zeit rechnen issen.

1999 schlug A1 SHAMIR, einer der Erfinder des RSA-Verfahrens, ein
optoelektronisches Géatr vor, mit dem er das Sieben ungkf um den
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Faktor Tausend beschleunigen wollte; er nannte es TWINKLEe
WeizmanIN stituteK ey L ocatingEngine.

Das Geét sitzt in einer schwarzendRre mit etwa 15¢cm Durchmesser
und 25cm lange, deren wesentlicher Chip im Innern etwa eine Million
LEDs entlalt. Jede dieser LEDs stetitrfeine Primzahp aus der Fak-
torbasis und hat eine Leuchtkraft proportionallpgwas etwaiber ihre
Grol3e oder (einfacher) mittels einer Abdeckfolie mit kontanlichem
Grauschleier realisiert werden kann.

Hierin liegt der wesentliche Unterschied zu Software-lempéntierun-
gen der Siebe: Dort werden die Primzahlen nacheinandembeha
wahrend der-Werten Speicherzellen entsprechen. Bei TWINKLE wer-
den diex-Werte auf die Zeitachse abgebildet; da di&\Verte, fir die
f(z) durchp teilbar ist, von der Formx, ,, + kp sind, mul3 also jede
LED periodisch aufleuchten, was nicht schwer zu realisigserDie
Taktrate, mit der das Gérarbeitet, soll bei 10 GHz liegen, ein Wert, der
in optischen Hochgeschwindigkeitsnetzen heute durchawumsat ist.

In jedem Takt mil3t ein den LEDs geddrerliegender Sensor die
Gesamtlichtsirke. Da ein Takt nur einednge von 10° Sekunden
hat, &3t sich die Ausbreitungsgeschwindigkeit des Lichts higrtrver-
nachhssigen; bei einer Geschwindigkeit von etwa 300 000 kmsgic |
es pro Takt etwa drei Zentimeter #iek. Die Laufwegunterschiede der
Lichtstrahlen zwischen den verschiedenen Dioden und ddszkle
mussen also deutlich kleiner als drei Zentimeter sein. Died eadurch
erreicht, daf? alle LEDs auf einem einzigen Wafer sitzen.

Die Mel3genauigkeit der Zelle mul3 nichbernal3ig hoch sein: Beim
klassischen Sieb arbeitet man schliel3lich auch nur mit zgnrigen
Approximationen der logp. Eine Zahlz ist uninteressant, wenn zum
entsprechenden Zeitpunkt eine Licltste gemessen wird, die kleiner
ist als log, f(z) minus einem Sicherheitsabstand; ansonsten wird sie an
konventionelle Elektronik weitergereicht und dort beasdie Wie wir
oben gesehen haben, ist dies ein sehr seltenes Ereignigs) &Gahnitt
hochstens einmal pro einer MilliardeWerte eintritt, also etwa zehnmal
pro Sekunde. Mit diesen Datenratednkien auch einfache Computer
leicht fertig werden.
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Das Hauptproblem ist der Bau das Chips mit den Dioden undndere
Steuerelektronik; SAMIR meint, dald dies mit der heute existierende
GaAs-Technologie geradetglich sein sollte, und dglicherweise ste-
hen inzwischen schon solche oddmliche Maschinen in Labors von
NSA undahnlichen Organisationen. In der offenen Literatur istihic
uber die Existenz solcher Maschinen bekannt und auch nidbes
Plane welche zu bauen. Der Entwicklungsaufwaidte sicherlich in
die Hunderttausende oder gar Millionen gehen, abemiR schatzt,
daR das Géxt dann mit Sickkosten von etwa 5 000 $ hergestellt werden
kann.

2000 stellte 8BAMIR zusammen mit A. ENSTRA einem der Erfinder
des Zahlkrpersiebs, eine verbesserte Version vor; die beiden Aator
schatzen, dald diese Version zusammen mit 15 PCs eine 512-Bit-Za
in einem halben Jahr faktorisieren kann. Wegen der sehndraeal-
lelisierbarkeit des Zahtixpersiebs &nnte man mit mehr TWINKLES
und PCs naitrlich auf deutlich Kirzere Zeiten kommen.

Fir 768-Bit-Faktorisierungen sakzen sie den Aufwand adfhf Tausend
TWINKLES, untersititzt von achtzig Tausend PCs, bei einem Zeitbedarf
von insgesamt neun Monaten.

Ob TWINKLE oder einahnliches Geit je gebaut wurde, ist unbekannt;
in der offenen Literatur ist jedenfalls nichts zu finden.

2003 schlugenaMIR und ERAN TROMER ein neues Géit vor namens
TWIRL, The Weizmanl nstitute Relation Locator. Im Gegensatz zu
TWINKLE arbeitet es rein elektronisch: Anstelle einer Deoibt je-
der Primzahl ein Addierer zugeordnet der, so er aktiviertyeinen
Naherungswertiir den Logarithmus dieser Primzahl subtrahiert,

Es ist klar, dal3 nicht alle aktivierten Addierer gleichizgihit derselben
Zahl x rechnen Bnnen, deshalb sind die Addiereahflich wie bei
einem Vektorrechner) in einer Pipeline realisieré&hyend sich der erste
Addierer (falls aktiviert) mit der Zaht besclaftigt, ist der zweite iir

x — 1 zustindig, der dritteiir  — 3usw.Bei NV Addierern dauert es also
N Zeittakte, bis eine Zaht vollstandig verarbeitet ist, jedoch wird in
jedem Zeittakt durch jeden Addierer eine Zahl geschickhalghdem,
ob dieser von der Steuerungselektroriik diesen Zeittakt aktiviert ist,
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subtrahiert er seine voreingestellte Zahl oder leitetesEingabe einfach
weiter an den achsten Addierer.

Zur zusatzlichen Beschleunigung gibt eésfede Primzahl aus der Fak-
torbasis nicht nur einen Addierer, sondern eine feste AnzahAuf
diese Weisedl3t sich das Siebintervall im Teilintervalle aufspalten
und, wennr deren lange bezeichnet, werden itvien Zeittakt parallel
die Zahlent,t +r,...,t + (m — 1)r in die Pipeline geschickt.

SHAMIR und TROMER rechnen damit, dal} man mit so einem &dei
einem Kostenaufwand von zehn Millionen Dollar pro Jahr riR&A-
Schlissel mit 1024 Bit faktorisierendkinte.

Auch im Falle von TWIRL gibt es keinen Hinweis, dal} je so eindbe
gebaut wurde; wenn man allerdings bedenkt, dal3 bei NSA lagen
sitzen, die sehr viel mehr Erfahrung mit dem Bau elektrdres&chal-
tungen haben als Wissenschaftler an einer Uni@rsdpricht schon
einiges dadfr, dal3 es dort irgendwelche Hardware gibt, die 1024 Bit
Zahlen faktorisieren kann — zehn Millionen Dollar sind bdfudget
der NSA schlief3lich kein Problem, wenn es um die Eniss$glung
wirklich wichtiger Daten geht.

89: Literatur

RSA ist immer noch das gefuchlichste asymmetrische Kryptover-
fahren; es gibt daher kaum ein nach etwa 1980 erschienemelsuah
der Kryptologie, das nichts daber entilt. Insbesondere wird RSA
natirlich auch in deniir die gesamte Vorlesung empfohleneinrcBern
ausfihrlich behandelt.

Noch mehr Informationen findet man beispielsweise bei

WENBO MAO: Modern Cryptography — Theory & Practic®&rentice
Hall, 2004,

wo insbesondere auch auf praktische Aspekte eingegangdnader
bei

SONG Y. YAN: Cryptanalytic Attacks on RS&pringer 2008.
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Dazu kommen eine ganze Reihe von Lalulbern der algorithmischen
Zahlentheorie, die RSA behandeln, dabei aber ihr Hauptangek auf
Primzahlen und auch Faktorisierung legen, beispielsweise

RICHARD CRANDALL,, CARL POMERANCE Prime numbers — A Compu-
tational PerspectiveSpringer, 2001

SAMUEL WAGSTAFF. Cryptanalysis of Number Theoretic Ciphe@hap-
man & Hall/CRC,?2003

Mit Implementierungsfragen besitigt sich

MICHAEL WELSCHENBACH Kryptographie in C und C++,Springer,
1998

§6 folgt weitgehend dem Artikel

DAN BONEH: Twenty years of Attacks on the RSA Cryptosyditices
of the AMS, February 1999; auch online viggbar unter
www.ams.org/notices/199902/boneh.pdf .
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Kapitel 5
Verfahren mit diskreten Logarithmen

Die Sicherheit des RSA-Verfahrenargt zusammen mit der Schwie-
rigkeit der Zerlegung grol3er Zahlen in ihre Primfaktoremekt geht

es allerdings um das Problem, atfsmod N auf den Wert vonz zu
schlie3en, also die-te Wurzel modulaV aus einer Zahl zu ziehenuF
eine PrimzahlV ist das fir die Exponenten, die wir bei RSA verwen-
den, problemlos i@glich; fur eine zusammengesetzte Zahl aber geht es
anscheinend nur mit Kenntnis von deren Faktorisierung.

Eine zweite vor allemir elektronische Unterschriften popué Gruppe
von Verfahren baut stattdessen auf die Schwierigkeit, au&dnntnis
vona” mod N bei bekanntena auf den Wert vorr zu schliel3en; hier
geht es also um die Umkehrung einer modularen Exponentidifinen
deren Umkehrfunktion bezeichnet man in Analogie zur Umketi-
tion einer reellen Exponentialfunktion als diskreten Lioig@anus (oder
Index). Effiziente Verfahren, um ihn auctrfgroReN sind selbst iir
grofR3e Primzahle®v nicht bekannt; da man diskrete Logarithmen mo-
dulo einer zusammengesetzten Zahlleicht nach dem chinesischen
Restesatzber die diskreten Logarithmen modulo der Primteiler yon
berechnen kann, &hlt man bei Kryptoverfahren auf der Basis diskreter
Logarithmen/N stets als eine Primzal

Wir beginnen mit denaltesten Beispiel eines solchen Verfahrens:

81: Schlisselaustausch nach Diffie und Hellman

Wie wir im letzten Kapitel gesehen haben, waremHA¥E und HeLL-
MAN mit ihrer ArbeitNew directions in cryptographyie Initiatoren der
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asymmetrischen Kryptographie in der akademischen Weltiz kach
dieser Arbeit entwickelten sie auch ein entsprechendefsaMan, das
zwar nicht zur Versclilsselung dienen konnte, aber iglaflie bis heute
wichtigste Aufgabe der Kryptographie naiffentlichen Schissel bsen
konnte: Die Vereinbarung eines Sabseldiber eine unsichere Leitung.

Im Gegensatz zum RSA-Verfahren brauchen sie dazu nichtatinm
offentliche Schilissel: Die beiden Teilnehmebknen miteinander si-
cher kommunizieren ohne zuvor irgendwelcifientlichen oder privaten
Schlissel zu kennen. Damit ist dieses Verfahren vor allem ingenet im
privaten Bereich, wo zertifizieri@fentliche Schilissel oder gelegentlich
auchiberhaupt die Speicherung von Sigdeln zu aufwendig ave.

a) Das Verfahren

Die beiden Teilnehmer einigen sie sich aghst (Iber die unsichere
Leitung) auf eine Primzahl und eine natrliche Zahla derart, dal3 die
Potenzfunktionr — a® maoglichst viele Werte annimmt. Alsachstes
wahlt TeilnehmerA eine Zufallszahlz < p und B entsprechend ein
y < p. A schicktu = a¢” modp anB und erfalt datir y = ¢ modp von
diesem. Sodann berechrfetlie Zahl

v modp = (ay)w modp = a*Y modp
undB entsprechend
uY modp = (ax)y modp = a*Y modp;

beide haben also auf verschiedene Weise dieselbe Zahhpetedie sie
zum Beispiel verwendertikanen, um daraus einen Sabksel fir ein sym-
metrisches Kryptosystem zu bestimmen. Verfahren dazegibstehr als
genug: Sie Bnnten etwa die letzten oder sonst irgendwelche Bits dieser
Zahl verwenden, aber auch einen irgendwie definierten Hathw

Ein Gegner, der den Datenaustausch abgehat, kennt die Zahlen
p, a,uw undw; er kann also problemlos alledglichen Zahlen modulp
der Art a®**PY = 4 . v” berechnen. Esaflt aber schwer, sich eine
Art und Weise vorzustellen, wie ef*¥ modp finden kann, ohne den
diskreten Logarithmus von oderv zu berechnen. (Bewiesen ist hier,
wie Ublich, natirlich nichts.)
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b) Die man in the middle attack

Da der Gegner die Wahl der Mittel hat, muf3 er nicht notwendigese
die mathematische Seite des Verfahrens angreifen: Er kagueiéen,
was immer erifir eine vielversprechende Schwachste#é.h

Nehmen wir etwa an, der Gegner habe eine gewisse Kontrbdedas
Netz, indem der Datenaustausch stattfindet — beispieleywvessl er Sys-
temverwalter einedif die betreffende Verbindung unbedingt notwendi-
gen Knotenrechners ist. Dann kann er eine sogenamaten the middle
attackdurchfihren: Er &ngt alle Datenpakete zwischarundB ab und
ersetzt sie durch selbstfabrizierte eigene Pakete.

Damit kann er sich gegéer A als B auszugeben und umgekehrt:
Alles, wasA anB zu schicken glaubt, geht taishlich an den Gegnet,
und alles wa®3 von A zu erhalten glaubt, kommt tétshlich vonc. In
Gegenrichtung ist es rialich genauso.

Im einzelnen&uft der Angriff folgendermalRen ab:

Falls die Zahlem undp nicht ohnehin Konstanten eines Verbunds sind,
dem A und B angelibren, ARt - die Kommunikation, die zu deren
Vereinbarung @ihrt, ungehindert zu: In diesem Stadium beacikt er
sich auf reines Abbrren.

Als nachstes whlenA und B ihre Zufallszahlenr < p undy < p;
gleichzeitig wahlt - eine Zufallszahl < p oder vielleicht auch zwei
verschiedene solche Zahlen und -, fur die beiden Teilnehmer.

WennA die Zahlu = a® modp anB schickt, angt diese Nachricht ab
und ersetzt sie durch,, = a © mod p; entsprechendahgt erBs Nach-
richty = ¢ modp ab und schickt stattdessen = a ' anA. Dies fuhrt
dazu, daf3 am Endeund einen gemeinsamen Sdkkels, haben und

B und® einen gemeinsamen Sdskels; . Sowohl A als auch B glauben,
der ihnen bekannte Sdldsels, bzw.sz sei ausa®™ modp abgeleitet
und senden nun damit versidbkelte Nachrichten anihren Partner. Diese
Nachrichten &ngt- ab, entschilsselt sie mit dem Sciésel, den er mit
dem Absender gemeinsam hat, und vergséelt sie anschliel3end, ge-
gebenenfalls nach einer seinen Interessen entsprechiglodigikation,
mit dem Schiissel, den er mit dem Endnfiger gemeinsam hat. Auf
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diese Weise hat er die gesamte Konversation unter Kontiaiiee dafd
A undB etwas merken.

Die Moglichkeit fur diese Attacke kommt niatlich daher, dal3 sich

und B nicht sicher sein &nnen, den jeweils anderen am anderen Ende
der Leitung zu haben. Die kryptographisch einwandfreie ifikation,

die das Verfahren gegen diese Art von Angriff sicher macestinde
beispielsweise darin, daf8 und B ihre Nachrichtenz undy vor dem
Versenden unterschreiben — aber dann verschwindet auctemaer
Vorteil, daf3 sie ohne Kenntnis irgendeines $isskls miteinander kom-
munizieren Bnnen: Zur Verifikation einer Unterschrift braucht man
schlie3lich derdffentlichen Schilssel des Unterschreibenden.

Falls sichA undB hinreichend gut kennen, um die Stimme des jeweils
anderen am Telephon einigermal3en sicher zu erkenenek sie diese
Art von Attacke auch dadurch erschweren, dal3 sie nach demadsch
von v und v per Telephoniber diese Zahlen (z.B. die 317. bis 320.
Ziffer) und gegebenenfalls auch noigher Schvitnke aus ihrer gemein-
samen Jugendzeit reden; daniaf$te der Angreifer z@gzlich noch ein
begabter, kundiger und reaktionsschneller Stimmenioritaein, der
auch die Telephonverbindung atsan in the middleso angreifen kann,
dall wedeA nochB etwas merkt. Bei Videokonferenzefhnte man
auch die Zahlen langsaiaer den Bildschirm des jeweils anderen laufen
lassen. Die volle Sicherheit einer Sabselvereinbarung via RSA wird
aber nicht erreicht, und da oft zumindest einer der Teilreshem Un-
ternehmen ist, das sich einen zertifizierten RSA-8s$é| leisten kann,
werden Sclhilssel tir symmetrische Kryptoverfahren in der Praxis sehr
viel haufiger via RSA vereinbart als vialfFiE-HELLMAN .

Im electronic bankingwird die Idee eines zweiten Kommunikati-
onskanals trotzdemaufig angewandt, hier im allgemeinen dadurch,
daf? ein Teil des Protokolls via SMS abkt. Auch die knnen zwar
selbstversindlich manipuliert werden, aber der Aufwand eines An-
greifers steigt ganz beichtlich, wenn egleichzeitigzwei verschiedene
Verbindungen manipulieren muf3: Die meistehishingAttacken ar-
beiten schlielZlich mit gélschten Webseiten im Ausland, und selbst im
Inland ist es nicht so einfach, Mobilfunkverbindungen imean gol3eren
Gebiet zuiberwachen und zu manipulieren.
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§2: Verschlusselung und elektronische Unterschriften

Zwischen RSA und den Verfahren mit diskreten Logarithmebt gs

einen ganz wesentlichen Unterschied: Wer die Faktorisgedes RSA-
Moduls N kennt, kann die sonst schwer Amgliche Umkehrfunktion
vonz — z° mod N leicht berechnen, so dal3 Potenzieren é¢rdirekt

als Verschilisselung benutzt werden kann.

Bei der modularen Exponentialfunktion“z — a” modp sind keine

speziellen Wahlen von und p bekannt, die veriige einer geheimen
Information zu einer einfachen Umkehrfunktiaithfen — diskrete Lo-
garithmen sindiir alle gleich schwer zu berechnen.

Die geheime Information bei einem asymmetrischen Verfalard der
Basis diskreter Logarithmen kann daher nur in der Kenrgimgelner
diskreter Logarithmen bestehen: Wérr einen speziellen Wert die
Potenzu = a® modp berechnet hat, weil3 anschlie3end, dader
diskrete Logarithmus von modulop zur Basisu ist.

Bei diesen sehr viel speziellergeheimnissen® ist klar, dal3 Kryp-
toverfahren auf der Basis von diskreten Logarithmen andessehen
mussen als RSA.

a) Verschlisselung nach Elgamal

Im Prinzip kbnnte man die Schkselvereinbarung nachiABIE und
HELLMAN direkt zu einem Verschikselungsverfahren erweitern: Nach-
dem das gemeinsame Geheimpis a*Y modp vereinbart ist, knnen
Nachrichtenkbcke;, mit 0 < m,; < p — 1 in beide Richtungen ver-
schiusselt werden als = yvm,; modp. Da beide Partner den Wert ven
kennen, Knnen sie leicht nach dem erweiterteakEiD ischen Algo-
rithmus eind berechnen, so daf®¥ = 1 modp, und die versclilsselte
Information kann einfach entsdtdselt werden als:; = ¢, mod p.

Solange nur ein einzelner Block tbertragen werden soll, ist dage-
gen nichts einzuwenden. Sobald aber mehrei@hd zulbertragen
sind, wird dieses Verfahren verwundbar gegen Angriffe nekdnn-
tem Klartext: Falls ein Gegneitif einen einzigen Chiffreblock; den
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Klartextblockm, kennt (oder eft), kann e = m, /¢, modp berech-
nen und damit den gesamten Klartext entdsbkln. Um das Verfahren
sicher zu machen, ifdte man daheiif jeden Block ein eigenesgver-
einbaren und dazu jedes Mal das gesami&IB-HELLMAN -Protokoll
durchlaufen, was sehr aufwendigre.

Das Verfahren von EGAMAL umgeht dieses Problem, indem es exakt
dieselbe Mathematik mit einem leicht modifizierten Protbko einem
asymmetrischen Kryptoverfahren macht:

Die Parametein und p sind entweder allgemein bekannte System-
parameter, oder jeder Teilnehmarwahlt sie selbst als Teil seines
offentlichen Schilssels. Zugtzlich wahlt er sich eine geheime Zufalls-
zahlz und vebffentlichtu = ¢ modp.

Wer immer eine Nachrichty,, ..., m,. anA schicken nachte, erzeugt
fur jeden Blockn, eine Zufallszahl, berechnet daraus = a¥* modp
undec, = u”*m;. Dann schickt er die Folge der Paate, ¢;) anA. Der
Chiffretext ist damit doppelt so lang wie der Klartext, was &/erfahren
insbesonderdif lange Texte nicht sonderlich attraktiv macht.

A mul3 zur Entschilsselung den Multiplikator¥* kennen; dann kann
erm; alsc;u” ¥ berechnen. Da¥ = o™ = (a¥)" = v;” modp ist,
hat er damit keine Probleme.

TAHER ELGAMAL wurde 1955 inAgypten geboren. Er studierte zighst Elektrotechnik
an der Universit Kairo; nachdem er dort seinen BSc bekommen hatte, setzeire
Studien fort an den Information Systems Laboratories danfStd University. In sei-
ner Masterarbeit ging es haugathlich um Systemtheorie, jedocbrke er parallel auch
freiwillig viele Mathematikvorlesungen und kam auf dies#fag zur Kryptographie, die
zum Thema seiner Doktorarbeit wurde. Nach dem Studium tatieeér fir eine ganze
Reihe von Unternehmen, beispielsweise war er von 1995-aB98hefwissenschatftler
von Netscape mal3geblich an der Entwicklung von SSL betedigjitweise arbeitete er
auch in selbst gegndeten Firmen. 2006 wurde er Chief Technology Officer denfle-
weed Communications Corporation; seitdem diese 2008 vavegiibernommen wurde,
ist er deren Chief Security Officer sowie Berater einer Reregerer Unternehmen. Seit
2013 ist er Chief Technical Officer for Security des Cloudbfgters salesforce.com. Sein
Name wird in der Literatur oft auchLEGAMAL oder E GAMAL geschrieben; die obige
Schreibweise ist die, die er selbst im Englischen benutae Edgliche Transkription der
arabischen Schreibweise seines Namens ins DeutsifgeHIR AL-DSCHAMAL; ,,al* ist
der bestimmte Artikel im Arabischen.
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Der offensichtliche Angriff eines Gegners besteht darirs @ und a

den diskreten Logarithmus zu ermitteln, was nach derzeitigem Stand
der Dinge schwierig erscheint. Ob andere Angriffe zum Eyrfdhren
konnten, ist (widiblich) unbekannt — hoffentlich auch unseren Gegnern.

Genau wie bei RSA gibt es aber fidich auch hier eine ganze Reihe
von Moglichkeiten, das Verfahren durch schlechte Parametémwasdn
unsachger@ien Gebrauch unsicher zu machen; einige davon sind in der
am Ende von Kap. 43b) zitierten Arbeit zu finden. Insbesondere muf3
auch hier die Nachricht mit Zufallsbits auf volle Bloékige gebracht
werden; ansonsten hat der Gegner &me zur Entsclilsselungohne
Berechnung diskreter Logarithmen.

b) Das Verfahren von Massey-Omura

Bei diesem Verfahren geht es, wie bei der §iskklvereinbarung nach
DIFFIE-HELLMAN,, um Nachrichtenaustausch zwischen zwei PartAern
und B, die Uiber keinerlei gemeinsame Sakselinformation veifgen;
es gibt auch keinéffentlichen Schissel.

Das Verfahrendl3t sich am einfachsten verstehen, wenn wir mit einem
nichtmathematischen Analogon beginnen: Angenommnfermochte
einen Container mit wichtigen Unterlagen 8&nschicken, traut aber
dem Transporteur nicht. Wenn Brvorher treffen kann, kauft er ein-
fach ein gutes VorlingeschlolR und gil® einen der beiden Sdidsel.
Spater kann er dann den Container mit dem Schlof3 und seineriaisSetl
verschlie3en, un8 kann mit seinem Schbksel das Schlol3 wieder ent-
fernen, um den Container zifnen.

WennA undB keine Moaglichkeit zu einem vorherigen Treffen haben,
mussen sie umandlicher vorgehen: Jetzt kauft sich jeder der beiden ein
Schlof3, dessen Sdldsel dann nur er hat verschliel3t den Container
mit seinem Schlof3 und schickt ihn &1 Der kann ihn natrlich nicht
offnen und schickt ihn deshalb urigjinet wieder zuiick, verschliel3t
ihn aber vorher noch zaglich mit seinemSchlof3.A kann nunsein
Schlof3 entfernen und schickt ihn, nun nur nochBsitSchlo(3 gesichert,
anB. Dieser kanrseinSchlof3 entfernen und dann den Contaiféren.

In der digitalen Welten sieht das ganze so aus:
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A undB einigen sich auf eine Primzahldie auch Konstante eines gan-
zen Netzwerks sein kann), und jeder erzeugt sich einen ifgebbal-
tenden) Exponenten, bzw.e, der prim ist zup — 1. Dazu berech-
net er nach dem erweiterteruiE.ID ischen Algorithmus ein (ebenfalls
geheimzuhaltendes) Inverses modple- 1; diese Inversen seiet,
undd ;. Nach dem kleinen Satz voreRMAT ist somit fir jedesm € Z

meada = meeds = m modp .

Will nun B eine Nachricht» verschiisselt anA schicken, so schickt
erc, = m“? modp. Damit kann ndirlich wederA noch ein etwaiger
Lauscher etwas anfangen: Da niemand au3éie beiden Exponen-
tene; unddy kennt, ist das einfacligendeinePotenz zurgendeiner
Basis. Selbst ein Bresscher Gegner, der alle Kombinationeky (e)
mit M° = m® modp durchprobieren kann, wird dortif grol3ep
eine Rille von potentiellen Klartexten finden, die alle ung@f gleich
wahrscheinlich sind.

A schickt die Nachricht daher gleich wieder @ak, potenziert sie aber
vorher mit seinem Exponenten,. WasB erhalt, ist alsoc, = m“5“4,
eine Nachricht die niemand entsigbteln kann.

B potenziert diese Nachricht mit seinem Exponentgndies liefert
(meBeA)dB - meBBBdB — meBdBeA - (meBdB)eA = meA mOdp.

Diese Nachricht schickt er af, der nun mit seinem Exponenteh
leicht den Klartext ermitteln kann.

Auch die Sicherheit dieses Verfahrerénigt an diskreten Logarithmen:
Ein etwaiger Lauscher kennt die Zahlen

meB mOdp, meBeA = (meB)eA und mtA = (meBBA)dB ;
falls er in der Lage ist, diskrete Logarithmen modplau berechnen,
kann ere , bestimmen als den diskreten Logarithmus vef¥ < zur

Basism“? undd als diskreten Logarithmus vo(nmeBeA)dB zur Ba-
sism 4. Damit kann auch em berechnen, indem er beispielsweise
m? modulop mit d; potenziert. Die Primzahh mul3 also auch bei
diesem Verfahren so grol3 sein, daf3 die Berechnung diskregerith-
men modulgp zumindest praktisch undurdltirbar ist. Einman in the
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middle Angriff ist hier, im Gegensatz zul&AMAL , natirlich in genau
der gleichen Weise wie beim Verfahren vorFrBE-HELLMAN moglich.
JAMES L. MASSEY wurde 1934 in Wauseon, Ohio geboren. Er studierte Eleldhoié
an der University of Notre Dame und am MIT, wo er sich vor alleai Informations-
und Kodierungstheorie konzentrierte. Nach dem Studiumend# Jahre lang Professor
in Notre Dame, dann kurz am MIT und an der University of Catfifa, Los Angelos
(UCLA), bis er 180 einem Ruf an die ETHIZich folgte, wo er bis zu seiner Emeritierung
zum 1. April 1999 einen Lehrstuhlif Signal- und Informationsverarbeitung hatte.

JM K. OMURA studierte in Stanford Elektrotechnik und war dann 15 Jadmg Professor
an der UCLA. Danach @indete er eine eigene Firma namens Cylink (inzwischen von
Safenetlbernommen) und arbeitete als Beratemnferschiedene Firmen und Stiftungen.

c) DSA

Der Zusatzaufwand gegaber RSA macht sowohlUAMAL aus auch
MASSEY¥OMURA fur praktische Anwendungen eher uninteressant; hinzu
kommt, dal3 zumindest bei AdSEXOMURA ohne einen zugzlichen
Kanal keiner der beiden Partner sicher sein kann, dal3 etietirkit
dem anderen kommuniziert. Dasselbe giltimith zumindestiiir den
Empfangerauch bei RSA; dort allerdings liefert das Verfahrdmsteine
Moglichkeit fur elektronische Unterschriften, die dieses Problést. |
Auch das Verfahren vonusAamMAL kann so modifiziert werden, dal3 es
elektronische Unterschriften realisiert, mit diskretagharithmen kann
man aber auch noch weiter gehen und sogar relativ kurzetratmtem
sichere Unterschriften produzieren.

Der Rechenaufwand pro Byte ist bei asymmetrischer Kryptaheen
deutlich Foher als bei dend@ngigen symmetrischen Verfahren; anderer-
seits sind zu unterzeichnende Texte oft sehr lang, weilesgpelsweise
von Juristen unter Bécksichtigung aller Eventuaditen abgefal3t wur-
den. Deshalb wird meist nicht die gesamte Nachricht unigmret,
sondern nur ein sogenannten Hashwert. Dabei handelt essidine
kurze Bitfolge, die nach Art einer Biziffer von der ganzen Nachricht
abhangt und diese auch charakterisiert.

Wir werden uns inuberrachsten Kapitel genauer mit solchen Hashver-
fahren bescéftigen; dabei werden wir auch sehen, daf3 Hashwerte bis-
lang meist 160 Bit hatten und dal3 man gerade dabei ist, diestmend
problematische &nge auf 224 oder besser noch 256 Bit zwbadn.
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Wenn wir so einen Hashwert mit RSA unterzeichnen, hat dieetdnt
schrift nach derzeitigem Sicherheitsstandard eiaede von 2048 Bit.
Verglichen mit der [Ange des zu unterzeichnenden Hashwerts ist das
offensichtlich weitlibertrieben. Andererseitsane eine Unterschrift, die
auf diskreten Logarithmen in einendkper mir nur etwa 2° Elementen
beruht, ohne grofRen Aufwandl§chbar.

Der Digital Signature AlgorithnDSA bietet einen Ausweg aus diesem
Dilemma, indem er zwar in einer groRen Gruppe rechnet, dabe
kurze Unterschriften aus einer deutlich kleineren Unigoge liefert.
Dieser Algorithmus wurde iDigital Signature Standar®SS der USA
spezifiziertund ahlt neben RSA auch zu den von der Bundesnetzagentur
festgelegtenGeeigneten Algorithmen®.

Als Ordnung der Untergruppeahlt man eine Primzahj, fur die nach
dem Algorithmenkatalog 2016 der Bundesnetzagentur sé#ng2016
eine Lange von mindestens 256 Bit notwendig ist; der Entwimr2f017
begrugt sich mit 250 Bit. Diese &ngen Angen in erster Linie ab von
den verwendeten (und Adsigen) Hashverfahren, nicht so sehr von
Sicherheitsanforderungen.

Die Sicherheit wird ge@hrleistet (soweit dies aglich ist) durch eine
zweite Primzahlp, die so gewhlt wird, dalRp = 1 modyq ist; far
ihre Giol3e sind im Algorithmenkatalog 2016 mindesten2048 Bit vor-
geschrieben, der Entwurfif 2017 fir Unterschriften, diednger als bis
Ende 2022 gltig sein sollen, mindestens 3000 Bit vor.

Primzahlenp = 1 modgq sind nicht schwerer zu finden als beliebige
Primzahlen: Falls man bei der Primzahlsuche wirklich aufrixher
sicher geht und Zufallszahlen auf Primatittestet, nimmt man hier
einfach Zufallszahlek und testetq + 1 auf Primaliit. Falls man mit
ERATOSTHENESarbeitet, kann man das Sieben leicht so modifizieren,
dafl nur Zahlen der Foriy + 1 gesiebt werden. An den Erfolgschancen
andertdies in beiderdflen nichts: Nach einem Satz vomHICHLET Uber
Primzahlen in arithmetischen Folgen ist die Dichte der Baihben der
Formkq +4 fur jedesi mit 0 < ¢ < ¢ dieselbe; in der Gifdenordnung

ist also weiterhin im Mittel jede In-te solche Zahl eine Primzahl.
(Tatsachlich sind es sogar geringjig mehr, denn auf3erselbst gibt es
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natirlich keine Primzahl der Form = kq. Bei den GblRenordnungen
von ¢ mit denen wir arbeiten, geht aber der Unterschied zwisehen
undg — 1 definitivim ,Rauschen” der im Kleinen sehr unregaldigen
Primzahlverteilung unter.)

Als nachstes mul3 ein Elemepgefunden werden, dessen Potenzen im
KorperF,, eine Gruppe der Ordnung bilden. Auch das ist einfach:
Man starte mit irgendeinem Elemegt € F, \ {0} und berechne seine

(p—1)/q-te Potenz. Falls diese ungleich eins ist, muf3 sie Wg@éﬁ: 1
die Ordnung; haben; andernfalls mul3 ein neugdetrachtet werden.

Die so bestimmten Zahlen p und g werden vebffentlicht und lonnen
auch in einem ganzen Netzwerk global eingesetzt werdenei@ein
Schlissel jedes Teilnehmers ist eine Zahtwischen eins ung — 1;
der zugebrige offentliche Schiissel istu = g* mod p.

Unterschreiben lassen sich mit diesem Verfahren Naclemttiickem

mit 0 < m < ¢; im allgemeinen wird es sich dabei um Hashwerte der
eigentlich zu unterschreibenden Nachricht handeln. Dagutwnan tir
jede Nachricht eine Zufallszahlmit O < £ < ¢ und berechnet

r = (¢ modp) modg.

Dag eine Primzahl ist, hat ein multiplikatives Inverses modutg man
kann also modulg durchk dividieren und erhlt eine Zahls, fur die

sk =m+ zr modq

ist; die Unterschrift unter die Nachricht besteht dann aus den beiden
Zahlenr unds zwischen O ung — 1. Sie kann nur erzeugt werden von
jemanden, der den geheimen Sddelr kennt.

Uberpiifen kann die Unterschrift allerdings jeder:dstas multiplikative
Inverse zus modulog, so istk = tsk = tm + xtr modg, also, day die
Ordnungg hat,¢” modp = ¢'™¢*"" modp = ¢"™«!" modp. Modulog

ist die linke Seite gleich, und auf der rechten Seité&knen sowohy™

als auch:'” ausoffentlicher Information und der Unterschrift berechnet
werden. Modulog kann diese Gleichung soniiberpiift werden; die
Unterschrift wird anerkannt, wenn

r = (¢"u'" modp) modg
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ist. (Die beiden Potenzen und ihr Produkiissen ndirlich zurachst
modulop berechnet werden: Zwei modujokongruente Zahlen sind
praktisch nie auch kongruent modulg

Ein Angreifer nuf3te sich nach allem was wir wisserausu verschaf-

fen, mifdte also ein diskretes Logarithmenproblem modulo deregrol}
Primzahlp 16sen, so dal3 der Sicherheitsstandard dem des diskreten
Logarithmenproblems modujpentsprechen sollte, obwohl die Unter-
schriften deutlich Krzer sind.

§83: Strategien zur Berechnung diskreter Logarithmen

Genau wie es zahlreiche Aamige gibt, ganze Zahlen auf mehr oder
weniger effiziente Weise zu faktorisieren, gibt es auch dischieden-
sten Methoden, diskrete Logarithmen zu berechnen. Obveokeimen
klaren theoretischen Zusammenhang zwischen den beidd&teRren
gibt, zeigt die Erfahrung der letzten Jahren eine erstelialParallelét
zwischen den entsprechenden Algorithmen. Da das Inteers$@k-
torisierungsalgorithmen zumindest bislang deutlichl3gr ist, kamen
neue Entwicklungen in der letzten Zeit immer von dort; arstizher-
weise stellte sich aber immer ziemlich schnell heraus, daBhaliches
Verfahren mit praktisch demselben Aufwand auch diskreggsithmen
berechnen kann. Daher k#mgen wir, um vergleichbare Sicherheit zu
erreichen, bei der Kryptographie mit diskreten Logarithndoduln
zumindest derzeit dieselber@hgen wie bei RSA.

a) Probieren

Am einfachsten und langwierigsten ist das Probieren: Undikreten
Logarithmus modulg von a zur Basisg zu bestimmen, berechnet
man (analog zur Faktorisierung durch Abdividieren) systesch alle
Potenzen vog, bis mar erkélt. Dies erfordert im Mittep /2 Versuche.

b) Gruppentheoretische Formulierung des Problems

Fur bessere Verfahrenimsen wir das Problem zaohst mathematisch
aufbereiten. Dazu dient die Gruppentheorie. Zur Erinngrsgien die
wesentlichen Definitionen noch einmal wiederholt:
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Definition: Eine Gruppe ist eine Mengé zusammen mit einer Ver-
knupfungx: G x G — G, so dald gilt:
e Furalleg,h,k € Gist(g*h)xk = gx (hxk) (Assoziativgesetz)
e Es gibt ein Element € GG, genanntNeutralelementso dal d@ir alle
geGQit. gxe=exg=g.
e Zu jedemg € G gibt es eininverses Element € G, fur das gilt:
gxh=hxg=e.
e Die Gruppe heil3belschwenn zugtzlich gilt: g x h = hx g fur alle
g, h € G. (Kommutativgesetz).
e Die Gruppe heil3endlich, wenn die MengeG nur endlich viele
Elemente hat.
e Eine endliche Gruppe heizyklisch,wenn es ein Element € G
gibt, so dal3 sich jedésc G schreibendf3talsh =g*---xg = g"
——

o o def
mit einer naiirlichen Zahln € N. . ©

Das inverse Elememtzu g schreiben wir kurz alg ™2, und firn € Nsoll
g "= (g7 1)" sein.g? bezeichneiir jedesy € G das Neutralelement.

Als erstes missen wir khren, welche Werte die Potenzefi modp
uberhaupt annehmermiknen. Klar ist

Lemma: Fur jede nalfrliche ZahlN ist die Menge allep™ mod N mit
x € N eine zyklische Gruppe baglich der Multiplikation modulaV.

Beweis:Das Assoziativgesetz folgt sofort aus deiir tlie Addition
natirlicher Zahlen. Da es nur endlich viele Restklassen modutpbt,
muld es aul3erdem zwei Zahlen> s geben mitg" = ¢° mod N; mit
m = r — s ist daherg™ = 1 modN als Potenz vory darstellbar, und
das ist das neutrale Element. PA™ = ¢® mod N fir allez, 1aRt sich
jede Restklasse in der Forgri mod N mit 1 < x < m darstellen; das
Inverse dazu ist danp™~* mod N. Damit sind alle Gruppenaxiome

nachgewiesen, und zyklisch ist die Gruppe nach Konstraoktio .

Definition: Die kleinste ndirliche Zahlm, fur dieg™ = 1 mod N ist,
heil3tOrdnung vony moduloN.

Das Knacken eines Kryptosystems auf der Basis diskreteaudithgnen
iIst umso einfacher, je kleiner die Ordnung der Bgsi. Daher niissen
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wir Elemente ndglichst gro3er Ordnung finden. Dazu betrachten wir
das Problem gruppentheoretisch:

Definition: Die Ordnung eines Elemenis einer (multiplikativ ge-
schriebenen) Gruppé€' ist die kleinste natrliche Zahlr, fur die a”
gleich dem Neutralelement ist. Falls es keine solche Zajbt, sagen
wir, a habe unendliche Ordnung. Die Ordnung einer endlichen Grupp
ist deren Elementanzahl.

Lemma (LAGRANGE): In einer endlichen Gruppe teilt die Ordnuing
eines jeden Elementsdie Gruppenordnung.

BeweisWir filhren auf der Grupp@ eineAquivalenzrelation ein durch
die Vorschriftu ~ v, falls es eins € N gibt mitu = vg®. Offensichtlich

besteht dieAquivalenzklasse eines jeden Elements G aus genau
r Elementen, amlich u, ug, ...,ug"t. Da G die Vereinigung aller
Aquivalenzklassen ist, muf} die Gruppenordnung somit egifathes

vonr sein.

JOSEPHLOUIS LAGRANGE (1736—1813) wurde alsiG-
SEPPE LODOVICO LAGRANGIA in Turin geboren und
studierte dort zuachst Latein. Erst eine alte Arbeit
von HALLEY Uber algebraische Methoden in der Op-
tik weckte sein Interesse an der Mathematik, woraus
ein ausgedehnter Briefwechsel miUIEER entstand.

In einem Brief vom 12. August 1755 berichtete er
diesem unter andereiiber seine Methode zur Berech-
nung von Maxima und Minima; 1756 wurde er, auf
EULERs Vorschlag, Mitglied der Berliner Akademie;
zehn Jahre syer zog er nach Berlin und wurde dort
EULERs Nachfolger als mathematischer Direktor der
Akademie. 1787 wechselte er an die Pariser Acai@ des Sciences, wo er bis zu seinem
Tod blieb und unter anderem an der Eihfung des metrischen Systems beteiligt war.
Seine Arbeiten umspannen weite Teile der Analysis, AlgeilbcaGeometrie.

Fir eine Primzahlp bilden die Zahlen module bekanntlich einen
Korper; wie uns das folgende Lemma zeiginken wir dann Elemente
der gbRtnbglichen Ordnung — 1 finden:

Lemma: Istk ein endlicher Krper, so bilden die Elemente vén {0}
beziglich der Multiplikation eine zyklische Gruppe.
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BeweisDa die multiplikative Gruppe einesdfpers mity Elementen aus
allen Korperelementen aul3er der Null besteht, hat sie die Ordipurig
Nach LAGRANGE ist daher die Ordnung eines jeden Elements ein Teiler
von ¢ — 1. Wir miissen zeigen, dal3 es mindestens ein Element gibt,
dessen Ordnungenaug — 1 ist.

FUr jeden Primteilep, vonq — 1 hat die Polynomgleichung
2a=1/pi =1

hochstens{ — 1)/p, Losungen im Krperk; es gibt also zu jedem,
ein Kdrperelement, mit agq—”/m 1.

¢, sei die gbRte Potenz vop,, die ¢ — 1 teilt, undg, = a!" /% die
(¢ — 1)/q,-te Potenz vom,. Dann ist

q4 a—

1
g =al =1 und g/ =a;,"" #1;

g, hat also die Ordnung,. Da die verschiedeney) Potenzen verschie-
dener Primzahlep, sind, hat daher das Produkgller g, das Produkt
allerq; als Ordnung, alsg — 1. Damit ist die multiplikative Gruppe des
Korpers zyklisch. .

In unserer Situation bedeutet dies, dal3 es mindestens ahig gibt,
so dal’ die Abbildung

s0_{2/(27—1)—>Z/p\~{0}
x—g°

bijektiv ist. Solche Zahle bezeichnet man ajzrimitive Wurzelrmo-
dulo p. Kryptoverfahren auf der Basis diskreter Logarithmen siaker
dann am sichersten, wenn die Bagisine primitive Wurzel modul®

Ist; in diesem Fall gibt es die meisten verschiedenen Petgjizmod p,

namlichp — 1 Stick.

Nach LAGRANGE st die Ordnungn eines jeden Elemenisein Teilerm
vonp — 1. Istm ein echter Teiler, so gibt es mindestens einen Primteiler
g von p — 1, so dal¥n sogar ein Teiler vony(— 1)/q ist; wenn wir
entscheiden wollen, ob eine gegebene Bagime primitive Wurzel ist,
geriigt es also, ir alle Primteilerg vonp — 1 die Potenzeg®~1/9 zu
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berechnen; falls keine davon gleich eins modguiliist, haben wir eine
primitive Wurzel gefunden.

In der Praxis wird dies freilich meist daran scheitern, dafw 1 nicht
faktorisieren kbnnen — es sei denn, wir habggeeignet geahlt. Falls
wir beispielsweise eine Primzaphlder Formp = 2p’ + 1 mit primemyp’
wahlen, isip—1 = 2p’, undg ist genau dann primitive Wurzel modyto
wenn wederg? noch gp/ kongruent eins modulg ist. Da ¢? nur fur
g = +1 modp kongruent eins ist, ist somitegpmit 1 < g < p—1
genau dann primitive Wurzel, wery’f' % 1 modp ist; andernfalls hat
es die (kryptographisch fast genauso sichere) Ordpling

c) Anwendung des chinesischen Restesatzes

Die Basisg habe die Ordnung: modulo N und ihre Primfaktorzer-
legung sein = [ -, ¢;*. Wir wollen das diskrete Logarithmenproblem
g® = amodN losen. Um es auf diskrete Logarithmenprobleme in
Gruppen der Ordnungegf® zurickzufihren, setzen win, = m/q;";
fur g = a mod N ist dann aucly™* = o™ mod N, undg, = ¢"* hat
moduloN nur die Ordnungy; .

Falls wir dier diskrete Logarithmenproblemg® = a™* mod N 16sen
kdnnen, lassen sich diedsungenz, leicht zu einer IBsung des ur-
spiinglichen Problems zusammensetzen: Dadiekeinen gemein-
samen Primteiler haben, istihr ggT gleich eins; es gibtgésze Zahlen
a; mit >0 a;n,; = 1, die wir uns mit dem erweitertenUELID ischen
Algorithmus leicht verschaffendanen. Mitz = >~'_, a;n,x; ist dann

r T
g = Hgnixiai = Hanio‘i = aZiZI ¥ =g mod N .
=1 =1

d) Das Verfahren von Pohlig und Hellman

Tatsachlich reicht es sogar, wenn wir das diskrete Logarithmanipm

statt in Gruppen der Ordnung”l in Gruppen der Ordnung; losen
konnen. Dazu gehen wir folgendermal3en vor:
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Der Einfachheit halber besdmken wir uns auf eine zyklische Grupfie
von Primzahlpotenzordnung und wahlen dort ein erzeugendes Ele-
mentg. Gesucht ist der diskrete Logarithmus eines weiteren Eisne
a € G zur Basisg.

Diese gesuchte Zahl liegt zwischen null und;® — 1 (tatfchlich ist
sie sogar hchstensy® — ¢°~1); wenn wir sie in Ziffern zur Basip
schreiben, ist also

;C:x0+x1q+x2q2+---+x6_1q6_1 mit ngléq

Wir wollen unsuberlegen, dal3 wir digZiffern* x; als diskrete Loga-
rithmen in einer Untergruppe der Ordnugpgerechnen &nnen.

Ausa = ¢g” folgt die Beziehung

a? = gl‘pj = gxoqj . gxlqj+l .gxij+2 .. .gxeflq”e_l
Daaber? = 1 modN ist, sind modulaV alle Terme, in deneqeinen
groReren Exponenten adshat, gleich eins; taéhlich ist also

J+l Jj+2

a? = P’T = good’ L gmd’ | geed’™ e 10" mod NV

Insbesondere folgiif j = e — 1, dafa?” = ¢ mod N ist, z ist
also die losung eines diskreten Logarithmenproblems in dergﬂéﬁl
erzeugten Untergruppe der Ordnung

Angenommen, wir haben digiffern“ von z, bis z,. bereits bestimmt.
Dann schreiben wir

1
—To—x1q——Trq — Tr1q

a . g g Y g
und potenzieren diese Gleichung mft2~". Modulo N kdnnen wir

rechts alle Terme aul3er dem ersten streichen; wir erhalsan che
Gleichung

-1
Ieflqe

e—2—r e—2—r

ad _g—q (xotz1q+---+T,q") = ql””*lq%1 modN,

die unsz,,, als diskreten Logarithmus der (bekannten) linken Seite
liefert, und zwar wieder in der vogqe_l erzeugten Untergruppe der
Ordnungg.

Auf diese Weise &nnen wir nacheinander diamtlichenx, berechnen
und damit auch.
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Zusammen mit dem oben diskutierten Ansatzer den chinesischen
Restesatz ist dies das Verfahren voboHRG und HELLMAN zur Be-
rechnung diskreter Logarithmen in einer zyklischen Gru@ker Ord-
nungn: Sie kann zuiickgefihrt werden auf die Berechnung diskreter
Logarithmen in Untergruppen, deren Ordnungen die Prietteidnn
sind.

e) Folgerung flr die Sicherheit von Kryptosystemen

Die Diskussion in den beiden vorigen Abschnitten zeigt,dla/fSchwie-
rigkeit der Berechnung einen diskreten Logarithmus inrezgg&lischen
Gruppe der Ordnung relativ einfach zuickgefihrt werden kann auf
die Berechnung diskreter Logarithmen in Untergruppenemedrd-
nungen die Primteiler vom: sind. Als Faustregel dnen wir daher
festhalten, dal’ die Sicherheit diskreter Logarithmennerezyklischen
Gruppe der Ordnungr im wesentlichen nur gleich der Sicherheit in
einer Untergruppe der Ordnungist, wobeiq der giof3ten Primteiler
vonn ist.

Idealerweise sollte daher die Gruppenordnungelbst eine Primzahl
sein, was allerdings zumindesirfdie multiplikative Gruppe modulp
nur im kryptographischalig uninteressanten Fail= 3 der Fall ist.

Hier empfiehlt sich, eine Primzaplder Form 2’ + 1 zu wahlen, wobei
auchp’ eine Primzahl ist. Die multiplikative Gruppe moduyldat dann
die Ordnung 2’, und die Sicherheit entspricht der in einer Gruppe der
Ordnungp’.

f) Baby step und giant step

Bei der Faktorisierung ganzer Zahlen konnten wir den Autivgegen-
Uber dem naiven Abdividieren durch die Monte-Carlo-Metaf
ungethr die Quadratwurzel der zu faktorisierenden Zahl redanie
Auch fur die Bestimmung diskreter Logarithmen gibt es entspneche
de Verfahren, zum Beispiel ddmaby step — giant steplgorithmus

von SHANKS, das auf Kosten von mehr Speicherplatz die Rechenzeit
gegetiiber reinem Probieren deutlich reduziertrigtie Ordnung vorg,



247 Kryptologie HWS 2016

so ist der Aufwand nicht mehr proportional zy sondern nur noch
zu+/n.

DANIEL SHANKS (1917-1996) wurde in Chicago geboren, wo er zur Schule giddgl@37
einen Bachelorgrad in Physik der University of Chicago ebw&r arbeitete bis 1950
in verschiedenen Positionen als Physiker, danach als Muettileer. 1949 begann er ein
graduateStudium der Mathematik an der University of Maryland, zusdesBeginn er
der erstaunten Fakalt als erstes eine fertige Doktorarbeit vorlegte. Da zureigeduate
Studium auch Vorlesungen undiungen gebiren, wurde diese noch nicht angenommen,
und da er viahrend seines Studiums Vollzeit arbeitete, dauerte es bisch954, bevor
er alle Voraussetzungen élite; dann wurde die Arbeit in praktisch unéederter Form
akzeptiert. Erst 1977 entschlo er sich, eine Stelle ar &ln&ersitt anzunehmen und
war dann bis zu seinem Tod Professor an der University of Mady

SHANKS wahlt eine nairliche Zahkm die ungeéhr gleichy/n-log, n ist;

falls mann nicht so genau kennt, kann zwar die Effizienz des Verfahrens
unter einer schlechten Wahl vem geringfigig leiden, aber solange die
GrolRenordnungen einigermalien stimmen, ist das nicht so tisaima
Wichtig ist nur, dal3n > /n ist, aber nicht dramatisch @Rer.

Danach berechnet er diarstlichen Potenzegt von g mit Exponenten
i < m; das sindn sogenannteaby steps.

Bei den dann folgendegiant stepsberechnet er, um den diskreten
Logarithmus voru zu erhalten, die Elemente- ¢~™ firj = 1,2, ...
und vergleicht sie mit den Vielfachen aus dem ersten Tem.d6icher
Vergleich kann etwdiber eine biare Suche oder einkashTabelle
implementiert werden und hat einen Aufwand proportiong} fa

Sobald ein Wert: - g~™ gefunden ist, der mit einer der in déaby
stepsberechneten Potenzeh iibereinstimmt, gilz - ¢=™ = ¢° oder
a = g™ der diskrete Logarithmus vanzur Basisyg ist alsom;j + i.
Die notwendige Anzahl vogiant stepdiegt im schlimmsten Fall bei
n/m = y/n; im Durchschnitt ist sie halb so grof3.

g) Zahme und wilde Kangurus

In den Jahren um 1975 entwickelte der britische MathemaiidieN M.
PoLLARD mehrere recht einfache Algorithmen zur Faktorisierung gan
zer Zahlen sowie zur Berechnung diskreter Logarithmerauaod heute
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noch (teils in verbesserter Form) zu den Standardwerkzredge al-
gorithmischen Zahlentheorie g&éten. Eine seiner Methoden verwendet
eine Strategie zur Jagd aufidgurus.

JOHN M. POLLARD ist ein britischer Mathematiker, der haugtslich bei British Telecom
arbeitete. Er vaiffentlichte zwischen 1971 und 2000 rund zwanzig mathesolé Arbei-

ten, golitenteils auf dem Gebiet der algorithmischen Zahlent@eBekannt ist er auch
fur seine Beitage zur Kryptographieiif die er 1999 den RSA Award erhielt. Aul3er dem
hier vorgestellten Algorithmus entwickelte er unter amterauch das im letzten Kapi-
tel erwahnte Zahlkrpersieb, dessen Weiterentwicklungen die derzeit stdterl Fak-
torisierungsalgorithmeruf grof3e Zahlen sind. Seine home page, um die er sich auth jetz
im Ruhestand nochtkmmert, istattps://sites.google.com/site/jmptidcott2/home.

Da RoLLARD kein Australier ist, sondern Brite, sind fialich auch seine
Kangurus britisch. Das geht zwar nicht so weit, dal’3 dieseaBgkh
an Bushaltestellen bilden, sie springen aber im Gegensalzren aus-
tralischen Artgenossen auch niclitiNg ungeordnet durch die Gegend:
Sie springen immer geradeaus, und die Spramggn sind nétliche
Zahlen aus einer endlichen Teilmen§ecC N, die durch den Start-
punkt des Sprungs eindeutig festgelegt sind. Die Posiiimgsekangu-
rus kann daher durch eine ddiche Zahlu € N beschrieben werden,
und wenn es von dort aus abspringt, springt es zum Runk(u), wobel
f:N — S eine bekannte Funktion ist, die wohl in erster Linie von der
Bodenbeschaffenheit in den einzelnen PunkienN abhangen drfte.
Da die Landschaft in GroRRbritannien sehr variabel iirken wir in
erster Nhherung annehmen, dal? sittvie eine Zufallsfunktion verdlt;
ihr Erwartungswert seh, das arithmetische Mittel der Elemente \®n

Um ein wildes Kanguru zu fangeniiberredet BLLARD ein zahmes
Kanguru, von einem Startpuni} aus loszuspringen undSpringe zu
machen. Nach jedem Sprung soll es auf seiner jeweiligerti®ogin
Loch graben und dieses gut mit Zweigen odénlichem kaschieren.
Die Positionen,, bei denen es&cher gabt, sind rekursiv berechenbar
durch die Vorschrifts, = w, 1 + f(u;_4).

Falls nun ein wildes Bnguru auf derselben Strecke unterwegs ist, ken-
nen wir dessen Startpunktg natirlich nicht; da es britisch ist, wissen
wir aber, wie es springt: NachSpiiingen ist es auf einer Positian,

die Uber die Rekursiom, = v, _; + f(v,_,) gegeben ist.
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Da sich f genmal3 unserer Annahme wie eine Zufallsfunktion \&@th
fallt das wilde Kanguru bei jedem Schritt mit einer Wahrscheinlichkeit
von ungeéhr 1/m in ein Loch und endet dann alsikgurubraten; seine
Chance, ber < n Spiingen alle bcher zu vermeiden, liegt also etwa
bei (1— l/m)’" Setzen Wirr = am, SO kdnnen wir dies auch schreiben
als(1— 1) = (1- 1)Y™ ~ e~ fur hinreichend groRe. Schon &ir

a = 3 betagt diese Chance nur noch knapp 5864 = 6 ist sie ungedhr

1 :400, fira = 7 weniger als 1 : 1000. Dasadguru hat also kaum eine
Chance, dem Kochtopf zu entgehen.

Nun gibt es zwar sicherlich sowohl Zahlentheoretiker alshakirypt-
analytiker, die gerne &ngurubraten essenahrend der Arbeitszeit in-
teressieren sie sich aber mebir Fragen wie die Faktorisierung ganzer
Zahlen oder die Berechnung diskreter Logarithmen.

Zur Berechnung des diskreten Logarithmus einer Zalalr Basisg
modulop kdnnen Kangurugager wie folgt vorgehen: Siedhlen zuachst
ein Intervall (4, B), in dem der diskrete Logarithmus liegt. Wenn sie
keinerlei spezielle Informationen haben, wird dies zwéingfsy das
Intervall (1, V) sein nussen; in Situationen wie beim DSA mit grol3er
Primzahlp und kleiner Primzah§ weil3 man aber, dal} es bereits eine
Losung im viel kleineren Intervall (1) gibt.

Das zahme Enguru startet mity; = ¢ modp und springt dann
nacheinander die Positionen = v, ¢/~ an, bis es das Suchin-
tervall (A, B) verlassen hat.

Das wilde Kanguru startet an der Positiag = v = g* modp, wobei
x den zu berechnenden diskreten Logarithmus bezeichnat san-
depositionen sind die Punkte mit u, = u;_,¢’“-2, bis es eventuell
in ein vom zahmen Enguru gegrabenes Locallt. Wenn es alle Fallen
vermeidet, war der Ansatz erfolglos; andernfalls habenhalven wir

zwei Indizes;, j mit u; = v;.

Die Rekursionenir u; undv; lassen sich leicht aufken; wir erhalten
die Gleichung

B+f(vo)+f(vi)++f(vi1) = z+f(uo)+f(ur)++f(u;—1)

9 9
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und somit den gesuchten diskrete Logarithmus~aifs

=B+ f(vg) + f(u)+- -+ fv;_1) — flug) — flug) = — flu;_q) .

Um Aufwand und Erfolgschancen der Jagd abzasodn, gehen wir
davon aus, daf3 beide sich die Sprungpositionen beidlegrus wie Zu-
fallsfolgen verhalten. Ist: das arithmetische Mittel vofi, braucht das
zahme Kanguru ungedhra = (B — A)/m Spiinge, um das Intervall zu
durchqueren; da das wilde irgendwo mitten im Intervalltstakonnen

es da erheblich weniger sein. Auf jeden Fall haben wir ab&inem
Intervall der LAangeB — A mehr alsy zufallige Werte; nach dem Geburts-
tagsparadoxon (mit dem wir uns im Kapitéber Hashfunktionen noch
genauer besdéitigen werden) steigt die Chance auf eine Koinzidenz sehr
schnellin die Mihe der Eins, sobatd= (B—A)/m > v B — Aist, also

m < B — A. Mit m etwas kleiner als/B — A haben wir etwas mehr
alsv/B — A Spiinge des zahmendagurus und im Mittel etwa halb
so viele fir das wilde; der Aufwand ist also in der @3¥enordnung von
v B — A mit einer zwar recht hohen Erfolgswahrscheinlichkeit,rabe
ohne Erfolgsgarantie.

h) Indexkalkul

Die derzeit besten Faktorisierungsalgorithmen beruhémnlem quad-
ratischen und dem Zahdkpersieb; @ir beide wurden bald nach ihrer
Einfuhrung ahnliche Siebalgorithmen gefunden, die zur Berechnung
diskreter Logarithmenuhren. Wir besclanken uns hier, wie auch
schon bei der Faktorisierung, auf das quadratische Siebedé&/ariante

fur diskrete Logarithmen alsdexkalkil bezeichnet wird nach der in
der Zahlentheorie ebenfalls géoichlichen Sprechweise Indairfden
diskreten Logarithmus. Wir bes@mken uns auf die einfachste Variante
speziell tir PrimkorperF,,.

Wie beim quadratischen Sieb wird eine SchraBkestgelegt und damit
eine Faktorbasi$s definiert; diese besteht hier aaien Primzahlen
q < B. Der Algorithmus besteht aus zwei Teilen:

Im ersten Teil berechnet man die diskreten Logarithmem Bienzah-
len ¢ aus der Faktorbasis zur gegebenen Basisodulop. Dies mag
auf den ersten Blick unsinnig erscheinen, denn schliefSlicihen wir
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den diskreten Logarithmusiner Zahl und beginnen dazu mit der Be-
rechnung der diskreten Logarithmen vieler Zahlen. Die lcitigaen der
Primzahlen lassen sich aber simultan wie folgt berechnam bérechne
viele Potenzemn? modp und suche diejenigen, die eine Primfaktorzer-
legung mit lauter Faktoren adshaben. Ist

a modp =qi*--- g7,

So ist
Y= ellogaq1+"'+erlogaqr mOdm’

wobeim die kleinste nairliche Zahl ist mita™ = 1 modp. Fur eine
primitive Wurzela modulop istm = p — 1, ansonsten kanm auch ein
echter Teiler davon sein.

Mit gentigend vielen Gleichungen dieser Form hat man ein lineares
Gleichungssystemuf die Logarithmen der € B, allerdings leider
nicht iber einem Krper, sondern modulo der im allgemeinen zusam-
mengesetzten Zahh. Falls m Produkt von Primzahlen istp$t man
das Gleichungssystem modulo jeder dieser Primzahlen uat die
Losungen nach dem chinesischen Restesatz zusammen; warmathtec
Primzahlpotenze®® in m stecken, schreibt man dée und die linken
Seiteny im Zahlensystem zur BasiB und erfalt dann fir jede Ziffer

ein lineares Gleichungssystdier dem Krper mit P Elementen, aus
denen man die dsung modulaP® zusammensetzen kann. Dieser erste
Schritt ist offensichtlich @llig unablangig vom Element, dessen Lo-
garithmus wir suchen; er kanarfeine gegebene Basisind Primzahp

ein fur allemal im voraus durchgéfirt werden.

Im zweiten Schritt betrachtet mairfzufallig gewahlte Exponenten

die Elemente?xz mod p, bis man eines findet, das nur durch Primzahlen
aus der Faktorbasis teilbar ist. Falls etwar modp = q{l qle st
erhalten wir

log, = = f;log, ¢; +--- + f,109, ¢, —y modm .

Leider gibt es kein Siebverfahren, mit dem sich feststdiét, welche
Wertea” modp durch eine gegebene Primzatteilbar sind; hier muf
man also explizit faktorisieren — zumindest so lange, Hes léhktoren
aus B gefunden sind. Egal ob man hier mit Probedivisionen arbeite
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oder etwa mit BLLARDS p-Methode oder mit elliptischen Kurven: Das
Verfahren ist fir grol3ep deutlich schneller als beispielswelsaby step

— giant stepund der Aufwand steigt langsamer als exponentiell in der
Ziffernzahl vonp.

84: Diskrete Logarithmen in anderen Gruppen

2048 Bit-Zahlen sind bereits ziemlich unhandlich, und irkdit wird

die Mindesténge sicherer Moduln garantiert noch weiter wachsen. Da-
her suchen Kryptologen bereits seit langer Zeit nach Adtevan. Die
derzeit interessantesten (und zunehmend bereits in dasIagesetz-
ten) Verfahren beruhen auf einer Verallgemeinerung diskitsogarith-
men:

a) Die abstrakte Situation

Ist G irgendeine Gruppe ungl€ G, so kbnnen wir die Abbildung
0l — G, n—g"

betrachten. Falls man in der Grup@daiberhaupt konkret rechnen kann,
lassen sich die Wertg (n) = g™ nach demiiblichen Verfahren durch
Quadrieren und Multiplizieren mit einem Aufwand in derd®enord-
nung log n berechnen.

Die Umkehrfunktion,og‘l: Bild p, — Z/ Kerng, bezeichnen wir auch
hier als einen diskreten Logarithmus; falls er hinreicheobwer zu
berechnen ist, eignet er sich als Grundlageryptosysteme.

Das Bild vony,, besteht offensichtlich genau aus den Potenzeryyisi
also eine zyklische Gruppe. Damibknen wir uns ohne Besdrkung
der Allgemeinheit auf zyklische Gruppen besafken.

Fur die Berechnung diskreter Logarithmeirnkien wir die meisten Ver-
fahren aus dem letzten Paragraphen ohne nennendivetéeungen auf
die abstrakte Situation verallgemeinerir@en chinesischen Restesatz
sowie die Methode vondHLIG und HELLMAN brauchen wir nur irgend-
eine zyklische Gruppe, und auch den zahmen und wildergkirus ist es
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gleichdgiltig, durch welche Gruppe wir sie springen lassen: Die Bg+u
weiten beziehen sich schliel3lich auf den stets ganzzahiigponenten.

Anders ist es beim Indexkalk Hier haben wir ganz wesentlich be-
nutzt, dald sich die Elemente, deren diskrete Logarithmerswahen,

als natirliche Zahlen darstellen lassen, so dafd wir mit deren Fimz
legung arbeiten®nnen. Die sollte nicht in allen Gruppen funktionieren.

b) Multiplikative Gruppen beliebiger endlicher Korper

Tatsachlich gibt es nicht nurilr jede Primzahlp einen Korper mit
p Elementen, sonderruf jede Primzalgotenzqg = p™. Vor allem fur
den Fallg = 28 = 256 werden wir dies im #&chsten Kapitel genauer
betrachten.

Wie wir aus§3b wissen, bilden die von Null verschiedenen Elemente
eines endlichen &rpers beiglich der Multiplikation eine zyklische
Gruppe; falls ihre Ordnung — 1 = p™ — 1 prim ist oder einen grof3en
Primteiler hat, lassen sich auch so sichere Kryptosysteri@aen.

In der Praxis kryptographischen Praxis spielen Potenzegerader
Primzahlen allerdings kaum eine Rolle: Das Rechnen in déspest
chenden Krpern ist aufwendiger als das in einem vergleichbar grof3en
Korper von Primzahlordnung, ohne dal3 dies zu einem Sichgrhei
gewinn tihren wirde, da eine Variante des Indexkik bei beliebigen
endlichen Krpern funktioniert.

Anders steht es mit &pern von Zweipotenzordnung: Da Computer
ohnehin im Zweiersystem rechnenprinen sie damit sehr effizient
umgehen. Es gibt sogar eine Reihe von Exponeni@éndie 2* — 1
prim ist; furn < 2500 sind dies 2, 3,5, 7, 13,17, 19, 31, 61, 89, 107,
127,521, 607, 1279, 2203 und 2281.

Grundstzlich dirfte wohl die Sicherheit diskreter Logarithmenin einem
Korper mit 2' Elementen vergleichbar sein mitder einggpers, dessen
Elementanzahl eine Primzahl derselber@nordnung ist, allerdings
gibt es sehr viel weniger Zweierpotenzen als Primzahled,nicht fur
allen hat 2' — 1 einen grof3en Primteiler. Dadurch besteht die Gefahr,
dafl? sich kriminelle Energie (sowie auch Nachrichtend@nauf die
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wenigen interessanten Werte vestiirzen und dort mit Spezialhardware
arbeiten, was die Sicherheitssituation zu ihren Gunstestiebt. Somit
darften im allgemeinen Primzahlen vorzuziehen sein; hiraait, dal3
zumindest DSA ohnehin nuif diesen Fall definiert ist.

c) Elliptische Kurven

In der Praxis ist fir Kryptoverfahren auf der Basis diskreter Loga-
rithmen abgesehen von den multiplikativen Gruppe dérpér von
Primzahlpotenzordnung vor allem noch eine andere Art voumpe
wichtig: die Gruppe der rationalen Punkte einer elliptestiKurvetber
einem endlichen HKrper. In bislang eher noch experimentellen Syste-
men arbeitet man auch mibherdimensionalen Verallgemeinerungen
davon, haup@&chlich den dcosischen hyperelliptischer Kurven. Da el-
liptische Kurven Gegenstand einer eigenen Vorlesung soithier nur
kurz erButert werden, um welche Art von Gruppe es sich bei einer
elliptischen Kurven handelt.

Elliptische Kurven sind keine Ellipsen; sie haben ihren dandavon,
daf bei der Berechnung der Bogemje einer Ellipse algebraische In-
tegrale auftreten, deren Integranden solche Kurven defimie

Eine elliptische Kurveaiber einem Krperk ist eine ebene Kurve vom
Grad drei; sie ist also gegeben durch ein Polynowom Grad drei mit
Koeffizienten aug in zwei Variablen: undy. Wir verlangen zustzlich,
dalf? sich das Polynorhauchtber Erweiterungskpern vonk nicht als
Produkt eines linearen und eines quadratischen Polyndmasisen &f3t,
daR es mindestens eine Nullsteltle{) € k% hat und daR die partiellen
Ableitungenf, undf, furkeine Losung ¢, y) der Gleichung’(z,y) = 0
uber irgendeinem Erweiterungstper vonk simultan verschwinden.

Geometrisch bedeuten diese Forderungen, dald die difichy) = O
definierte Kurve nicht als Vereinigung einer Geraden undreamderen
Kurve geschrieben werden kann, dald sie mindestens einekt Puin
Koordinaten aug hat und daf es in jedem Punkt eine wohldefinierte
Tangente gibt.

Schneiden wir eine solche Kurve mit einer Geraden, so erlaubdie
Geradengleichung die Elimination einer der beiden Vaeablundy;
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wastbrig bleibt ist eine bichstens kubische Gleichung in der anderen.
Damit ist klar, dafl3 eine Gerade eine elliptische Kurvedohstens drei
Punkten schneidet.

Um besser zu sehen, was hiebglhich ist, beschinken wir uns auf
Kurven mit einer Gleichung der speziellen Fowh = f(x), wobei
f(x) ein Polynom dritten Grades im ist und nehmen aufl3erdem an,
daR der Krperk nicht den KorperF, enttalt. (Uber einem solchen
Korper B3t sich sogattir jedeelliptische Kurve ein Koordinatensystem
finden, in dem sie wie oben geschrieben werden kann; unseratme
ist also keine echte Einsd@mkung.) Die Bedingung, dal3 die partiellen
Ableitungen naclx undy in keinem Kurvenpunkbeideverschwinden
darfen, besagt hier einfach, d&r) keine mehrfache Nullstelle hat.

Falls f(x,) fur einzy € k eine Quadratwurze}, € k hat, ist auch-y,
eine; wennf(x,) nicht verschwindet, gibt es also genau zwei Punkte
mit z-Koordinatez,. Die Verbindungsgerade dieser beiden Punkte ist
natirlich x = x,, und offensichtlich gibt es keinen dritten Schnittpunkt
mit der Kurve.

S

1,0 4

O’O_j >

-1,0 ]

-1,0 -0,5 0,0 0,5 1,0 1,5

Um dieses Problem zu umgehen, @ngen wir die Kurve durch einen
weiteren PunkiO, der auf jeder Gerade der = z, liegen soll; wir
bezeichnenD als den,unendlich fernen* Punkt in Richtung defr
Achse.

Im Fall zweier Punkte «;,vy,) und (x,,y,) mit x; # =, Uberzeugt
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man sich leicht, dal’ die Verbindungsgerade %(x — ) + Yy
die Kurve in (mit Vielfachheit geahlt) drei Punkten schneidet, denn
schreiben wir die Geradengleichung in der Farm mx + b und setzen
in die Kurvengleichung ein, erhalten wir die Gleichung terit Grades
f(x) — (mx +b)*> = 0. Sie hatz, und z, als Nullstellen, und nach
Division durch ¢ — z;)(x — x,) bleibt eine lineare Gleichungif die
dritte LOsungx4 Ubrig.

Damit konnte man versuchen, eine Vetkfung zu definieren, indem je
zwei Punkten der dritte Schnittpunkt ihrer Verbindungagen mit der
Kurve zugeordnet wird. Diese Verlgpfung erfillt aber leider abgesehen
vom Kommutativgesetz keines der Gruppenaxiome.

Eine leichte Modifikation dihrt aber zu einer Gruppenstruktur: Wenn
P, und R auf einer Geraden liegen, soll das nicht bedeuten, daf}
R = P+ () ist, sondern dal® + () + R gleich dem Neutralelemer?

ist; somit ist alsoR = —(P + Q). Da der unendlich ferne Punkt so
gewahltwurde, dal¥, y), (—z, y) undO auf einer Geraden liegen, istrf

P = (x,y) das inverse Element einfach gleichs, y); zur Berechnung
von P + () mul} also der dritte Schnittpunkt der Geraden duramd@

noch an derr-Achse gespiegelt werden. (Im Fallé = () ist unter

der Geraden durcl’” und @ natirlich die Tangente im PunkP zu

verstehen.)
</

Alle Gruppenaxiome mit Ausnahme des Assoziativgesetasgtasich
leicht Uberpiifen; fur letzteres ist jedoch einiges an atdicher ma-
thematischer Theorie notwendig, was den Rahmen dieseesiorg
sprengen \iirde.

Die Punkte einer elliptischen Kurvéknen offensichtlich nicht mit gan-
zen Zahlen identifiziert werden, und von ihrer Primzerlegiannen
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wir auch nicht reden. Dami@flt der Indexkalkil als Strategie zur Be-
rechnung diskreter Logarithmen auf elliptischen Kurvemgwe

Natirlich gibt es auch spezielle Methodeir flie Berechnung diskreter
Logarithmen auf elliptische Kurven; in macheallén kann man sie
sogar zuickfuhren auf die Berechnung diskreter Logarithmen in der
multiplikativen Gruppe eines nicht sehr vieldfgeren Krpers. Wer mit
den theoretischen Grundlagen der Kryptographie mit @lpen Kur-
ven vertraut ist, kann aber zumindest die bekannten Asgnigthoden
so erschweren, dald der entsprechende Erweiterdngesk schon r
relativ kleine Grund&rper so grol3 ist, dafd dort nach heutigem Kennt-
nisstand auch klassische diskrete Logarithmenproblectd eifizient
gelost werden knnen. Die Empfehlungen der Bundesnetzagentur se-
hen hier daherifr die Kryptographie mit elliptischen Kurven deutlich
kleinere Primzahlen vor als im klassischen Fall. Wie dolot gis zwei
Primzahlerp undgq: Die elliptische Kurve ist definietiber einem Krp-

er mit p Elementen, und die Unterschrift liegt in einer Untergrudpe
Ordnungq der elliptischen Kurve. Wie beim DSA mufieine Lange
von derzeit mindestens 250 Bit haben, aligrdie Primzahp dagegen
gibt es keinerlei Einsclankung, aulRer dafd # ¢ sein mul3 und es auf
natirlich auch eine elliptische Kurveber[F,, geben muB3, auf der ein
Punkt der Ordnung liegt. Zur Erschwerung der oben efimnten An-
grifismethode wird auRerdem gefordert, daf? es kein10* geben darf,

so daly ein Teiler vonp” — 1 ist; die Gruppe, in der die Unterschriften
liegen, soll sich also nicht in die multiplikative Gruppeer ,kleinen*
Erweiterung des Grundkpers einbetten lassen. Auf3erdem soll noch
die Hauptordnung, die zum Endomorphismenring der Kurvedgeh
eine Klassenzahl von mindestens 200 haben — wie man siebkt st

der Kryptographie mit elliptischen Kurve einiges mehr antihvdanatik

als in den klassischen Verfahren, so dal3 Einzelheiten inmiealdieser
Vorlesung nicht behandelt werdebrnen.

§5: Literatur

Diskrete Logarithmensystenider endlichen Krper werden in densel-
ben Bichern behandelt wie RSA; hiénrf sei daher auf die Literatu-
rangaben zum vorigen Kapitel verwieseridber, die auch Verfahren



Kap. 5: Verfahren mit diskreten Logarithmen 258

auf der Grundlage elliptischer und (teilweise) hyperé&Bigher Kurven
betrachten sind

NEAL KoBLITZ: A Course in Number Theory and CryptograpByad-
uate Texts in Mathematidsl4, Springer21994 und

NEAL KoBLITZ: Algebraic Aspects of Cryptograph$pringer,1998
Als erstenUberblick iber elliptische Kurven kann man etwa das Buch

ANNETTE WERNER Elliptische Kurven in der Kryptographiesprin-
ger,2002,

konsultieren, das eine elementare Eimung in die Theorie elliptischer
Kurven unter dem Gesichtspunkt der Kryptographie geht.d&8ssvsind
nicht immer vollséndig, und anspruchsvollere Algorithmen werden nur
sehr kurz oder gar nicht behandelt.

Deutlich anspruchsvoller und voléstdiger sind

DARREL HANKERSON, ALFRED MENEZES SCOTT VANSTONE Guide to
Elliptic Curve CryptographySpringer,2004

LAWRENCE C. WASHINGTON: Elliptic Curves — Number Theory and
CryptographyChapman & Hall/CRC2003

IAN BLAKE, GADIEL SEROUSS| NIGEL SMART: Elliptic Curves in Cryp-
tographylL.ondon Mathematical Society Lecture Notes St Cam-
bridge University Press] 999

IAN BLAKE, GADIEL SEROUSS] NIGEL SMART [HRSG.:] Advances in El-
liptic Curve Cryptography,ondon Mathematical Society Lecture Notes
Series317, Cambridge University Pres2005

Die vollstandigste und aushrlichste Information bietet derzeit wohl

HENRI COHEN, GERHARD FREY, ROBERTOAVANZI, CHRISTOPHEDOCHE,
TANJA LANGE, KIM NGUYENM FREDERIK VERCAUTEREN Handbook of
Elliptic and Hyperelliptic Curve Cryptographghapman & Hall/CRC2006

Speziell mit Implementierungsfragen beattigt sich

MICHAEL RosING. Implementing Elliptic Curve Cryptographiyan-
ning, 1999



Kapitel 6
Der Advanced Encryption Standard Rijndael

81: Geschichte und Auswabhlkriterien

DES wurde in Zusammenarbeit mit der National Security Agesher
Vereinigten Staaten von IBM entwickelt und dann als amaigeher
Standard verlindet. Diese Vorgehensweise weckte von Anfang an den
Verdacht, dalf} riglicherweise eingFalltir eingebaut sei, insbeson-
dere da zumindest urdjrglich nicht alle Design-Kriterien publiziert
wurden.

Nachdem dreil3ig Jahre intensiver Kryptanalyse keineiFajefunden
haben, nil3te diese — so vorhanden — zumindest sehr gut versteckt sein
aber egal ob mit oder ohne Fdlit Wie wir im letzten Kapitel gesehen
haben, eiidillt DES mit nur 56 Bit Schisselange nicht mehr die heutigen
Sicherheitsanforderungen. Ur§pglich war er ohnehin nurif eine
Laufzeit von zehn Jahren vorgesehen und wurde nur immerewied
verlangert, weil die meisten Anwender von Kryptographigerst tige

sind und sich nicht um Fortschritte der Kryptanalysenknern.

Obwohl es die Internationale StandardisierungsorgdaisdS0O ab-
lehnt, ein Kryptoverfahren zu standardisieren (Ein Gruradiid ist
die dann bdirchtete Bindelung krimineller Energie auf dieses Ver-
fahren), hat das amerikanische Handelsministerium di&&uaach ei-
nem Nachfolgealgorithmudgif DES am 2. Januar 1997 international
ausgeschrieben; der vatdfige Name des Algorithmus war AH3d-
vanced Encryption Standardfederfinrend fir die Auswahl war das
National Institute of Standards and TechnolddyST) in Gaithersburg,
Maryland.
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Dieses ging von Anfang an davon aus, dald der auhlende Algorith-
mus starker sein niisse als Triple DES; er sollte zwanzig bis dreil3ig
Jahre lang anwendbar sein und dementsprechende Sichieidtern.
Nach einer internationalen Konfereizer die Auswahlkriterien am 15.
April 1997 vebffentlichte es am 12. September 1997 die eitige
Ausschreibung.

Minimalanforderung an die einzureichenden Algorithmerremada-
nach, daf? es sich um symmetrische Blockchiffren handeln cieiin-

destens eine Blocihge von 128 Bit bei Scisselangen von 128 Bit,
192 Bit und 256 Bit vorsieht.

Als Kriterien fur die Wahl zwischen den einzelnen Algorithmen wurden
die folgenden Aspekte genannt:

1. Sicherheit: Wie sicher ist der Algorithmus im Vergleich zu den
anderen Kandidaten? Inwieweit ist seine Ausgabe unurtteidizar
von der einer Zufallspermutation? Wie gut ist die mathesche
Basis fir die Sicherheit des Algorithmus bégrdet? (Im Gegensatz
zu DES sollten dieses Mal alle Kriterien publiziert werden.

2. Kosten:Welche Lizenzgelbhr werden &llig? Wie effizient geht der
Algorithmus mit Rechenzeit und Speicherplatz um?

3. Flexibilitat: Ein Algorithmus, der auf einer Vielzahl von Platt-
formen implementierbar ist (PCs, 8-Bit-Prozessoren, Alibtze,
HDTYV, ...) ist vorzuziehen, genauso einer, der auch als Strom-
chiffre, kryptographisch sichere Hash-Funktion odenliches ver-
wendet werden kann.

4. Software: Der Algorithmusmuf3auch softwarer@i3ig effizient im-
plementierbar sein.

5. Einfachheit: Der Aufbau des Algorithmus soll aglichst einfach
sein.

Nicht nur die Art der Suche unterschied sich also ddttlich von der
DES-Entwicklung hinter verschlosseneiirén, auch die Auswahlkri-
terien hatten sich @andert: DES war noch in erster Liniérf Hard-
ware entworfen; manche Aspekte wie etwa diedie kryptographische
Sicherheit vllig irrelevante Anfangspermutation hatten wohl keinen
anderen Sinn als die Verlangsamung von Software-Implaarengen.
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Inzwischen hat freilich die Erfahrung mit der Kryptograghn der
Gesclaftswelt gezeigt, da? man dort den Kostenaufwand3pezial-
hardware scheut und sich lieber mit den dubiosen Verfahegmiigt,
die in der ohnehin vorhandenen Office-Software eingebautPieis
fur das Knacken durch spezialisierte Unternehmen je nachr&rom
zwischen 40$ und 250 $), wohingegen sich die Hacker inniennadi
aulRerhalb der Geheimdienste durch einen hohen Aufwand enigw
beeindrucken lassen.

Die Ausschreibungifhrte bis zum Abgabeschlu? am 15. Juni 1998
zu funfzehn Vorscldgen aus aller Welt. Diese wurden auf einer er-
sten AES-Konferenz vom 20.—22. August 1998 in Ventura,fiatien
vorgestellt und der Fachwelt zur Analyse und Kommentierangp-
fohlen. Tat&chlich wurden vierzehn deiiffzehn Algorithmen schon
vor der Konferenz véiffentlicht; lediglich der AlgorithmudMagenta
der Deutschen Telekom wurde erst am 20. August auf der Kenter
selbst bekanntgegeben. Er war auch der einzige Algorithdandereits
wahrend der Konferenz geknackt wurde in einer auf den 20. 814198
datierten Arbeit von E. BiaM, A. BIRYukov, N. FERGUSON L. KNUD-
SEN, B. SCHNEIER und A. SHAMIR, die noch auf der Konferenz verteilt
wurde.

Die zweite AES-Konferenz am 22. und 23. April 1999 in Rarhitte zu
einer ersten Diskussion der Ergebnisse und Empfehlungeliche der
funfzehn Algorithmen weiter betrachtet werden sollten. Enddgiltige

Entscheidung des NIST wurde am 9. August 1999 bekanntgagebe

Bei funf der eingereichten Algorithmen hatte sich herausdestal? sie
entweder mit einem Aufwand zu knacken sind, der deutlicleruder
Durchsuchung des gesamten $&slelraums liegt (darunter falich
auch Magenta) oder aber, dal’ es zu vjsthwache” Sclilssel gibt. Da
diese finf Algorithmen auch mit die langsamsten Kandidaten waren,
sprach nichts déf, sie noch weiter zu betrachten.

Funf weitere Kandidaten zeigten ebenfalls Sélien, die zwariir
sich allein betrachtet nicht so schwerwiegend waren, dadiea\Ver-
fahren eliminieren ral3te; da dieselinf Kandidaten andererseits nir-
gends entscheidende Vorteile boten, wurden auch sie edéirhiso dal3
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noch finf Finalisteriibrig blieben: Drei aus USA (MARS von IBM, RC6
von RSA und Twofish von Counterpane), Serpent von drei Kitggtn
aus England, Israel und Norwegen, und Rijndael von zwei ipgen,
die damals an der Katholischen Univeasiteuven in Belgien arbeiteten.

Bei der dritten AES-Konferenz am 13. und 14. April 2000 in New
York bekam Rijndael 86 Stimmen, Serpent 59, Twofish 31, RC6 23
und MARS 13, so dal} es nicht weiter verwunderte, dal} das NW$T a
2. Oktober 2000 Rijndaelif den vorgeschlagenen Standard nominierte.
Am 6. Dezember 2001 veiindete ihn dann das amerikanische Han-
delsministerium offiziell als Federal Information ProdegsStandard
FIPS-197.

Rijndael hat seinen Namen von seinen beiden Autocem DAEMEN
(*1965) und INCENT RIIMEN (*1970), die 1995 beziehungsweise 1997
an der Elektrotechnischen Faltltider Katholischen Universit Leu-
ven Uber Themen aus der Kryptographie promoviert hattenyiN
hat inzwischen einen Lehrstulilrf Kryptographie an der Technischen
Universitait Graz, DEMAN arbeitet bei dem Halbleiterhersteller ST Mi-
croelectronics. Aufgrund der Wahl von Rijndael zum AES vandie
als flamische Pei@lichkeiten des Jahres 2000 gehit.

Als Aussprachehilfeidr Personen, die kein Niedardisch, FAmisch,
Surinamer oder Afrikaans sprechen, geben die Autorenfiolgenglis-
che Approximationen des WortgRijndael“:,,Reign Dahl*,,Rain Doll*
und,,Rhine Dahl".

82: Algebraische Vorbereitungen

Alle Operationen von Rijndael sind algebraisch definiestgbt einmal
Operationen auf Byte-Ebene, die durch die Grundrechemiant&orper

mit 256 Elementen realisiert sind; dazu kommen Operaticangnd-

Byte-Wortern, die im Polynomringiber diesem Krper definiert sind.
Als erstes rissen wir daher mit diesemdKper vertraut werden.
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a) Euklidische Ringe

Fur den BUKLIDischen Algorithmus im ersten Abschnitt waren im we-
sentlichen zwei Dinge wesentlich: Ersten muf3ten wir wisg@&mn eine
Zahl Teiler einer anderen ist, und zweitens brauchten wie &ivison

mit Rest, fir die der Rest in irgendeiner Weise kleiner als der Divisor
ist, wobei jede Folge immer kleiner werdender Reste nachatnde-

len Schritten abbrechen mul3. Diese beiden Eigenschaftestrewem
Begriff des EUKLIDischen Rings formalisiert:

Definition: a) Ein Ring ist eine Meng& zusammen mit zwei VerKip-
fungen +-: R x R — R, fur die gilt:
1.) (R, +) ist eine abelsche Gruppe
2.) a(bc) = (ab)cfuralleA,b,c e R
3.) a(b+c)=ab+acfirallea,b, c € R.
b) R heistkommutativer Ring mit Eingalls zusatzlich gilt
4.) Esgibtein Element & R,sodallla=a-1=qaflrallea € R
5)a-b=b-aflrallea,be R.
c) Ein kommutativer Ring mit Eins heilktegritatsbereichwenn gilt:
6.) Fura,b € R\ {0} istauchab # 0.
d) Ein Elementt eines Integriitsbereichg? heil3t Teiler vorr € R, in
Zeichent|r, wenn es eiy € R gibt mitr = qt.
e) d € R heil3t gbRter gemeinsamer Teiler vaens € R, wennd|r, s
und wenn @ir jeden weiteren gemeinsamen Tetleonr unds gilt: ¢|d.
f) Ein EUKLIDischer Ring ist ein Integiisbereichk zusammen mit
einer Abbildungv: R \ {0} — N, fur die gilt:
7.) Zu je zwei Elementen, b € R\ {0} gibt esq,r € R mit

a=bg+r und v(r) <wv() fallsr#0
und fur jeden Teilelb vona gilt v(b) < v(a).
Offensichtlich ist der Ring. der ganzen Zahlen einJgLID ischer Ring;

hier kdnnen wir einfach/(a) = |a| setzen. AlsUbung kann man auch
leicht zeigen, dal der Ring

I'=Z®Zi={a+bicC|abecZ}
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der Gaussschen Zahlen BKLID isch ist mit
v(a +1ib) = a® + b*.

Interessanteltir uns ist, daf3ir jeden Korperk der Polynomring

k[X] = {Z%Xﬁ |neNy und a; € k}
£=0
ein BUKLIDischer Ring ist, wobei die Funktion hier einfach jedem
Polynom seinen Grad zuordnet, also den Exponentenddrsten vor-
kommendenX -Potenz. Hier zeigt digbliche Polynomdivison mit Rest,
dal esinder Tat zu je zwei Polynomgry mit Koeffizienten aug Poly-
nomeg, r gibt, so daf3

f=gq+r und r=0 oder deg < degyg.

Man beachte, dal? die oben definiertedl{jen gemeinsamen Teiler nicht
eindeutig bestimmt seiniassen: IrZ beispielsweise ist sowohl drei als
auch minus drei ein @fditer gemeinsamer Teiler von sechs und minus
neun. Allgemein gilt;

Lemma: In einem EJKLIDischen RingR gibt es zu je zwei Elemen-
tenr, s, die nicht beide gleich null sind, einendfdten gemeinsamen
Teiler d. Dieser kann nach demugLID ischen Algorithmus berechnet
werden undalf3t sich als Linearkombination

d=ar+0ps mit «o,B€R

darstellen. Sind undd’ zwei gioR3te gemeinsame Teiler verunds, so
gibt es eine Einheit mit d’ = ed.

Beweis:Die Existenz eines @fiten gemeinsamen Teilers folgt genau
wie im Fall der nairlichen Zahlen: Istt = bg + r, so ist ein Element

t € R genau dann gemeinsamer Teiler wvonnd b, wenn es gemein-
samer Teiler vorb und r ist. Daher gibt es genau dann eineid§ten
gemeinsamen Teiler vanundb, wenn es einen gfiten gemeinsamen
Teiler vonb undr gibt, und dieser ist dann gleichzeitigdfdter gemein-
samer Teiler vor undb.
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Der BukLIDische Algorithmus funktioniert in einem beliebigeruE
KLIDischen Ring genau wie im Ring der ganzen Zahlen, und genau
wie dort mul3 er auch enden mit einem Divisionsrest null, deien
Folge der Zahlen/(r;) € N, ist strikt fallend. Im Faller, = O ist
99T(,,_»,7,_1) = 1,1, dar,,_, dannr,_, ohne Rest teilt; induktiv
folgt, dald das auch ein ggT varundb ist.

Sind d und d’ zwei gidRte gemeinsame Teiler vanund b, so sind
beide insbesondere gemeinsame Teiler womnd b; nach Definition
eines golRten gemeinsamen Teilers muR dah&eiler vond’ sein und
umgekehrt. Es gibt somit ein € R mit d’ = ed und eine’ € R mit
d=¢'d. Also ist

d=e'd =ced= (1—-¢€ee)d=0=1-¢ce=0=¢e=1,

da R nach Voraussetzung ein Integiisbereich ist. Die letzte Gleichung
rechts zeigt, daB eine Einheit ist.

Schliel3lich niissen wir noch zeigen, dal? sieldergrol3te gemeinsame
Teilerd vona undb als Linearkombination von undb schreibenaf3t.
Der erweiterte BKLID ische Algorithmus liefert eine solche Darstellung
fur einengrol3ten gemeinsamen Teiler

d =oaa+3b;
sinde, ¢’ die oben betrachtete Einheit Zwndd’, so folgt
d=¢€'d = (ae')a+ (B,

wie behauptet. .

Als Beispiel wollen wir fir £ = Q den gibf3ten gemeinsamen Teiler der
beiden Polynome

P=X8+X%_3X%_-3X3+8X%+2X -5

und
Q=3X®+5X%_4X2_-9Xx +21

berechnen: Division voR durchQ filhrt auf den Quotiente?/3—2/9

und Divisionsrest c 1 L
Ry=—=X*+2-X%- 2.
279 9 3
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Division von( durch R, ergibt
441

117
__X2 —OoOX + —
25 ? 25°

bei der Division vonR, durch R; bleibt Rest
_ 233150 102500

Ry =

Ha= 6501~ ~ 2197 '
und bei der letzten Divison verbleibt als Rest der ggT
1288744821

> 543589225
Da beide Ausgangspolynome ganzzahlige Koeffizienten haben
scheint ein ggT mit einem so grof3en Nenner seltsam. Wir wiaber,
daf3,der* grof3te gemeinsame Teiler nur bis auf Einheiten bestimmt ist,
und im Polynomringiber einem Krper sind alle von null verschiede-
nen Konstanten Einheiten. Derdafte gemeinsame Teiler ist daher nur
eindeutig bis auf Multiplikation mit einer nichtverschwlienden Kon-
stanten; diese Konstante kann nach Belieberéadpdivwerden und wird
meist so gewhlt, dal3 das Ergebnis in irgendeinem Sinne einfach wird.

Auf das obige Beispiel angewendet heil3t das, dafld mit

1288744821
5> 543589225

auch eins ein ggT voA und B ist und man daher im allgemeinen sagen
wirde,,der* ggT vonA und B sei eins. Es ist ein wohlbekanntes (und
umgehbares) Problem der Computeralgebra, dal? deriikische Al-
gorithmus diese einfachedksung in einer so komplizierten Form liefert;
da wir aber vor allem Polynom@éber endlichen Krpern beitigen,
braucht uns das nicht weiter zikmern.

b) Endliche Korper von Primzahlpotenzordnung

Beim Beweis, dal} die ganzen Zahlen modulo einer Primzal@nein
Korper bilden, gab es nur einen nichttrivialen Schritt: dixesEenz des
multiplikativen Inversen, die wir aus der linearen Kombnfiarkeit des
ggT folgerten und daraus, dafld der ggT einer Zahl mit einenZail
gleich eins ist, falls die Zahl kein Vielfaches der Primzishl
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Genauso wollen wir jetzt &rper definieren, indem wir Polynonider
einem festen Krper k modulo einem vorgegebenen Polyndtmbe-
trachten: far ein beliebiges Polynom tiberk ist A mod P gleich dem
Rest bei der Division voa durchP.

Falls A kleineren Grad al$’ hat, ist nafrlich einfachA mod P = A;
zum konkreten Rechnerdknen wir daher ausgehen vom Vektorradm
aller Polynome vom Graddthstens/, wobeid + 1 der Grad vonP
ist. Die Addition ist die gewhnliche Addition von Polynomen, das
Nullpolynom ist Neutralelement, und A ist invers zuA.

Das Produktd B zweier Polynomed, B € V kann gbl3eren Grad alé
haben; wir setzen daher

A®B=ABmodP;

dies ist ein Polynom vom Gradobhstensi, und es ist klar, daf3 die
so definierte Multiplikation kommutativ und assoziativ ishd das
Distributivgesetz eidllt. Das konstante Polynom 1 ist Neutralelement
auch benglich dieser Multiplikation. Algebraisch gesehen idénigren
wir V' also mit dem Faktorring[ X]/(P).

Ein inverses Polynom zd ist ein PolynomB, fiir dasA ® B = 1 ist,
d.h.
AB=1+CP oder AB+CP=1

fur ein geeignetes Polynoti. Zu vorgegebenen Polynomehund P
gibt es solche Polynom& und C' genau dann, wenn der ggT voh
und P gleich einsist; alsdann lassen siBrundC nach dem erweiterten
EukLiDischen Algorithmus berechnen.

Wenn wir nbchten, dal? jedes Polyna#) dessen Grad kleiner als deg
ist, ein Inverses hat, assen wir sicherstellen, daf® und P immer
teilerfremd sind; dies ist offensichtlich genau dann ddt, Fgenn P
keinen nichttrivialen Teiler hat, keinen Teiler also, dassrad gol3er
als null und kleiner als def ist. Ein solches Polynom heilBteduzibel.

Falls es ein irreduzibles Polynomvom Gradn mit Koeffizienten aug
gibt, lal3t sich der Vektorraurk™ also zu einem Krper machen, indem
wir ein n-tupel (@, . . ., a,,_1) mit dem Polynom

n—1 n—2
a, 1 X" T+a, X" °+.-.--+a, X +ag
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identifizieren und die Multiplikation als Multiplikationan Polynomen
modulo P erklaren.

Bekanntestes Beispiel ist= R: Furn = 2 gibt es irreduzible Polynome
vom Gradn, beispielsweise das Polynaf= X2 + 1. Da

(a1 X +ag)(by X +bg) = azby X2 + (aghy + asb) X + agh
= (aghy + a;bp) X + (aghy — a;by) Mod X2 + 1
Ist, folgt
(ag, a1) © (bg, b1) = (agby — a1b1, aghy + asby) ,

wir erhalten also den &per der komplexen Zahlen. Weitere Beispiele
uberR gibt es nicht, denn einirreduzibles reelles Polynom muyeaér
Grad eins oder Grad zwei haben, und da jedes irreduziblergtische
Polynom zwei konjugiert komplexe Nullstellen hat, entsteldabei
immer die komplexen Zahlen — lediglich die Ba#lserR andert sich.

Uber endlichen irpern ist die Situation etwas komplizierter: Hier gibt
es fir jedesn mindestens ein irreduzibles Polynom vom Gradller-
dings gilt auch hier, dal3 zwei irreduzible Polynome desselBrads
auf den gleichen HKrper fihren. Eine kurze Beweisskizze ist unten
angedeutet; einen volltdigen Beweis findet man in jedem Lehrbuch
der Algebra.

Es gibt keinen einfachen Ausdruclrfein irreduzibles Polynom vom
Gradn Uber einem vorgegebenen endlicheorper k; in der Compu-
teralgebra behilft man sich meist damit, daf3 man so langallgd
Polynome vom Graa erzeugt, bis man ein irreduzibles gefunden hat
— ein Algorithmus, der sich in der Praxis als deutlich effizéx erweist
als manch ein deterministischer Algorithmus zsung von Standard-
problemen.

Es gibt allerdings auch eine Alternative, die zumindaskfeine Korper
durchaus anwendbar ist: Ist= IF, ein endlicher Krper mitq Elemen-
ten, so isk \ {0} eine multiplikative Gruppe der Ordnurg- 1. Da die
Ordnung eines jeden Elements einer Gruppe Teiler der Gngodaung
ist, folgt

z97t=1 firallez € F,\ {0}.
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Dies gilt insbesondereif das ElementX mod P, dasF,k uberF,

erzeugt, also isP ein Teiler vonX ¢~ — 1. Die nbglichen Polynomé
zur Erzeugung voit,,.. UberF, sind also genau die irreduziblen Teiler

vom Gradn des Polynoms(?" — 1. Die Computeralgebra stellt gerade
fur Polynometber endlichen Krpern effiziente Faktorisierungsalgo-
rithmen zur Verfigung, so dal3 man diese Teiler no¢in fecht grol3e
Werte vonp™ relativ schnell berechnen kann.

Als weitere Konsequenz aus obiger Formel kommt man auchrar ei
neuen Interpretation desokpers mitqg = p™ Elementen: Da allg — 1
Elemente voi¥  \ {0} Nullstellen des Polynoms?~!—1 sind und dieses
Polynom den Grag — 1 hat, handelt es sich hier uaie Nullstellen von
2971 — 1; in der Sprache der Algebra B} daher der Zedllungsiorper

des Polynomg?~! — 1 uberfF,. Daraus folgt wegen der Eindeutigkeit
des Zeréllungslorpers, dal3 alle & per mitqg Elementen isomorph sind.

c) Der Korper mit 256 Elementen

Fir AES ist der KorperF,c¢ von zentraler Bedeutung; da 256 2 2
ist, handelt es sich hier um den Vektorraiih Die Addition ist sehr
einfach: Da die Addition i, mit dem exklusiven Oddibereinstimmt,

ist die Addition inF,5¢ das bitweise exklusive Oder, eine Operation, die
nicht nur in den @ngigen CPUs, sondern auch in vielen Prozessanen f
spezielle Anwendungen in der Signalverarbeitung als Gopachtion
implementiert und somit sehr schnell ist.

Um eine Multiplikation zu definieren, brauchen wir ein irczibles
Polynom vom Grad achiberF,. DaF, ein sehr kleiner Krper und
acht eine ziemlich kleine Zahl ist, hat zumindest ein Corapkeinerlei
Schwierigkeiten, alle diese Polynome zu bestimmen: Wie amgen
Abschnitt ervahnt, sind das genau die irreduziblen Faktoren vom Grad
acht in der Faktorisierung des Polynoiig>® — 1 tiberT,. Faktorisie-
rung von Polynomeriiber Korpern von Primzahlordnung ist einer der
Grundalgorithmen der Computeralgebra und geht auch noickelbe
viel komplizierteren Polynomen sehr schnell; hier zeigt &agebnis,
dal} es dreil3ig Faktoren vom Grad acht gibt. Diégedn zwar alle auf
denselben Krper, aber das praktische Rechnen in diesé&mpKr fangt
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natirlich stark von der Wahl des Polynoms ab. Insbesondere aved
Geschwindigkeit umsodher, je weniger Terme das Polynom hat.

Dreizehn der dreil3ig Polynome bestehen aus sieben nisktweinden-
den Termen, die restlichen siebzehn aug fWir wahlen nairlich eines
der letzteren. Alle diese Polynome haben, wie jedes PolywamGrad
achtiiberF,, den fihrenden TernX ®; danach folgen vier weitere Terme.
Bei der Reduktion modulo einem solchen Polynéhs X8 + Restbe-
nutzt man, dafld dann

X8 = Rest X% =X .Rest

ist; dies wird umso &ufiger mehrfach angewandt werderisgen, je
hoheren Grad die Terme Resthaben. Am effizientesten kann man also
rechnen, wenn das PolynoRestden kleinstndglichen Grad hat, und
wenn zudem auch noch die hinteren Terme Rastmoglichst kleinen
Grad haben. Inspektion der siebzehn Polynome imt Termen zeigt,
dafl} das Polynom

m(X)= X8+ X4+ X3+ X +1
in dieser Hinsicht optimal ist.

Die genaue Festlegundirfdas Rechnen ifi,cq = FS filr die Zwecke
von AES ist folgende: Wir schreiben ein Byte als (ag, - - ., ap) und
identifizieren es mit dem Polynom

a7X7+a6X6+---+a1X+ao;
das Byte 0000 0010 entspricht alXo
Der Einfachheit halber schreiben wir Bytes meist als z\ifeige Hex-

adezimalzahlen: Im betrachteten Beispi@resdas 0¢,,, und das Byte
A5, ., = 10100101 entspricht dem Polynalf + X° + X2 + 1.

Man beachte, dal} trotz dieser Schreibweise die AdditionNMuidipli-
kation inTF,5g natirlich nichts mit der Addition und Multiplikation von
Hexadezimalzahlen zu tun haben. Zwar istQ¥* 02, = 03,,, aber

Olhex + Olhex = OOnex Und O51ex + O4hex = OlhEX'
Zur Berechnung von AR, ©® 01, mussen wir das Polynom

(XT+X°+X%+1)- X=X+ X+ X3+ X
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berechnen und modula(X) reduzieren. Da
X8modm(X) = X*+ X3+ X?+1
ist (inF, ist —1 = 1), ist dies
X4+ X3+ X2+ 1)+ (X+ X3+ X) =X+ X4+ X%+ X + 1.
Somit ist A5,o, © 0Ly = 56,65

Trotz der Wahl des optimalen Polynoms ist die Multiplikatialso im-
mer noch erheblich aufwendiger als die Addition.

83: Spezifikation von Rijndael

a) Terminologie und Bezeichnungen

Rijndael arbeitet mit verschiedenen Blogkben sowie auch verschie-
denen Sctilsselangen: Beide &nnen (unabfingig voneinander) alle
durch 32 teilbaren Werte zwischen 128 und 256 annehmen.dMies
ben die Blockhnge als 3%/, und die Schisselange als 3%/, ; die
ZahlenN, und N, liegen also jeweils zwischen vier und acht.

Der offizielle FIPS-Standard AES ist nicht wirkliahleich Rijndael;
fur AES ist nur die eine Blockinge 128 normiert und nur die drei
Schlisselangen 128196 und 256; hier ist also stef$, = 4 und NV,
kann die drei Werte 4, 8 annehmen.

Rijndael verschisselt somit einen Block von 3%, Bit oder 4V, Bytes,
und genau wie bei DES geschieht dies sukzessive in mehrensteR.

In der Terminologie von Rijndael wird der Block in seinem gliv
gen Bearbeitungsstand gldustand“ bezeichnet; die einzelnen Runden
finden also jeweils einen bestimmten Zustand vor undveern diesen.

Die Anzahl der Runden wird als,. bezeichnet; siedmgt von/V, und NV,
ab genal der Gleichungv, = max(V,, N,.) + 6.
b) Die Grundoperationen

Auch wenn Rijndael nicht mehr nach dem Prinzip einessFeL-
Netzwerks arbeitet, sind in den einzelnen Runden immer rbeh
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klassischen ANNONschen Prinzipien von Konfusion und Diffusion
realisiert.

Fur die Konfusion sind bei DES die verschiedenen S-Boxeranats;
bei Rijndael gibt es nur eine einzige Funktion zu diesem Zeaiese ist
definiert als Hintereinanderaiigfrung der Bildung des (multiplikativen)
Inversen inF,sg mit eineruiberk, affinen Abbildung vori,ss nachlF,se.

Die Inversenbildung ist natlich nur fur F,56\ {0} erklart; um trotzdem
eine bijektive Abbildung vofi,sz nachlF,s5 zu bekommen, nehmen wir
die einzig ndgliche Fortsetzung, bilden die Null also auf sich selbst
ab. Auch wenn es algebraisch kompletter Unsinn ist, wollenzur
Vermeidung von Fallunterscheidungeir tlie Definition von Rijndael
die Kurzschreibweise O = 0 verwenden mit der Interpretation, daR
z — z ! die Fortsetzung der Inversenbildung zu einer bijektiven Ab
bildung vonF,55 nachF,54 sein soll.

Diese Abbildung ist weddiberF,-; nochuberF, linear, und sie ist das
einzige nichtlineare Element von Rijndael. RechneristHies Bestim-
mung vonz ! aufwendig, allerdings gibt es nur 256gliche Werte

fur x, die man vorausberechnen und in 256 Byte abspeichern kann;
dieser Speicherbedariidte selbstiir Smartcards problemlos sein.

Diffusion wird durch eine Reihe voR,s4-linearen Abbildungen erzielt,
die Operationen sind also im Gegensatz zu den Bit-Permuatti von
DES allesamt auf Byte-Niveau definiert. Die Multiplikatimon F,s
sorgt daiir, daf3 trotzdem auch eine kisthtliche Diffusion innerhalb
der Bytes stattfindet. Durch Tabellen gegebene Permudtigibt es
in AES Uberhaupt nicht; alle Diffusion wird durch Shift-Operaten
sowie durch eine algebraische Operation realisiert.

Letztere arbeitet mit \Wrtern von vier Byte, die wiederum mit Poly-
nomen identifiziert werden, jetzt aber nicht, wie bei der Diabn

der Multiplikation in F,55, mit PolynomenuberF,, sondern solchen
uberF .5 Wir schreiben die neuen Polynome daher zur besseren Unter-
scheidung in einer neuen Variabl&hund identifiziereri;. somit mit

dem Vektorraum aller Polynome vom Gradidinstens drei i’ mit Ko-
effizienten aus .55 indem wir das Quadrupebd, b,, b, b3) auffassen
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als Polynom
bY3+b,Y2+b,Y +b, mit b; € Focp.
Diese Polynome multiplizieren wir modulo dem Polyndd=Y* + 1.

Man beachte, daf’ dieses Polyndiver F, (und erst rechtiberF,g)
nicht irreduzibel ist: Da alle Binomialkoeffizienten aultEm ersten
und dem letzten gerade sind, ist

Y+1*=Y*+1mod2.

Mit der hier definierten Multiplikation wirdfs, also nicht zu einem
Korper. Rijndael verwendet diese Multiplikation allerdsngur ir eine
einzige lineare Abbildung voiisss nachFa, und diese ist gegeben
durch Multiplikation mit dem Polynom

C=03,,Y3+Y?+Y +02,,.
An der StelleY = 1 ist
C =03t 1+1+02,=03ex+ 02 =1,

das Polynom ist also nicht durch + 1 teilbar (zur Erinnerungiber

F, wie auchF 55 istY + 1 =Y — 1), und damit auch teilerfremd zu
Y4+ 1= (Y + 1) Damit hat zumindest dieses Polynom ein multipli-
katives Inverses, das man mit dem erweiterterLD ischen Algorith-
mus uber F,c¢ berechnen kann — auch wenn das von Hand ziemlich
aufwendig ist. Im Mapleworksheetu diesem Paragraphen findet man
die detaillierte Rechnung mit Unterprogramméndie Rechenoperati-
onen vonF,se als Ergebnis findet man dort das inverse Polynom

C' = OBhexY3 + ODhexY2 + OgnexY + OEheX'
Wer will, kann nachrechnen, daB® - ¢’ modulo M gleich eins ist,
allerdings erfordert bereits das recht viele Multiplikaien inF s,

c) Der Aufbau der Runden

Nach diesen Vorbereitungeidknen wir uns mit dem Aufbau der einzel-
nen Runden beséltigen. Abgesehen von einer leichten Modifikation
bei der letzten Runde besteht jede Runde aus denselberchigit&h



Kap. 6: Der Advanced Encryption Standard Rijndael 274

1. Bytesubstitution

2. Zeilenshift

3. Spaltenmix

4. Addition des Rundensdldsels

1.) Die BytesubstitutionDies ist der Konfusionsschritt; er operiert auf
Bytes und wird auf jedes einzelne Byte des Zustands in derséleise
angewendet; mit geeigneter Hardware kann dies also aueligbaar-
folgen. Da es nur 256 agliche Bit gibt, wird man diese Operation im
allgemeineruiber eine Tabelle implementieren; der Speicherbedarf von
256 Bit sollte auch auf einer Smartcard im allgemeinen goids sein,

Der erste Schritt ist, wie bereits ed@wnt, die Inversenbildung im d¢-
per .. danach folgt eine Diffusion auf Bitniveau, indeR)sg als
affiner Rauni®S interpretiert wird und die affine Abbildung

T— MI+b

mit
1000111 1
11000111\ (1\
11100011 0
111110001 . |o
M=17 711100 of udob=|g4
01111100 1
00111111 1
0001111 Y \o/

angewandt wird. Insgesamniihrt die Bytesubstitution ein Byte also
UberinMz~1 +b.

Betrachtet marF,;5 nicht als affinen Raum, sondern als Raum der
Polynome vom Graddchstens sieben, kann man die affine Abbildung
auch interpretieren als

P (X"+X+X°+X*+1DP+ (X "+ X%+ X2+ X) mod X8 +1;

daX’+ X%+ X%+ X%+1 an der Stelle eins den Wert eins annimmt, ist
dieses Polynom teilerfremd z&i® + 1 = (X + 1)8, die Abbildung und
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damit die MatrixM sind also invertierbar — was sie fdich auch sein
mussen, damit die Chiffre entsclsiselbar ist.

Als dritte Alternative kann man die Abbildung auch durchBolynom
uberlF,ss beschreiben, denn da ded#per endlich ist findet sich zader
AbbildungF,s — F,c6 €in Interpolationspolynom, das sie beschreibt.
Im vorliegenden Fall ist dies das Polynom

63ext 05nexZ  +0%exZ” + FQeZ” +25,6,2°
+ |:A]hexZ16 + O:I-hexZ32 + BShexZ64 + 8FhexZ128 .

Diese Abbildung wird angewandt auf das multiplikative Irseeines
Elements vorF,ss. Im KorperF,q ist fur jedes Element 7 0

2255 =1 Und (Z—l)n — Z—n — 2255—71 ’

wobei letztere Gleichung wegen unserer Konventioh 8 0 fiir alle z
gilt. Damit kdnnen wir die Bytesubstitution insgesamt auch beschreiben
durch das Polynom

63 + 051exZ254+ O%exZ253+ F%exZ251+ ZaqexZZLw
+ I:4hexZ239 + O:I'hexZ223 + Bshelegl + 8Fhex2127 .

Die Umkehrabbildung der Bytesubstitution hat als affine hing die
Formy — M1y + M ~1b; dabei ist

0010010 1
10010013\ (o)
01001001 1

. l1 0100100 - o

M==149 10100 1 of UdM=b=1,
00101001 0
100100100 0
\0 1 001010 \o/

Die Inversenabbildung ist natich (auch mit der Konvention, dal? die
Null auf sich selbst abgebildet wird) zu sich selbst inveis;Bytesub-
stitution wird also tickgangig gemacht, indem man ein Byfeumchst
auf A=y + A~ abbildet und dann die erweiterte Inversenabbildung
von IF,cc anwendet.
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2.) Die Zeilenshifts:Der Diffusionsschritt ist zweigeteilt: Der zu ver-
schiisselnde Block ist ein Vektor au$4 Bytes; er wird umgeschrieben
in eine Byte-Matrix mit vier Zeilen unav,-Spalten, die spaltenweise
aufgetillt wird. Wird die Matrix als A = (a,;) bezeichnet, wobei der
Zeilenindex: von 0 bis 3 und der Spaltenindgxon 0 bisN, — 1 geht,
Ist der urspiingliche Vektor also (in Zeilenschreibweise)

(agos @10, G20, A30 A1 U115 - - - y ANy, —23: AN, —1.09 ¢ - - 7aNb—1,3) .

Indiziert man die Komponenten des Vektors durch einen Indixear
von 0 bis 4V, — 1, ist also

¢t =n mod 4 j:[%} und n=1+4j.

Der erste Diffusionsschritt ist eine zyklische Verschieppuler Zeilen
von A: Die O-te Zeile wirduiberhaupt nicht verschoben und die erste
um eine Stelle; die Richtung der Verschiebung ist, wie auelssm
folgenden, nach links. Bei den beiden unteren Reit@mghdie Weite
der Verschiebung vodv, ab: Rir N, 7 8 wird die zweite Zeile um
zwei Stellen verschobeniif N, = 8 und drei. Die dritte Zeile wird
fur Ny, < 6 um drei Stellen,idr N, < 7 um drei Stellen verschoben.
Mit entsprechender Hardwaréknen die Verschiebungen der einzelnen
Zeilen natirlich parallel durchgefhrt werden.

3.) Der Spaltenmix:Auf Spaltenebene ist die Diffusion aufwendiger:
Ein Spaltenvektor ist ein Element vd#ss Diesen Vektorraum hatten
wir oben mit den kubischen PolynoméberF, s, identifiziert und dort
eine Multiplikation eingeifihrt iber die Polynommultiplikation modulo
Y“4+1. Genau dies verwendet der Spaltenmix, indem jeder Spakéor
mit dem Polynom

C=03,Y3+Y?+Y +02,,

multipliziert wird. Wegen der einfachen Struktur des PolgrsY* + 1
ist dies eine sehr einfache lineare Abbildung mit Matrix

Ozhex O?'hex Olhex Olhex
Oliex OZhex O3nex Olhex
Olpex Olpex 02 03nex
O‘?hex Olhex Olhex 02hex
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beziglich der Basig{1,Y,Y?, Y3}. Diese kanniir die N, Spalten pa-
rallel durchgefihrt werden.

Im Vergleich zum Zeilenshift ist diese Operation relativivaendig,
da mehrere Multiplikationen iff,s;5 durchgefihrt werden rissen. In
der letzten Runde, in der dieser Diffusionsschritt keimechliel3enden
Konfusion mehr unterworfen wird und somit keinen gro3em&ibeits-
gewinn mehr bietet, wird daher auf diesen Schritt verzichte

Wie wir bereits gesehen haben, GtmoduloY* + 1 invertierbar mit
inversem Polynon®’ = 0B, Y3 + 0D,,,Y > + 09,.,Y + OE,.,; Multi-
plikation mitC’ ist als lineare Abbildung gegeben durch die Matrix

OEhex OBhex OI:)hex Oghex
09hex OEhex OBhex ODhex .
ODhex 09hex OEhex OBhex ’
OBhex OI:)hex 0%ex OEhex

als Ubung ir das Rechnen iff,¢ sollte man zumindestiif einige
Eintrage nachrechnen, dal? das Produkt dieser beiden Maiihezh -
gleich der Einheitsmatrix ist.

4.) Schlsselexpansion und Rundensdidsel: Die bisherigen drei
Schritte sorgtenifr Konfusion und Diffusion; sie sind abetrrfjeden, der
das grundatzliche Verfahren kennt, leichiickgangig zu machen. Das
ist nicht weiter verwunderlich, denn bislang haben wir ja 8ehlissel
noch nicht ins Spiel gebracht, an dem bei einem normiertandaird
wie AES die ganze Sicherheit des Verfahreaadit.

Der vierte Schritt jeder Runde ist genau wie bei DES eineaeimé
Addition des Rundenscimssels; die Addition ist dabei die géhnliche
Vektoraddition inF52"", also das logische XOR. Sicherheitsrelevant
ist, genau wie bei DES, die Berechnung der Rundefisskel aus dem
vorgegebenen Sdidsel; der Sclilssel mit seinen &, Bytes muf3 so
aufgeblhtwerden aulN, x4N, Schiisselbytes, daf3 ein Kryptanalytiker
aus einem oder auch einigen irgendwie ermittelten Rundhiinsseln
nicht auf den Gesamtsdldsel schlie3en kann.

Rijndael verwendet dazu im wesentlichen dieselben Teeimike bei
den Verschiisselungsschritten: Das erweiterte $isskelfeld wird aufge-
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fal3t als eine Folge von @/ternt¥; mit einer Lange von vier Byte oder
32 Bit. Die ersten Wérter W, bis W, _; sind der eigentliche Schssel
des Verfahrens, der Rest wird rekursiv daraus berechnedi®ar-
sten N, Worte nicht als Rundensdidsel verwendet werden, sondern
vor der ersten Runde zum Klartext addiert werden, hat dasngjes
Schlsselfeld eine &nge vonN,(XV,. + 1) Worten.

Fur: > N, wird W, aus seinem unmittelbaren Véngger,_, und
demN, Worter zuiickliegenden VorgngerlV,; _ , berechnet:

e Falls: nicht durchN, teilbar ist und im FalleV, > 6 auch nicht
durch vier, istW; = W, _, @ W;_,, wobei® die Vektorraumad-
dition in F3? = 5., bezeichnet, also das logische XOR 82-Bit-
Worter.

e Fallsi durch IV, teilbar ist, wirdW,_,; zunachst zyklisch um eins
nach links verschoben. Dann wird auf jedes Byte des so @atsta
nen Worts die Bytesubstitution aus Absajzangewendet, und das
Ergebnis wird mitd zu W, _ , addiert. Dazu wird noch eine Run-
denkonstante addiert, deren erstes Byte dasjenige Elemeiit,s;
ist, das der PotenX */V* modulo dem die Multiplikation definieren-
den Polynom entspricht und dessen weitere drei Bytes allesid.

e Falls N, > 6 undi: = 4 modN,, wird die Bytesubstitution
aufW;_, angewendet und das Ergebnislziy_,, addiert.

d) Gesamtablauf von Rijndael

Nachdem nun alle Einzelheiten spezifiziert sind, kann desa@wablauf
von Rijndael leicht angegeben werden:

1. Die erstenV, Worte des Scliisselfelds werden zum Klartext addiert.
2. N, — 1 Runden werden gei® obiger Beschreibung durchghbft.

3. Die N,.-te Runde wird entsprechend audgeat, aber ohne den Spal-
tenmix.

e) Geschwindigkeitsoptimierung

So wie Rijndael spezifiziert ist, ist vor allem die Bytesutiosion sehr
langsam; aber wie bereits eitnt, B3t sie sich leichiiber eine Tabelle
implementieren.
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Ein weiterer rechnerisch aufwendiger Bestandteil vondRigl sind die
Multiplikationen im Korper F,s.. Eine vorausberechnete Multiplika-
tionstabelle wirde 256x 256 = 64x 1024 Byte oder 64 Kilobyte in
Anspruch nehmen, was erstens etwas viel und zweitens acichoquti-
mal ist: Die Multiplikation vonF,c¢ wird nur beim Spaltenmix béigt,
und da das hierzu verwendete Polynarmur 01, 02, und 03,
als Koeffizienten hat, reicht esiff die Verschilisselung, wenn man die
Produkte mit 02,, und 03, bilden kann. Der jeweils andere Faktor des
Produkts ist stets das Ergebnis einer Bytesubstitutiom spart also
Rechenzeit, wenn maiiffjedes Byte das Ergebnis der Bytesubstitution
sowie dessen Produkt mit Q2 und mit 03, abspeichert; mit 768 Byte
fur Tabellen kann man also zur Laufzeit auf alle Multipliketen und
Divisionen inF,¢ verzichten.

Mit vier Kilobyte Tabellenplatzaf3t sich sogar die gesamte Rundentrans-
formation auf 4V, XOR-Operationen auf 32-Bit-Wtern zutickfuhren:
Man speicherelfr jedes Byte: € [F,5¢ die vier 32-Bit-Worter

02hez<q® S(a) 8% ® g(a)
Ty(a) = 58 . Tya) = 2he§8) (@) |
03ex @ S(a) S(a)
5 s
_ | 03ex® S(a _ a
Ty(a) = 02, ® 5(a) und T5(a) = 03, © S() | °
S(a) 02,0, © S(a)

wobeiS: Fo5q — Fosg die Bytesubstitution ist.
Ist dann (bei Matrizenschreibweiséj) der j-te Spaltenvektor des Zu-

stands zu Beginn einer Rundg, der entsprechende Vektor am Ende
der Runde un@j derj-te Spaltenvektor des Rundenditgels, so ist

€; = To(bg;) ® T1(b1 jo1) © Toby joc,) D T5(bs joc,) & Ej :
dabei stehem, und c; die Betiage, um die die zweite und dritte Zeile
verschoben werden, d.h.

_[2 furN, <8 und _[2 furN, <7
©27\13 furNn,=8 %713 furn,>7"
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undo steht fir die Subtraktion moduldv,, wie man siefir die Zeilen-
shifts braucht. Man beachte, daf’ auch diese Rechnung kpreahen-
der Hardwareiir alle N, Spalten parallel ausgéhrt werden kann.

Da sich auch die @antlichen Rundensciiésel mit einem Speicher-

aufwand von weniger als einem halben Kilobyte vorausberech

lassen, &3t sich die Verscliisselung mittels Rijndael also auch auf
einem Standard-PC sehr schnell duidhren.

Bei anderen Implementierungen, bei denen es Probleme mitSyee-
icherplatz gibt, kann man auf Kosten eineshleren Rechenzeit mit
sehr viel weniger Speicher auskommen. Eine relativ bilkge und
Weise, wie man bei 32-Bit-Prozessoren drei Kilobyte einsp&ann,
folgt beispielsweise aus der Beobachtung, daf? die verdehe!’,(a)
durch zyklische Verschiebung auseinander entstehen.t3eitit es,
die Ty(a) abzuspeichern, und indem man analog zuoRKER-Schema
rechnet, liegt der z@dzliche Rechenaufwand nur bei drei zyklischen
Vertauschungen pro Spalte und pro RundeZlsgiie zyklische Linksver-
schiebung um ein Byte, so ist

é’j = Ej @To(boj)GBZ (To(bl,j—l) ©Z (To(bz,j—cz)@Z(To(b&j—cs)))) '

Fur die Entschilsselung braucht man iialich entsprechende Tabellen;
hier werden die Produkte mit @B, 0D;,.,, 09,c, Und O, berbdtigt.

Das Arbeiten mit Tabellen kanibrigens unter Sicherheitsaspekten
vorteilhaft sein gegdiber direktem Rechnen: Ein Gegner, der den
Stromverbrauch der Rechnung kontinuierlich messen kaiih (zeil
eine Smartcard ihren Strom aus seinem Lesdd®zieht), kann daraus
eventuell Rickschiisse auf Klartext und/oder Scisisel ziehen, da etwa
eine Ziffer eins in einer Multiplikation mehr Aufwand erfiert als eine
Ziffer null. Bei Multiplikation via Tabellen ist der Stron@rbrauch je-
doch unabhngig von den Faktoren, da stets nur ein Tabellenwert gelese
und weiterverwendet wird.
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84: Angriffe auf Rijndael

Wie jede andere Blockchiffre bietet auch Rijndael keinegieherheit
gegen einen Bresschen Gegner —zumindest dann nicht, wenn man (wie
praktisch immer) redundante Information versselt. Da allerdings
bereits die einfachste Variante von Rijndael mit einer Ge$élange von
128 arbeitet, ist das Durchprobieren aller Siiskel fir real existierende
Gegner mit heutiger Technologie unrealistisch: Gédgen DES mit
seiner Scrilsselange 56 steigt der Aufwand immerhin um den Faktor

2128-56 = 272 = 1 722366 482 869 645213696,

also um mehr als zwanzig Gitenordnungen. Ein Gegner muf3 daher, um
erfolgreich zu sein, Methoden finden, die mit deutlich ggeirem Auf-
wand auskommen. Da er in der Wahl seiner Methoden freiasinkn wir

nie wirklichwissen, wie er arbeitet; alle Sicherheitsagen beruhen nur
darauf, dai3 keine realistische Attaddekannist, obwohlim Verlauf des
Begutachtungsprozesses internatioidarénde Experten mehrere Jahre
lang danach gesucht haben. tdth geht die Suche auch jetzt noch
weiter, und in der Tat sind inzwischen auch neue &ne aufgetaucht,
die bei der Wahl von Rijndael noch nicht bekannt waren.

Natirlich ist das Design von Rijndael so gaklt, dal3 der Algorithmus
resistent ist gegen differentielle und lineare Kryptasalybeides war
schlie3lich zum Zeitpunkt seines Entwurfs wohlbekannt gotver-
standen. Auch ist die grundizliche Struktur von Rijndael nicht neu: Es
ist zwar kein [EISTEL-Netzwerk mehr, aber er kommt aus einer Familie
von Kryptoverfahren um den Algorithmus Square, der beseiteiniger
Zeit kryptanalysiert worden war. Insbesondere hatteBNiEN und RJ-
MEN die sogenannte Square attack entwickelt, die mit speaekblten
Klartexten den letzten Rundensibksel angreift: Verschkselt werden
256 Blocke, die in allen Bytes mit einer Ausnahfigereinstimmen; das
variable Byte nimmt alle 256 oglichen Werte an.

Verfolgt man diese Ricke geschickt durch den Algorithmugf3t sich
mit hinreichend vielen Gruppen solchettBke auch ein auf sechs Run-
den reduzierter Rijndael kryptanalysieren; da dies dexdmelDesignern
bewul3t war, ist die Rundenzahl entsprecherid®gr gevihilt.
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Ein Kritikpunkt an Rijndael war seine relativ einfache dggsche
Struktur, die zwar die Implementierung erleichtert unddbsunigt,
aber eventuell auch Sicherheitsprobleme aufwertamke.

Im Mai 2001 gelang es iHLS FERGUSON RICHARD SCHROEPPELUNd
DouG WHITING, die allesamt in der Wirtschaft (bei verschiedenen Un-
ternehmenjiber Sicherheitsfragen arbeiten, Rijndael in einer gesehl
senen Formel darzustellerijrfdie 128 Bit Version hat diese Formel
2°0 ~ 10 Terme, fir 256 Bit sind es 2 ~ 10?1. Obwohl die Formel
natirlich hoch strukturiert ist, ist allerdingsoilig unklar, ob dieser
Ansatz je zu einer BedrohungrfRijndael werden kann; schlief3lich ist
eine Formel nur selten die besteNlichkeit fir den Umgang mit einer
Funktion. Die Originalarbeit ist zu finden unter
www.xs4all.nl/~vorpal/pubs/rdalgeq.html .

Potentiell gefhrlicher ist ein Ansatz von INoLAs COuRTOIS und
JOSEF PIEPRZzYK, deren XSL-Attacke dprint.iacr.org/2002/044/)
das Knacken von Rijnda@bersetzt in die bsung eineberbestimmten
nichtlinearen Gleichungssystems. Ob dieser Ansatz latigfzu einem
Angriff fahrt, der schneller ist als das Durchprobieren aller &&3dl,
ist im Augenblick noch nicht abzusatzen.

§5: Literatur

Als viel benutzter Standard ist AES iialich in allen neueren Lehr-
biichern der Kryptologie zu finden, insbesondere auch in dendie
gesamte Vorlesung angegebenen Buch vocHBIANN. Speziell mit
AES beschft sich das Buch der beiden Entwickler von AES

JOAN DAEMEN, VINCENT RIJMEN: The Design of Rijndael: AES — the
Advanced Encryption Standarfpringer, 2002

Eine neuere Darstellung, die auch auf seither diskutiengrdéfsmog-
lichkeiten eingeht, ist

CARLOS CID, SEAN MURPHY, MATTHEW ROBSHAW. Algebraic Aspects
of the Advanced Encryption Standa&pringer, 2006
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Kryptographisch sichere Hashverfahren

81: Nochmals elektronische Unterschriften

Elektronische Unterschriften, so wie wir sie bislang kemnsind
ungethr so aufwendig wie die Versdldselung eines Dokuments mit
einem asymmetrischen Verfahren. Da niemand &ngéres Dokument
blockweise mit einem asymmetrischen Verfahren veisddlt, sollte
klar sein, dal3 es auch niemand mit einem solchen Verfahremaen
ichnet. Genauso, wie man bei der Versiddelung das asymmetrische
Verfahren nur zum Schbkselaustausch verwendetpechte man auch
beim Unterschreiben das asymmetrische Verfahren nureamges Mal
anwenden riassen. Dies wird dadurchaglich, dal? man nicht die Nach-
richt selbst unterschreibt, sondern nur einen daraus beeten geeig-
neten Hashwert.

Allgemein ist ein Hashwert eine Art Bisumme, die von der gesamten
Nachricht abAngt; wohlbekannt sind etwa dielRziffern am Ende eines
Artikelcodes oder einer ISBN. Bei der Eui@pchen Artikelnummer
EAN, die zumindest als Strichcode auf praktisch allen Warefinden
ist, wird die letzte Ziffer so ge@hlt, dal3 eine durch zehn teilbare Zahl
entsteht, wenn man die Summe bildet aus einmal der erstemalr
der zweiten, einmal der dritten, dreimal der vierten Ziftesw. Bei
der Internationalen Standardbuchnummer ISBN wird dieeatst zehn
Ziffern mit zehn multipliziert, die zweite mit newmsw.und die Summe
muf3 durch elf teilbar sein. Falls man dazu eine zehdtéer* zehn
braucht, wird diese alsX“ geschriebenAhnlich aufgebaut sind auch
die Hashfunktionen, die Informatiker in Suchalgorithmemwenden.
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Solche Pafsummen sindidr die Fehlererkennung bei Scannerkassen
oder bei Buchbestellungen gut geeignet, da sie die typmsElightig-
keitsfehler mit hoher Wahrscheinlichkeit erkenneiar kryptographis-
che Anwendungen sind sind sie allerdingdlig unbrauchbar, denn hier
haben wir es mit intelligenten Gegnern zu tun, die bereitl,seinen
groRen Aufwand zu treiben um zu einem unterschriebenenwash
eine zweite Nachricht mit dem gleichen Hashwert zu konesteun um
dann zu behaupten, die Unterschrift gednzu dieser zweiten Nachricht.

Von einer kryptographisch brauchbaren Hashfunktiarssen wir daher
fordern, dal3 es rechnerisch nicht mit vertretbarem Aufweaiddlich
sein darf, zu einem gegebenen Hashwert einen Text zu kegremuDie
Hashfunktion muf3 also, genau wie ein symmetrisches Krgpfatren,
mit Konfusion und Diffusion arbeiten, so dal®glichst jedes Bit des
Texts jedes Bit des Hashwerts in einer schwer durchschanbaeise
beeinflufit.

Dies legt es nahe, den Hashwélier ein symmetrisches Kryptover-
fahren zu berechnen: Man nimmt etwa den ersten Block aldiSs#l,
verschiisselt damit den zweiten, nimmt das Ergebnis als (&3dl zur
Verschlisselung des dritten und so weiter; die Vergskelung des letz-
ten Blocks ist dann der Hashwert.

Ein solches Verfahren st allerdings gleichzeitig zu aufdig und zu un-
sicher: Da jeder Block der Nachricht zum Endergebnis agitrerhalten
wir automatisch eine deutlich Reduktion der Redundanzjwauchen
daher nicht so viele oder nicht so aufwendige Runden prokBioe bei
der Verschiisselung eines einzelnen Blocks.

Gleichzeitig ware bei einer solchen Vorgehensweise die Sicherheit
drastisch reduziert, wenn wie dedichste Paragraph zeigen wird, brau-
chen wir ir Hashverfahren bei gleicher Sicherheit eine doppeltsBgr
Blocklange wie bei Versciisselungsverfahren.

82: Das Geburtstagsparadoxon

Der Grund daiir ist das sogenanntgeburtstagsparadoxon®: Ange-
nommen, in einem Raum befinden sielPersonen. Wie grol3 ist die
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Wahrscheinlichkeit dair, dal3 zwei davon am gleichen Tag Geburtstag
haben?

Um diese Frage wirklich beantworten zarknen, niil3te man die (recht
iInhomogene) Verteilung der Geburtstagkeer das Jahr kennen; wir
beschéanken uns stattdessen auf ein grob vereinfachtes Mode# ohn
Schaltjahre mit 365 gleich wahrscheinlichen GeburtstaBann ist die
Wahrscheinlichkeit dair, dal3 vom Personen keine zwei am gleichen

Tag Geburtstage haben,
(e
365/

k=0
dennfir eine Personist déaberhaupt keine Bedingung, und jede weitere
Person mul3 die Geburtstage der schon betrachteten Pevsomeziden.
(Da der Faktor mit = 365 verschwindet, wird die Wahrscheinlichkeit
fur n > 365 zu Null, wie es nach demiRCHLETschen Schubfach-
prinzip auch sein muf3.)

Nachrechnen ergibtif n = 23 ungeéhr den Wert 0,4927; bei 23 Per-
sonen liegt also die Wahrscheinlichkeitr fzwei gleiche Geburtstage
bei 50,7%. Tatachlich dirfte sie noch deutlichdher liegen, denn bei
Geburtstagen ist die Annahme einer Gleichverteilung siicihefalsch.

Bei einer guten Hashfunktion allerdings sollten die Hagtevan sehr
guter Naherung gleichverteilt sein; falls @6 mogliche Hashwerte gibt,
liegt die Wahrscheinlichkeit daf, dal3 untern Nachrichten zwei zum
selben @ihren daher bei
n—1 L
= 1—— ).
r=11 (1 %)

Da wir uns fir grol3e Werte vonV interessieren, &énen wir davon
ausgehen, dafl3

N
(1—%) ~e und (1—%)%6_1/1\[

Ist; fur nicht zu gro3e Werte vohist dann auch

k
(1— N) ~ B_k/N
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und fur nicht zu grofRe Werte von gilt

n—1 n—1
k _ 1Nl n(n—1)
pn:H<1_N>%H€_k/N:€ N kzok:e_T_

k=0 k=0

FUr N = 365 etwa ergibt dies dendderungswerp,; ~ 0,499998 fir
den korrekten Wert 0,4927.

Wenn wir im Exponenten noch den Terttr. — 1) durchn? approximie-
ren, kKdnnen wir abscétzen, @r welchesn die Wahrscheinlichkeip,,
einen vorgegebenen Wert erreicht:

2
e N =p<:>2n—N=—|np(:>n=\/—2N|np.

Damit liegtp,, bei etwa 50%, falls: ~ v2N In2 ~ 1,177/ N ist; fur
N = 365 ergibt dies die immer noch recht gutahidrung 22194.

N

Fir p = 1/1000 ergibt sichn ~ 3,717/N, fiir p = 999/1000 ent-
sprechend ~ 0,0447/N. Die Wahrscheinlichkeit déf, daR es unter
n Nachrichten zwei mit demselben Hashwert gibt, wechsettlads der
GroRenordnung ~ v/ N ziemlich schnell von sehr unwahrscheinlich
zu sehr wahrscheinlich.

Damit ist klar, dal3 bei einem kryptographisch brauchbarashier-
fahren die ZahlV der nbglichen Hashwerte so grol3 sein muf3, dal3 die
Erzeugung vor/N verschiedenen Nachrichten rechnerisch aglich

ist. Ansonsten &nnte ramlich ein Gegner zwei verschiedene Texte
und b erzeugen, von denem so ist, dal3 ihn das Opfer unterschreibt,
b aber fir diesesaul3erst nachteilig &re. Dazu Bnnte er jeweils etwa
VN sinngleiche Modifikationen;, undb; erzeugen, indem er beispiels-
weise unab@ngig voneinander an jedem Zeilenenden entweder ein Leer-
zeichen einfigt oder auch nicht, was beiZeilen bereits 2 Varianten
ergibt; genausodnnte er Kombinationen aus Leerzeichen unik
taste einfigen oder auch nicht, Tabulatoren durch Leerzeichen ersetz
oder auch nicht, und so weiter. Wie wir gerade gesehen hakée,er
dann eine gute Chance, dal3 ejrdenselben Hashwerttte wie eirb,;
jede Unterschrift untes, ware gleichzeitig eine unter.
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Die Schlisselange K eines symmetrischen Kryptoverfahrens wird so
gewahlt, daR die 2 Schlissel nicht mit realistischem Aufwand durch-
probiert werden &nnen. Bei einem kryptographisch sicheren Hashver-
fahren mul3 dementsprechend diégnge L des Hashwerts so géhilt
werden, daR niemand mit realistischem Aufwan@l = 2-/? Nach-
richten erzeugen kann, d.h. bei gleichen Sicherheitsdafangen muf3
ein Hashwert etwa doppelt so lang sein wie ein 8sbél eines symmet-
rischen Kryptosystems. Da AES mit Sikkelangen 128, 192 und 256
arbeitet, sollte man also entsprechend mit Hashwerten @egé. 256,
384 und 512 arbeiten; Hashwerte mit nur 128 Bit sind genawinye-
toverfahren mit 64 Bit-Sclilsseln heute nicht mehr sicher.

83: Die Familie der SHA-Algorithmen

Daes mitkryptographisch sicheren Hashfunktionen déutiieniger Er-
fahrung gibt als mit Versciikselung, liest sich die bisherige Geschichte
solcher Funktionen eher eattschend: Zu den meisten Verfahren wur-
dentber kurz oder lang Angriffe gefunden.

In der fglichen Praxis wurden bis etwa 2010 haaptdich zwei
Hashverfahren verwendet: RIPEMD-160 und SHA-1, die beide m
160 Bit Hashwerten arbeiten. Viele der damaligen chipkédnasierten
Systeme ifir elektronische Unterschriften konnten nur mit Hashwerte
dieser lange arbeiten. Die Sicherheit solcher Unterschriftenpeath
nur der eines Kryptoverfahrens mit Sabktelinge 80 war somit nach
heutigen Anforderungen recht gering.

Von daher sollte es niemanden verwundern, dal3 in den lefzteren
zunehmend Aretze fir Kollisionsattacken gegen die beiden Verfahren
publiziert wurden und dald die Bundesnetzagentur iamgdre Hash-
werte vorschreibt. Genau wie seinerzeit bei,dgrhallgrenze” 1024 Bit
fur RSA stiel3 sie auch hier wieder auf erbitterten Widers&indyer
Anwender. Erst 2010 gelang esiy neue Unterschriften nur noch Ver-
fahren zu erlauben, die Hashwerte mit Mindaste 224 liefern, was
etwa der Sicherheit von Triple-DES entspricht. Im Algamignkatalog
fur 2016 wurde dieser Wert hochgesetzt auf 256 Bit. Die zisgelaen
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Verfahren sind derzeit allesamt Algorithmen aus der SHAxka, mit
denen wir uns daher in diesem Paragraphen la¢sghn wollen.

Der Secure Hash Algorithi BHA wurde im Januar 1992 \@&fentlicht
und am 11. Mai 1993 als amerikanischer Standard FIPS 180indét.
Wegen einer (nie publiziertenYechnischen Schache* musste auch
dieser Algorithmus alsbald nachgebessert werden; am 1i119¢4
wurde die Modifikation SHA-1 als Nachfolgestandard FIPS -180
eingesetzt. Dessen Nachfolger FIPS 180-2 vom 1. August 26032
SHA-1 unangetastetiifte aber drei neughnlich aufgebaute Algo-
rithmen SHA-256, SHA-384 und SHA-512 mingeren Hashwerten
dazu. In einem Zusatz vom 15. Februar 2004 wurde schlie@licin
noch eine Variante SHA-224 normiert. Am 15.ak 2006 wurden
die amerikanischen Bundesliglen angewiesen{ikftig nur noch die
neueren Versionen mit mindestens 224 Bit zu benutzen. Dieede
tig gultige Version FIPS 180-4 vom August 2015 definierte nochizwe
weitere Algorithmen SHA-512/224 und SHA-512/256, die insemet-
lichen aus SHA-512 durch Abschneiden entstehen.g#ilish gibt es
noch kleine Unterschiede bei der Initialisierung und beiatging.)
Sie wurden haup#&chlich eingeiihrt, weil SHA-224 und SHA-256 mit
32-Bit Blocken arbeiten, @hrend heutigen Rechnern meist 64-Bit-
Architekturen zugrunde liegen, so dal3 sie besser mit ddgiteBtocken
von SHA-512 rechnendanen.

Ebenfalls im August 2015 liel3 das NIST in FIPS 202 eine neusiliea
SHA-3von Hashalgorithmen zu, bestehend aus vier Algoath8HA3-
224, SHA3-256, SHA3-384 und SHA3-512. Diese Algorithmemema
wie AES, das Ergebnis einéffentlichen Ausschreibung; Sieger wurde
der Algorithmus Keccak von Guido Bertoni, dem AES-Mitaudman
Daemen, Michal Peeters und Gilles Van Assche. Im Algorithmenkata-
log 2016 der Bundesnetzagentur sind die Algorithmen SHB- S5 A-
512/256, SHA-384 und SHA-512 aus der SHA2-Familie sowidédtie-
rithmen SHA3-356, SHA3-384 und SHA3-512 aus der SHA-3-Fami
zugelassen. Da SHA-3 naclolirg anderen Prinzipien als SHA-1 und
SHA-2 arbeitet, wollen wir uns hier auf SHA-2 und den \énger
SHA-1 beschiinken. Zwar ist SHA-1 nicht zuletzt wegen seines kurzen
Hashwerts von nur 160 Bit heute definitiv nicht mehr sicher; der



289 Kryptologie HWS 2016

Eurocrypt 2016 wurde sogar eine explizite freestart Kimhdazu pro-
duziert. (Freestart bedeutet, dal3 der Initialisierung®redurch einen
frei gewahlten ersetzt wurde.) Die Designunterschiede zwischefs-SH
1 und den SHA-2 Algorithmen illustrieren aber eine Entwigig hin
mehr mathematischer Systematik anstelle von wnlikhen Festlegun-
gen, bei denen niemand (aul3er dem Designer) weil3, ob sickaloe
Hintertir versteckt.

Die Algorithmen der SHA-2-Familie und SHA-1 sind seéhnlich
aufgebaut; SHA-1, SHA-224 und SHA-256 arbeiten mit 32\Bibrtern
und Blocken der [ange 512, bei SHA-384 und SHA-512 verdoppeln sich
diese langen. Die Nachrichten, die SHA-1 bis SHA-256 verarbeiten
kdnnen, niissen Krzer sein als % Bit, also etwa zwei Millionen Tera-
byte; fir SHA-384 und SHA-512 liegt die Grenze béf2Bit. Da die
gesamte in unserem Universum enthaltene Information nelt&in-
gen der Physiker bei etwa ¥ Bit liegt, dirfte dies fir alle praktischen
Zwecke ausreichen.

Die Maximallange spielt eine Rolle bei der Vorverarbeitung der Nach-
richt: Ist M die zu verarbeitende Nachricht, bestehend/eis, so wird

am Ende ein Bit,1* eingefugt, dannk Nullen und schlief3lich noch die
Zahl/ als Block von 640zw.128 Bit. Die Zahlk wird als kleinste nicht-
negative ganze Zahl gélt, fur die/+1+k+64 durch 512 teilbar istir
SHA-1, SHA-224 und SHA-256zw.fur die/+ 1 +k + 128 durch 1024
teilbar ist ir SHA-384 und SHA-512, so dal? in jedem Fall dignige
der Nachricht ein ganzzahliges Vielfaches der Blaokje ist. (Im Falle
von SHA-512/224 und SHA-512/256 sieht die Umgebung,ti&rdlen’
etwas anders aus.)

Damit laRt sich die Nachricht nun aufteilen indgke MY, M@
jeder dieser Ricke wiederum wird aufgeteilt in @¢ter M1, ..., M2,
(Man beachte, dal3 beijedem dénf Algorithmen die Blockhnge gleich
der 16-fachen Woréinge ist.)

Jeder der Algorithmen startet mit seinem eigenen Anfargishiart. Ein
wesentlicher Unterschied zwischen SHA-1 und SHA-2 bestelder
Wahl dieser Anfangswerte: Bei SHA-1 und noch bei SHA-224d sin
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es willkurlich festgelegte Werte, bei denen manimith wie seinerzeit
bei den S-Boxen von DE&ber verborgene Strukturen spekulieren kann.
Bei dentibrigen Algorithmen der SHA-2-Familie sind sie durch mathe
matische Formeln gegeben.

Bei SHA-1 besteht der Anfangswert aus danff(hexadezimal angege-
benen) Wrtern

HY = 67452301 H” =EFCDAB8Y, H) = 98BADCFE,
H = 10325476 H\” = c3D2E1FO,
ahnlich auch bei SHA-224 mit
H® =c105®p8, H =367p507, H{ =3070D17,
HY =F7085939 H =FFcOB3l, HY) = 68581511
HY) = 64r98Fa7, H\”) = BEFA4FA4.

Bei den drei anderen SHA-2-Standards gibt es jeweils acttté
HY, ..., HY, die tiber die hexadezimal geschriebenen gebrochenen
Anteile der Quadratwurzeln von Primzahledefiniert sind; es geht al-

so um die hexadezimal geschriebenen ganzen Za#lgn,/p}|, wobei

r = 32bzw.64 die Worthnge des jeweiligen Algorithmus istuFSHA-

256 und SHA-512 nimmt man die erste bis achte Primzah5HA-384

die neunte bis sechzehnte. In der nachstehenden Tabelldisge Werte

zu finden, wobeitir SHA-256 nadtrlich nur die jeweils linke Hlfte re-
levant ist.

Daneben gibt es noch Konstanten, die auch bei SHA-1 wiediiwA
lich (?) festgelegt sind als

54827999 fir 0<¢t <19
6ED9EBAL fur20<t¢ <39
8FLBBCDC fur40<t¢ <59
CA62C1ID6 fur60<t¢ <99

und fur die drei anderen Algorithmen gegeben sind durch die rrste
Bits der gebrochenen Anteile der Kubikwurzeln der erstem&xhlen.

Fur SHA-224 und SHA-256 nimmt man die ersten 32 Bit und die er-
sten 64 Primzahleniif SHA-384 und SHA-512 entsprechend die ersten
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i p; 2O = [2"{p,}]

1 2 6A09E667 F3BCC908
2 3 BB67AE85 84CAA73B
3 5 3C6EF372 FEQ4F82B
4 7 AS4FF53A 5F1D36F1
5 11 510E527F ADE682D1
6 13 9B05688C 2B3E6C1F
7 17 1F83D9AB FB41BD6B
8 19 5BEOCD19 137E2179
9 23 CBBB9D5D C1059EDS8
10 29 629A292A 367CD507
11 31 9159015A 3070DD17
12 37 152FECD8 F70E5939
13 41 67332667 FFCOO0OB31
14 43 8EB44A87 68581511
15 47 DBOC2EOD 64F98FAT
16 53 47B5481D BEFA4FA4

64 Bit und die ersten achtzig Primzahlen. In jedem Fall hat mlgo
eine Folge von WirternK, K4, . .. bis K43 bzw.K+4. Die Hexadezima-
lentwicklungen der gebrochenen Anteile der Kubikwurzedn érsten
achtzig Primzahlen sind unten in der Tabelle zu finden, waleder
darauf zu achten ist, dai, fur SHA-224 und SHA-256 nur aus den
ersten 32 Bit (oder acht Hexadezimalziffern) der angegethaferte
besteht.

Aul3er diesen Konstanten sindrfdie funf Algorithmen noch Funk-
tionen definiert, die sfter im Konfusionsschritt eingesetzt werden; sie
verknipfen jeweils drei Vidrter zu einem vierten, indem die angegebe-
nen logischen Operationen bitweise angewendet werden.

In allen funf Algorithmen wird die Funktion
Chz,y,2) = (x Ay) & (-z A 2)

eingesetzt, in dew fur die Addition inF, oder @quivalent) das exk-
lusive Oder steht, hatif wahresr den Wahrheitswery ¢ falsch also
denselben Wert wig. Ist z dagegen falsch, erhalten wialsch® z,
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[ 7% K, = [ZT{{Vﬁ;}] t P K, = [ZT{{Vﬁ;}]

1 2 428A2F98 D728AE22 41 179 A2BFESAL 4CF10364
2 3 71374491 23EF65CD 42 181 A81A664B BC423001
3 5 B5COFBCF ECAD3B2F 43 191 C24B8B70 DOF89791
4 7 E9B5DBAS 8189DBBC 44 193 C76C51A3 0654BE30
5 11 3956C25B F348B538 45 197 D192E819 DGEF5218
6 13 59F111F1 B605D019 46 199 D6990624 5565A910
7 17 923F82A4 AF194F9B 47 211 FA0E3585 5771202A
8 19 AB1CSED5 DA6D8118 48 223 106AA070 32BBD1BS
9 23 DS07AA98 A3030242 49 227 19A4C116 BSD2DOCS
10 29 12835B01 45706FBE 50 229 1E376C08 5141AB53
11 31 243185BE 4EE4B28C 51 233 2748774C DFSEEB99
12 37 550C7DC3 D5FFB4E2 52 239 34BOBCB5 E19B48AS
13 41 72BE5D74 F27B896F 53 241 39100CB3 C5C95A63
14 43 80DEB1FE 3B1696B1 54 251 AEDSAMA E3418ACB
15 47 9BDOOBA7 25C71235 55 257 5BIOCCA4F 7763E373
16 53 Cl9BF174 CF692694 56 263 682E6FF3 D6B2BSA3
17 59 E49B69CL 9EF14AD2 57 269 748F82EE 5DEFB2FC
18 61 EFBE4786 384F25E3 58 271 78A5636F 43172F60
19 67 FC19D068 2B8CD5B5 59 277 84C87814 ALFOAB72
20 71 240CALCC 77AC9C65 60 281 8CC70208 1A6439EC
21 73 2DE9206F 592B0275 61 283 90BEFFFA 23631E28
22 79 AATA84AA GEAGE4AS3 62 293 A4506CEB DES2BDE9
23 83 5CBOA9DC BD41FBD4 63 307 BEF9A3F7 B2067915
24 89 76F988DA 831153B5 64 311 C67178F2 E372532B
25 97 983E5152 EE66DFAB 65 313 CA273ECE EA26619C
26 101 A831CB6D 2DB43210 66 317 D186B8C7 2100C207
27 103 B00327C8 98FB213F 67 331 EADA7DD6 CDEOEBLE
28 107 BF597FC7 BEEFOEE4 68 337 F57D4F7F EEGEDL78
29 109 CBEQ0BF3 3DASSFC2 69 347 06F067AA 72176FBA
30 113 D5A79147 930AA725 70 349 0A637DC5 A2C898A6
31 127 06CA6351 E003826F 71 353 113F9804B EF90DAE
32 131 14292967 0AOEGET70 72 359 1B710B35 131C471B
33 137 27B70A85 46D22FFC 73 367 28DB77F5 23047D84
34 139 2E1B2138 5C260C926 74 373 32CAAB7B 40C72493
35 149 4D206DFC 5ACA2AED 75 379 3C9EBEOA 15C9BEBC
36 151 53380D13 9D95B3DF 76 383 431D67C4 9CLO0DAC
37 157 650A7354 8BAF63DE 77 389 4CC5D4BE CB3E42B6
38 163 766A0ABB 3C77B2A8 78 397 597F299C FOB57E2A
39 167 81C2C92E 47EDAEE6 79 401 5FCB6FAB 3AD6FAEC
40 173 92722C85 1482353B 80 409 6C44198C 4A475817

also den Wahrheitswert von In SHA-1, SHA-224 und SHA-256 wird
sie bitweise auf Wirter der lange 32 angewandt, bei SHA-384 und
SHA-512 auf solche derdnge 64.
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Ebenfalls allen Algorithmen gemeinsam ist die Mehrheit&fion
Maj(x,y,2) = (x Ay) @ (x A 2) ® (y A 2), die in derselben Weise
bitweise angewandt wird. Falls genau zwei ihrer Eingalsepdsetzt
sind, ist genau eine der drei Klammern eins, also auch dasbhig)
Sind alle drei Eingabebits gesetzt, erhalten wir eine Sumamedrei
Einsen, also ebenfalls eins. In allen anderéafieh sind alle drei Sum-
manden Null, also auch das Ergebnis.

Nur SHA-1 arbeitet mit der FunktioMaj(z, vy, 2) = = & y & z, deren
Ergebnisbit genau dann gleich eins ist, wenn eine ungeradalf der
drei Eingabebits gleich eins ist.

Zur Diffusion verwenden allelinf Algorithmen Verschiebungen. Die
zyklischen Verschiebungen nach rechts und links bezerchwne mit
ROTR und ROTL, die entsprechenden nichtzyklischen Veedzmgen
mit SHL und SHR. Diese Operatoren verschieben um jeweil8din
fur Verschiebungen um gRBere Distanzen sorgen ihre Potenzen.

SHA-1 verwendet diese Operatoren direkt, bei den neuergorthmen
gibt es stattdessen vier Funktionen audiérn der jeweiligen Ange,
die mehrere dieser Verschiebungen additiv kombinierenSB&\-224
und SHA-256 sind dies

»2%%(z) = ROTR(z) ® ROTR®(z) & ROTR(x),

»%%%(z) = ROTR(z) @ ROTRY(z) & ROTR(x),

@) z) = ROTR () & ROTRY®(z) & SHR(z),

o®)z) = ROTRY(z) @ ROTR®(z) @ SHRY(z),
bei SHA-384 und SHA-512

»012(1) = ROTR(z) @ ROTR*(z) & ROTR®(x),

»©12(2) = ROTR¥(z) @ ROTR®(z) & ROTR(x),

o8& (z) = ROTRY(z) & ROTR(z) & SHR/(z),

o1 (z) = ROTR®(z) @ ROTRY(2) & SHRY(z).

Die weitere Vorgehensweise ist bei den neueren Algorithieisvas
anders als bei SHA-1; wir betrachten diese daher getrennallén
Fallen gehen wir davon aus, dal3 die Nachricht als Folge vacksl
en M® M@ . vorliegt genaRR der eingangs énliterten Vorverar-
beitung.
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Der Algorithmus SHA-1 unterwirft diese Btke den folgenden Verar-
beitungsschritten:

1. Setze

wo= MY furo<¢ <15

Dies ist offensichtlich ein Diffusionsschritt.

2. Initialisiere die @inf internen Variablen mit deruhf Hashwerten der
vorigen Runde (ir die erste Runde wurden die Hashwek oben
definiert):

0 H(()i-l)) b Hiz’—l)) ¢ Héi—1)7

d Héi_l), e «— Hz(li_l)

3. Der Konfusionsschritt: fthre ir t = 0 bist = 79 die folgenden
Anweisungen aus:
T — ROTL>(a) + f,(b,c,d) + K, +W,, e«—d, d«—ec,
c—ROTLX¥®), b—a, a<T,
Ch for <t<19
wobei f, = { Maj furd40<t <59 ist.

Maj sonst
(Die Konstantenk, wurden oben definiert.)

4. Berechne den Hashwert der Runde:
HY —a+HY HD — o+ HIY g — e+ HITY,
Y —d+H{, HY — e+ H

Ergebnis des Algorithmus sind die aneinandergesetztehvwate der
letzten Runde.

Die Algorithmen SHA-224, SHA-256, SHA-382 und SHA-512 unte
scheiden sich abgesehen voangenparametern und den bereits defi-
nierten Anfangskonstanten kaum voneinandér. jgden BlockM @,
aufgeteilt in die Vorter M$” bis M{”, werden die folgenden Operatio-
nen durchgefhrt:
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1. Setze

w = | M furo<¢ <15
! o (Wi )+ W, 7+0o(W,_15) + W, 46 fUrl6<t¢<r’

wobeir = 63 fur SHA-224 und SHA-256 und = 80 sonst.

Das Pluszeichen steht hier folgendermalien zu interpzati€ie ein-
zelnen Summanden werden als ganze Zahlen zwischen Null #nd 2
bzw.2%* interpretiert und dann als ganze Zahlen addiert. Das Eigebn
wird modulo 2? bzw. 254 betrachtet, d.h. ein etwaigétberlauf wird
ignoriert.

Bei oy und o, ist darauf zu achten, daf3 es sich hier bei SHA-224 und
SHA-256 umo?°® undo{#°® handelt, sonst aber ua§*? undo{>*2.

2. Initialisiere die acht internen Variablen mit den achshlaerten der
vorigen Runde (ir die erste Runde wurden die Hashwek# oben
definiert):

a—HSD, be—HY, ce—HY Y, d—HY,
o Hé(f’—l)) fo Héi—l)) g Héi—l)) I ng’—l)
3. Der Konfusionsschritt: fthre fur t = 0 bist = r (also je nach Algo-
rithmus 63 oder 79) die folgenden Anweisungen aus:
Ty — h+3(e) +Chle, f,g) + K, + W,
15 — Yo(a) +Maj(a, b, c), h—g, g [ [<e
e—d+T),, d+<c,

c—b be—a, a—T,+7T,.

4. Berechne den Hashwert der Runde:
Y —a+HYD, HO —p+mgi™ HY e+ HITY,
Héi) - d+H§i—l)7 Hé(li) e +H§i_1), Héi) o f +Héi—1),
Héi) —y +Héi—1), Hgi) B +H§i—1),

Ergebnis des Algorithmus sind die aneinandergesetztehwate der
letzten Runde.
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84: Weitere Anwendungen sicherer Hashfunktionen

Die Nutzlichkeit kryptographisch sicherer Hashfunktionendbenkt
sich nicht auf elektronische Unterschriften; sie sind atliell einer
Reihe von weiteren Protokollen zum Schutz der Intégnon Daten,
fur sogenanntgZeitstempel” und einiges mehr. Auch die amerikanische
Norm fir den DSA siehtiir die Schiisselerzeugung den Einsatz von
SHA vor. Hier soll vor allem dieser letztere Fall behandedteen sowie
als erstes der

a) Schutz der Integritat von Daten

Wie bereits zu Beginn der Vorlesung &tiant, hat ein Gegner viele An-
griffsmoglichkeiten; angesichts der geringen Sicherheitsstalsdder
am haufigsten verwendeten Betriebssysteme wird oft der dirAkte
griff auf einen Computer die einfachstedglichkeit sein. Gegen das
Ausnutzen von Sicherheitgtken ist die Kryptographie machtlos; sie
kann aber doch helfen, zumindest gewisse Manipulationesnteck-
en.

Schadliche Programme lassen sich am leichtesten dann in eioen C
puter einschleusen, wenn sie der Besitzer selbst installas wird er
natirlich kaum freiwillig tun, aber wenn wenn man ihm eine manip
ulierte Variante eines Programms unterschiebt, das erhammestal-
lieren nbchte, wird es vielleicht versehentlich tun.

Teilweise lonnen schon kleinste Manipulationen ein Einfallstar f
kiinftige Angriffe sein: Wie wir bei der Diskussion von SSL/Slgese-
hen haben, sind beispielsweise die elektronischen Utieften der
wichtigsten Zertifizierungsagenturen im Programmcodegaggigen
Browser enthalten. igt man dort nur einen einzigen Datensatz mit der
elektronischen Unterschrift einer Bogus-Agentur hinzughaer Brows-

er kiinftig ohne Nachfrage beliebige Seiten als sicher bezeithmenn
sie von dieser Agentur zertifiziert sind. Falls der manignié Browser-
code auch noch einige Anweisungen pitrsatzadressentif popubre
Ziele entfalt, sind praktisch alle Arten von Angriffenaglich.

Ein Anwender muld daher sicher sein, dal3 seine Programmeivon e
ner sicheren Quelle kommen und nicht manipuliert sind sFallseine
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Programme von dubiosen Adressen heruatkr{die selbstverandlich
allesamt seiise Namen haben) oder wenn er das in der Vergangenheit
getan hat, kann ihm auch die Kryptographie nicht mehr helfen

Falls er aber seinen Computer samt Software-Erstaugsgatton
serpsen und sorglitig arbeitenden Produzenten undndllern erwor-
ben hat (so es das im Konsumentenbereich geben sollte) kaamner
sichere Internetverbindungen zu $sen Anbietern aufbauen und auch
sicher sein, dal3 er mit dem gemschten Partner verbunden ist. Jetzt
muf er nur noch wissen, dal3 die Software, die er von dort (@der
naher gelegenen und/oder billigeren Quelle) heruatkridentisch ist
mir der des Anbieters.

Zu diesem Zweck véffentlichen viele Anbieter Hashwerte zu ihren
Programmen. Falls diese mit einem kryptographisch sichideshver-
fahren berechnet werden, kann man damit nicht inoerptifen, ob
die Software fehlerfreilbertragen wurde, sondern man kann auch
uberpitifen, dal3 sie, selbst wenn sie von einem unbekanmierr
kommt, identisch ist mit dem Original.

Auf dieselbe Weise lassen sich auch kritische Dateien aufelgenen
Rechner sclitizen: Falls man zu jeder einen Hashwert berechnet und
diesen idealerweise noch auch einem externen Speicharméektlalt,
kann man jederzeiiberpiifen, ob die Datei vémdert wurde.

b) Sicheres padding bei RSA

Wie wir in Kapitel IV, §7¢) gesehen haben, kann der Standard PKCS
#1 v1.5 RSA ardllig gegen Angriffe machen. Im Oktober 2012
veroffentlichten die RSA Laboratories daher einen neuen Stahd
PKCS #1 v2.2, bei dem dies (hoffentlich) nicht mehr der Fstll Er
benutzt eine (nicht weiter spezifizierte, vom Sender und famger

zu wahlende) kryptographisch sichere Hashfunktion und eieberf-
falls zu vereinbarenden) Maskengenerator, der zu einegegebenen
Startwert und einem dangenparametéreine Folge vor? Zufallsbytes
konstruiert. Wie wir weiter hinten sehen werden, kann awcbils Mas-
kengeneratoiiber eine Hashfunktion implementiert werden.
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Wir gehen davon aus, dal3 der RSA-Modul &uByte besteht, so dal3
Blocke von bis zuk — 1 Byte verschiisselt werden &nnen. Davon
werden nurk — 2h — 2 fUr die Nachricht benutzt, wobeéi die Anzahl

der Bytes eines Hashwerts ist: In Falle eines Hashverfahmeh256

Bit Ausgabe véare alsok = 32. Zu jedem Nachrichtenblock kann eine
Marke L angegeben werden; falls dies nicht geschieht/Lislie lee-

re Zeichenkette. Ansonsten kamnbeispielsweiséiber eine zwischen
Sender und Emphger zu vereinbarenden Nachrichtennummerierung
oder etwasihnliches definiert sein.

Der erste zu berechnete Hashwert ist der \Algatish den das verwendete
Hashverfahrenir den TextL liefert. Besteht der Nachrichtenblock
ausm < k — 2h — 2 Bytes, so wird arYHash eine Folge PS aus
k — m — 2h — 2 Nullbytes angefingt (die im Fallen = k£ — 2h — 2
leer ist), gefolgt von einem Byte mit Wert eins und schlief3lden
m Nachrichtenbytes. Dies ergibt eine Folge DB &us h — 1 Bytes.
Sodann wird ein Startwegeedfir den Maskengenerator gahit, aus
dem dieser eine weitere Folge vbr- h — 1 Bytes macht. Diese beiden
Folgen werden bitweise addiert zu einer FolgpaskedDBAuf das
Ergebnis wird wieder der Maskengenerator angewandt, slidsd mit
StartwertmaskedDBund Langenparameteér. Das ErgebniseedMask
wird bitweise zuseedaddiert; die Summe senaskedSeeder Block
ausk Bytes, auf den die RSA-Funktion angewandt wird, beginnt mit
einem Nullbyte, dann folgthaskedSeednd schliel3lichmaskedDB.

Bei der Entschisselung kann der Emgofiger ausnaskedDBlen Wert
von seedMaslestimmen, und daraus durch Addition voaskedSeed
den Wert vorseed was ihm wiederum erlaubiiber den Maskengene-
rator die Maskeiir DB und damit DB selbst zu bestimmen. Aul3erdem
kann er nachpifen, ob DB die korrekte Struktur hat und ddashzur
vereinbarten (oder leeren) Markepal3t.

c) Wie zufallig missen unsere Schliissel sein?

Idealerweise sollten unsere Sigbsel stets zallig gewahlt sein; jeder
in Frage kommende Sdidsel sollte also genau dieselbe Wahrschein-
lichkeit haben. Alles andere gibt einem Gegner zumindesizimiell
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Ansatze zu einer Kryptanalyse, die schneller ist als das Duoth@ren
aller Schiissel.

Nun sind aber in der asymmetrischen Kryptographie ohnelan a
verninftigen kryptanalytischen A@sze deutlich schneller als blo3es
Probieren — deshalb brauchen wir ja auch so langeiSshl. Unter
Sicherheitsgesichtspunkten igilig ausreichend, daf’ ein Gegner das
Verfahren nicht mitweniger als etwa?® Rechenschritten knacken kann;
das Bundesamiif Sicherheitin der Informationstechnik ist sogar bereits
mit einer Unterschranke vort® zufrieden.

Deshalb nissen wir bei RSA und DSA, selbst wenn wir Primzahlen
der Lange 1024 oder gar 2048 Bit suchen, nicht unbedingt jedeinsnol
Primzahl dieselbe Chance geben: Es reicht, dal3 wir eindrnef@cZu-
fallsanteil von mindestens 128 Bit haben; der Rest kann danchaus
deterministisch daraus abgeleitet sein. Dabei mul3 fredichergestellt
sein, dal3 das deterministische Verfahren keine erkenrfbacedamit
vielleicht auch ausnutzbare) Struktur in die Sddel bringt, und dazu
Ist eine kryptographisch sichere Hashfunktion ein gedggd/erkzeug.

d) Erzeugung grol3er Zufallszahlen aus kleinen

Angenommen, wir haben eine Hashfunktian die Werte zwischen
Null und 2™ — 1 liefert, und wir haben als Startwert eine Zufallszahl
0 < zg < 2™ — 1. (In der englischsprachigen Literatur wird ein solcher
Startwert alseed= Keim bezeichnet.) Was wir wirklich wollen, ist aber
eine Zahly zwischen 2! und 2 firr ein L, das deutlich giRer ist
alsm.

Dazu gehen widhnlich vor wie beim Counter-Mode eines symmetri-
schen Kryptoverfahrens (Kap. 3,55€): Wir schreibenl — 1 =nm +b
mit 0 < b < m und berechnemn + 1 ,Ziffern“ zur Basis 2" als

v; = h(zq + 7). Dann setzen wir

n—1
Z = Z v; - 2™ + (v, mod 2) . 2n+m |
—_

Das ist noch kein geeigneter Kandidat, dennvuganod 2 Kleiner ist
als 2, ist auchz < 2~ Genau deshalb aber igt= 2171 + 2 eine
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Zahl zwischen 271 und 2, die auf einer Zufallszahl mit zufalligen
Bit beruht.

Auf der Suche nach RSA-Modulrdknen wir dann beispielsweise von
dortaus das Sieb deRErosTHENEdaufen lassen und nach dexehsten
Primzahl suchen.

Falls wir extrem vorsichtig sind und dem Gegner keinen Angaben
mochten, die sehr inhomogene Verteilung der Differenzereiaah-
derfolgender Primzahlen auszunutzen, werden wir allgsdimury auf
Primalitat testen und bei negativem Ausgang des Tests von vorne-anfan
gen.

Ein ERATOSTHENESSchritt ist jedoch selbst unter diesen Bedingungen
vollig problemlos: Da es in dem @GBenbereich, in dem wir suchen,
keine geraden Primzahlen gibt, sollten wir im Fall einesadeny
den Wert vony + 1 testen. Auf diese Weise halbieren wir die Anzahl
der zu erwartenden Durchlfe und haben selbst theoretisch keinen
Sicherheitsverlust.

e) Primzahlen fir DSA

In manchen Bllen brauchen wir nicht einfagigendwelchd’rimzahlen,
sondern zwei Primzahlen, die in einer bestimmten Relatiimander
stehen. Als Beispiel dazu betrachten wir den aus Kapitelkamaten
digitalen Unterschriftsalgorithmus DSA, in den USA stamlisiert als
Digital Signature Standar®SS

In seiner derzeit @ltigen Form wurde er im Juli 2013 als FIPS 186-4
veroffentlicht. Er beidtigt bekanntlich eine kleine Primzah| deren
Bitlange mitN bezeichnet wird, sowie eine grof3e Primzaklt 1 mod

2q, deren lange wir mit L bezeichnen. In FIPS 186-4 sind nur die
KombinationenZ = 1024 undN = 160 oder 224 und, = 2048 oder
3072 undN = 256 vorgesehen; der im Anhang A.1.1.2 beschriebene
Algorithmus zur Primzahlerzeugung ist aber unanig von dieser
Festlegung.

Der Algorithmus verwendet eine beliebige kryptographisithere
Hashfunktion, die einfach aldash bezeichnet wird. Er geht aus von
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den beiden Parametefn N sowie eineiseedLange/, die mindestens
gleich N sein mul3, und einer BlockhgeB > N. In den ersten bei-
den Schritten wirdiberpiift, ob die ersten drei Parameter allen An-
forderungen geingen; der dritte und vierte sin@iquivalent dazu, dal3
manL — 1 =nB + b schreibt mit 0< b < B. Im funften Schritt wird
eine Zufallszaht erzeugt, derendnge gleich deseedLange/ ist, und

im sechsten wird/ = Hash(z) mod 2V~ berechnet. Der siebte Schritt
macht aud/ eine ungerad&'-Bit-Zahl

¢g=2""1+U+1— (U mod2).

Diese wird im achten Schritt darauf getestet, ob sie prifrfadis nicht
geht es im neunten Schritt Ztek zu Schritt &inf, wo die ganze Prozedur
mit einer neuen Zufallszaklwiederholt wird.

Falls schliel3lich eine Primzalyl gefunden ist, geht es an die Suche
nach einer Primzahp = 1 mod 2;. Dazu wird zuichst im zehnten
Schritt eine Variableoffsetauf eins gesetzt. Im elften Schritt werden
die folgenden neun Anweisungen durchigat mit einer Laufvariablen
counter,die zurachst den Wert Null hat:

11.1 Setzd/; = Hash((z + offset+ j) mod 2) furj = 0,...,n.

11.2W — Vo+V,-2B+...+ v . 207 DB (1 mod 2) - 28

11.3 X =W +2E71  (SomitistX jetzt eineL-Bit-Zahl.)

11.4 ¢ — X mod

115p=X—(c—1) (Jetztistp = 1 mod 2, hat aber ndglicher-
weise wegen der Subtraktion weniger &lBit,)

11.6 Fallsp < 271, weiter bei 11.9

11.7 Teste, olp prim ist.

11.8 Falls ja, ist ein Paap(q) gefunden, und der Algorithmus endet.

11.9 Andernfalls wirdoffsetauf offset+ n + 1 gesetzt und die Lauf-
variable counterum eins erbht. Falls sie danach noch kleiner
ist als 4., geht es weiter bei 11.1, andernfalls geht esizkiizu
Schritt 5, d.h. wir versuchen unseri@k mit einer neuepkleinen®
Primzahlg.
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f) Wie bekommt man echte Zufallszahlen?

Durch Hashverfahrendanen wir zwar die Anzahl bérigter Zufallsbits
zumindest bei asymmetrischen Kryptoverfahren deutlidbzesren, wir
konnen aber definitiv nicht ohne sie auskommen. Alles beraldd,
dal? wir mit mindestens 128wirklich* zufalligen Bits starten. Wie
bekommen wir diese? Und was bedeutet das \Warfallig“?

Im Alltagsgebrauch bezeichnen wir ein Ereignis alsaligf, wenn es
keine Erkhrung gibt, warum ausgerechnet dieses Ereignis an Stelle vo
mehreren ebenfalls aglichen Alternativen eingetreten istalt beim
Wirfel die Zahl, drei”, so ist das Zufall.

Untersuchen wir allerdings die Bewegung dedif#ls genauer, so
konnen wir ohne gif3ere Probleme aus den Anfangsbedingungen (Ort,
Geschwindigkeit, Drehimpuls desifels beim Abwurf) zumindest im
Prinzip dessen Bahn berechnen und das Ergebnis vorhersesyest
also nicht mehr z#llig. In der Tat gibt es Spieler, die in der Lage
sind, mit recht guter Trefferwahrscheinlichkeit jede geschte Zahl zu
wurfeln. Bei genauerer Betrachtung des Vorgangs wird diéligkeit

des Ergebnisses hier also doch eher problematisch.

In der Tat ist es algorithmisch uriglich, zu entscheiden, ob eine ge-
gebene Zahlenfolge zaifig ist; wir kbnnen nie ausschlie3en, dafd wir
einfach das korrekte Bildungsgesetz noch nicht gefundbarha

Auch bei physikalischen Rimomenen, die uns zlfig erscheinen,
mussen wir immer die Nglichkeit im Auge behalten, daf3 wir vielleicht
einfach noch nicht die korrekte Theorie zu ihrer Erking gefunden
haben. Zumindest in der Quantentheorie gibt es allerdingshdus
Satze, wonach das Verhalten gewisser Systaret mit bislang noch
unbekanntepverborgenen Parametern® deterministisch ankiverden
kann, und Panomene wie der radioaktive Zerfall oder thermisches
Rauschen liefern Werte, die als allfg interpretiert werden &nnen.
Sie sind zwar im allgemeinen nicht gleichverteilt, abesd&Problem
lal3t sich durch geeignete statistische Aufbereitung behebe

Dem Normalanwender stehen physikalische Quelldricherweise
nicht zur Verfigung. Trotzdem gibt es auch auf seinem Computer
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eine ganze Reihe von nicht vorhersehbaren Ereignissekeiieswegs
alle auf Softwarefehlern beruhen: Mil3t man etwa den Abstanid
schen zwei Tastaturinterrupts mit einer Genauigkeit vorreTausend-
stel Sekunde, so vedlt sich die letzte Ziffer sicherlich zaflig: Nie-
mand kann seine Bewegungen mit einer Genauigkeit in diesseidh
steuern. Auch aus Mausbewegungen, Festplattenzugriffeéiaus Net-
zwerkaktivitaten lassen sich entsprechende Zufallszahlen gewinnen.

Linux (und verschiedenen andere UNIX-Systeme) sammelnsdie
gewonnene Entropie und stellen sie in /dev/random als Fgleieh-
verteilter Zufallszahlen zur Veifyjung; mit

dd if=/dev/random of=Dateiname bs=1 count=n

lassen sicn Zufallsbytes gewinnen — sofern hinreichend viel Entropie
zur Verfugung steht. Andernfalls blockiert /dev/irandom und lieést
dann wieder neue Bytes, wenn neuedlife Ereignisse eingetreten
sind.

Eine zweite Spezialdatei, /dev/urandom, greift ebenfalis den En-
tropiepool des Betriebssystems zu, liefert aber bei niabtechender
Entropie algorithmisch berechnete Pseudozufallsbyts&trzu block-
ieren.

Unter cygwin stehen /dev/random und /dev/urandom im Ryiaach fir
Windows-Anwender zur Veidigung, allerdings liefern dann beide nur
Pseudozufallszahlen iablicher Windowsqualiét, die auf keinen Fall
fur kryptographische Zwecke verwendet werdénfen.

Wer keinen Zugang zu physikalischen Zufallsquellen oden@atern
mit echten Entropiequellen hat, muf3 leider seine Zufdlksloi konven-
tionelle Weise erzeugen, d.h. er muftihken oder Wirfel werfen und
versuchen, dies dglichst,zufallig* zu tun. Mit einigerUbung ist es
nicht sehr schwer, Minzen oder Wirfel so zu werfen, dal’ das Ergebnis
ziemlich vorhersehbar ist; man solliérf,echten Zufall auf jeden Fall
moglichst hoch werfen und auch da die Kraft variieren.
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§5: Literatur

Das schon mehrfach zitierte Lehrbuch vood®MANN behandelt Hash-
funktionen; in der Auflage von 2016 insbesondere auch SHA¥3
elften Kapitel. Alle SHA-Algorithmen sind ausfirlich beschrieben in
den Originaldokumenten, deren neueste Version man via

http://csrc.nist.gov/CryptoToolkit/tkhash.html

und den Link zuSecure hashinfinden sollte. EntsprechendHrt der
Link Digital Signatureszum DSS.

Grundsitzlichesuber kryptographische Hashfunktionen und Angriffe
dagegen findet man auch irarfften Kapitel des Buchs

NIELS FERGUSON BRUCESCHNEIER, TADAYOSHI KOHNO: Cryptography
Engineering — Design Principles and Practical Applicatspiiley,
2010



Kapitel 8
Kryptologie und Quantenphysik

Computer sind physikalische Systeme, und die Rechnungersie
ausfihren, sind physikalische Prozesse. Diese Sichtweise/&stin der
deutschen Hochschulinformatik nicht sehr verbreitettibvaste aber
den Fortschritt der Informationstechnik in den letzterrdahnten.

Nach einer barthmten, 1965 in der Zeitschrilectronicsveroffentlicht-
en Beobachtung des Intel-Mitbégrders @RDON E. MOORE (*1929)
verdoppelt sich die Anzahl der Transistoren eines integmeSchalt-
kreises etwa alle zwei Jahre. Zumindest bislang beschigshdie Ent-
wicklung recht gut, und aucliif die fur andere Parameter wie die An-
zahl der Rechenoperationen pro Sekunden geiterliche Aussagen,
die heute allesamt als ddREsches Gesetz bezeichnet werden.

Moglich war dieser dramatische Anstieg bislang nur durch emwei-
tere Verkleinerung elektronischer Bauteile; hier bewaligtien sich
immer wieder Titel und Inhalt eines Vortrags, den deiitspe Physik-
Nobelpreistager RCHARD FEYNMAN (1918-1988) bereits 1959 am Cal-
ifornia Institute of Technology (Caltech) gehalten hafteere’s Plenty
of Room at the Bottom.

Falls dieser Trend auchlkftig anhalten sollte, sind bald Dimensionen
erreicht, bei denen nicht mehr die Gesetze der klassisdineikyelten,
sondern die der Quantentheorie.

Zu diesen kommt man allerdings auch auf Grund ganz and#ser-
legungen: In seinem Vortra8imulating Physics with Computenses
FEYNMAN schon 1982 darauf hin, daf3 eine Simulation beliebiger phy-
sikalischer Vorgnge nur mglich sei mit einem quantenmechanischen
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System, dagum Teilaus sogenannten Quantencomputern besteht (mit
denen wir uns ig3 besclaftigen werden). Solche Quantencomputer gab
es zwar 1982 noch nicht, und auch heute gibt es noch nichmedlr

als erste Anatze zu ihrer Realisierung. Trotzdem ist ziemlich klar, daf3
die Quantenphysik die Welt der Computer und auch die Krygfiel in

den rachsten Jahrzehnten wesentlicharetern wird.

Bevor wir iber entsprechende Entwicklungen spekuliereinssan wir
uns allerdings zudichst mit zumindest einigen Grundlagen der Quan-
tenphysik vertraut machen.

81: Grundzlge der Quantenmechanik

Als zu Beginn des zwanzigsten Jahrhunderts Experimentenimer
kleineren Gol3enordnungen @glich wurden, muf3ten die Physiker fest-
stellen, daf3 sich viele Ergebnisse nicht mit den klassis&esetze der
Physik erkéren liel3en: In der Welt der Atome und Elementarteilchen ist
es beispielsweise nicht mehglich, das Kinftige Verhalten eines Sys-
tems aus dem bisherigen Zustand und den Naturgesetzemzushgen,
auRerdem lassen sich verschiedene physikalische Ké&degreines
Teilchens wie beispielsweise Ort und Impuls nicht gleidigeenau
bestimmen. Wie sich bald herausstellte, lag dies nichtmtg@hnischen
Beschankungen oder unvolighdigen Theorien, in denen wesentliche
Parameter fehlten: Man konnte zeigen, #aiheTheorie mit egal wel-
chen zuatzlichen Parametern den Ausgang der Experimentérenkl
konnte.

Erste Versuche, das klassische Weltbild dwadihocPostulate (meistin
Form irgendwelcher Verbote) zu retteihften zu keinen befriedigen-
den Ergebnissen; dazu kam es erst, als ab etwa 1925 aus deiteArb
verschiedener Physiker ein radikal neuer Brihgsansatz entstand, die
Quantenmechanik. Sie ist sehr viel weniger anschaulicldialklas-
sische Physik und widerspricht auch teilweise unserent®tusgen,
hat sich aber seither in uakligen Experimenten begdtgt und fihrte
auch bereits zu praktischen Anwendungen, wie beispietas@er im
nachsten Paragraphen behandelten Quantenkryptograpbidld3si-
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sche Physik kann auf der Grundlage der Quantenphysi&rerkkrden
als deren Limesitir immer gbRRer werdende Teilchenzahl.

Grundlage der Beschreibung eines quantenmechanischen®ysind
nichtwie in der klassischen Physik die Werte verschiedener Mdiar,
die den Bestandteilen des Systems zugeordnet sind; Sisetalevird der
Zustand des gesamten Systems beschrieben durch einegeailektor,
der im allgemeinemicht bestimmt werden kann.

Der Zustandsraumin dem diese Vektoren liegen, ist ein (im allge-
meinen unendlichdimensionaler) Vektorrauer dem KrperC der
komplexen Zahlen mit eineme#&MmITEsSchen Skalarprodukt; bevor wir
uns mit Einzelheiten befasseniissen wir also zuachst dieses Produkt
verstehen.

HERMITESChe Skalarprodukte sind das Analogon der bekannten E
KLIDischen Skalarprodukteéif Vektoren mit komplexen Eirdigen. Mit
dem Standardskalarprodukt a&f ist

() (5)) =oevra

Fur komplexe Zahlewm, b, ¢, d wiirde dies beispielsweise bedeuten, dal3
<(i), (§)> = 12 + %> = 0 ware, ein vom Nullvektor verschiedener Vektor
hatte also die Bnge Null. Dies widerspricht allen unseren Vorstellungen
von einem Skalarprodukt und mufd daher vermieden werdeneibie
fachste losung besteht darin, dal’3 wir die E#ége des zweiten Vektors

vor der Multiplikation komplex konjugieren: Mit

() (5)) aeme

ist(}) @ (}) =1-1+i-(—i) = 2 eine positive Zahl, wie es sein soll.

Was die Bezeichnung angeht, haben Physiker eine andereeKonv
tion als Mathematiker; sie geht zigk auf den englischen Physik-
Nobelpreistager RuL DIRAC (1902—-1984). Danach schreibt man das
Produkt in der Fornju|v) mit einer spitzen Klammer, englisdinacket.
Die Vektoren aus dem Zustandsraum werden in der Hofrgeschrie-
ben und alketsbezeichnet.
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Diese Schreibweise mag einem Mathematiker auf den erstek\&ir-
wirrend erscheinen; er sollte sich aber klarmachen, dalkeesitr um
ein Symbol geht und sich an der Mathematikimith nichtsandert,
egal ob man einen Vektor abs v oder eberjv) schreibt.

Die formale Definition eines ERMITEschen Skalarprodukts ist

Definition: Ein HERMITESCches Skalarprodukt auf einem komplexen
VektorraumV ist eine Abbildung

(1) VxV=C (o), w) = (vlw)

mit folgenden Eigenschaften:

1) (Wwy + pvglw) = A {vglw) + g (p]w)

2.) (v|w) = (wlv)

3.) (v|v) > 0 und(v|v) = 0 genau dann, wenm) der Nullvektor ist.

Typisches Beispiel eines endlichdimensionalen Vektangmit einem
HERMITESChen Skalarprodukt ist d€f* mit dem Produkt

21 wy
< >:Z]_@1+---+Zn@n.
z w

n n

Die ersten beiden Forderungen sind trivialerweisé@lirfund fur die
dritte missen wir nur beachten, daf3

<1 21
< >:lel+"'+znzn:212+"'+Zn2

VA VA

n n

als Summe von Betragsquadraten eine nichtnegative regtikeizt, die
genau dann verschwindet. wenn aljeverschwinden.

Man beachte, dal3 eingrmMITEsSches Skalarprodukt nur in seinem er-
sten Argument linear istiir das zweite Argument haben wir nach den
Forderungen 1.) und 2.) die Beziehung

(0, Adwy + pwa) = (Awy + pawg, v) = A (wy, v) + p (W, v)

= X<w1,v> +ﬁ<w2,v> = X<U;w1> +ﬁ<vaw2> .
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Ein HERMITESChes Skalarprodukt ist somit nicht bilinear, hat aber doch
auch im zweiten Argument eine lineditahnliche Eigenschaft; man
spricht hier von eineiSesquilinearformd.h. von ,anderthalbfacher*
Linearitat.

CHARLES HERMITE (1822-1901) war einer der bedeu-
tendsten Mathematiker des neunzehnten Jahrhunderts.
Zu seinen Resultatenahlen eine Vereinfachung des
ABELschen Beweises, dal’ Gleichunganften Grades

im allgemeinen nicht durch Wurzelausdke gebst
werden lonnen, die explizite sung solcher Gleichun-
gen durch elliptische Funktionen, der Nachweis, dal}
eine transzendente Zahl ist, also keiner algebraischen
GleichungiberQ geriigt, eine Interpolationsformel und
vieles mehr. HRMITE galt als ein sehr guter akademis-
cher Lehrer; er unterrichtete an d&gole Polytechnique,
dem Colkge de France, déicole Normale Sugrieure

und der Sorbonne.

In der Quantenmechanik werden die Zrsle eines Systems beschrie-
ben durch die Vektorefv) # |0) aus einem komplexen Vektorrauvi
dabei sollen allerdings zueinander proportionale Vektatenselben
Zustand beschreiben. Tathlich entsprechen diedglichen Zusande
somit den eindimensionalen Untervekimimen vonV'; die Men-

ge aller dieser Unteaume bezeichnet man auch als den projektiven
RaumP(V'). Fur praktische Rechnungen betrachten Physiker allerdings
iImmer konkrete Vektoren; da es auf deréinigen nicht ankommt, wer-
den diese oft auf eins normiert.

Mel3bare physikalische GRen werden durch sogenannterRnITESChe
Operatoren beschrieben, das sind lineare Abbildugyén — V, far
die gilt (Av|Aw) = (v|w) furalle|v) , |w) € V. Schreibt man den Oper-
ator A im endlichdimensionalen Fall biaglich einer Orthonormalbasis
als Matrix, so ist dagquivalent zur Gleichung” = A. Falls alle Ein-
trage vonA reell sind, bedeutet das einfach, daleine symmetrische
Matrix ist; im Komplexen reden wir von einergg®MITESchen Matrix.

Bekanntlich sind alle Eigenwerte einer symmetrischenleadilatrix
reell; dies gilt auchiir HERMITESChe Matrizen: Istamlich \ € C ein
Eigenwert vonA mit Eigenvektorjv), so ist

(v| Av) = (v|]Av) = X (v]v) .
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Andererseits tnnen wir den Vekto) auch als eine einspaltigen Matrix
v auffassen; dann ist

(v|Av) = v AT = 0T ATT = (Av)TT = ()17 = Dwlv) = X (v]v) .

Somit istA (v|v) = X (v|v), was wegen(v|v) # 0 nur dann riglich ist,
wenn\ = X reell ist.

Genauso wie im Reellen folgt auch, dal? eirerRMITESChe Matrix stets
diagonalisierbar ist und dal3 Eigenvektoren zu verschieudtfigen-
werten orthogonal bémglich des HRMITEschen Skalarprodukts sind.

Wie bereits enahnt, ist das Ergebnis einer Messungen in der Quanten-
physik nicht allein durch den Zustand des Systems festtyéegs wird
mathematisch wie folgt modelliert:

Angenommen, das System befindet sich vor der Messung im rtljsta
der durch den Einheitsvekttr) beschrieben wird, und wir messen die
physikalische Gilie, die durch die Matrixd beschrieben wird. Dann
ist das Ergebnis der Messueger der Eigenwerte\ von A, und das
System befindet sich anschlie3end in einem Zustand, deh cimen
Eigenvektor|w) zum Eigenwert\ beschrieben wird. Dies entspricht
der experimentell gut belegten Tatsache, da? man in einemtey-
mechanischen System nichts messen kann, ohne dabei demd dsis
Systems zu véndern.

Auch wenn wir das Ergebnis einer Messung nicht mit Sichéxloeaus-
sagen Bnnen, Knnen wir doch immerhin die Wahrscheinlichkeiten der
moglichen Mel3ergebnisse angeben: Die Wahrscheinlichkadit,ddafd
sich das System nach der Messung in dem Zustand befindet,aér d
einen Eigenvektorw) der Lange eins beschrieben wird, ist das Quadrat
des Skalarprodukts|w). Falls|w) zu einem Eigenwert der Vielfachheit
eins gelort, ist das auch die Wahrscheinlichkeit dafdald wir diesen
Eigenwert als Mel3ergebnis erhalten; béharer Vielfachheit riassen
die entsprechenden Wahrscheinlichkeitén die Vektoren aus einer
Basis des Eigenraums aufaddiert werden.

Das einzige quantenmechanische System, mit dem wir unegeg
Kapitel raher beschiftigen werden, ist ein polarisiertes Photon. Polar-
isiertes Licht ist zumindest einigen Lesern vielleicht das Photogra-
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phie vertraut: Dort vermeidet manosende Reflexe (z.B. auf Fenster-
scheiben oder Metallichen), indem man ein Polarisationsfilter auf das
Objektiv schraubt und es in eine geeignete Richtung dreht.

Licht besteht aus ebenen Wellen, wobei im Raumiiddiicherweise alle
Schwingungsrichtungen vertreten sinétwend reflektiertes Licht in ei-
ner festen Ebenen schwingt. Ein Polarisationsfit Inur Licht einer
Schwingungsebenen ungehindert passieren; Licht mit dazkrechter
Schwingungsebene wird voléstdig, sonstiges Licht teilweise absor-
biert. Zur Vermeidung von Reflexen muf3 man also nur das Hilteine
Richtung drehen, in der es das reflektierte Licht nicht d@dhoder
zumindest hinreichend stark adodpft.

Nach der Quantentheorie ist Licht zusammengesetzt aunaogeEn
Photonen. Diese kleinsten Bestandteile haben ebenfaks &thwin-
gungsebene; da es sich um kleinste Teile handelt, kannrsieaar-
isationsfilter aber nichteilweisedurchlassen, sondern entweder ganz
oder gar nicht. Dieses Bhomen wollen wir hier quantenmechanisch
beschreiben:

Der Zustandsrauniif ein polarisiertes Photon ist der Vektorrah
mit seinemiblichen HERMITESChen Skalarprodukt. Der Zustand eines
Photons mit Schwingungsrichtungwird beschrieben durch den Vektor
COSyp
siny
Photon durch ein Polarisationsfilter mit Durchlassriclgtuin kommit,
wird beschrieben durch den Operator

_(cos2) sin2p\ _ [cogy —sinfy  2siny cosy
v\ sin2) —cos2 2sinycosy  sinfy —cos )

Dessen charakteristisches Polynom ist

(und seine Vielfachen). Eine Messung die bestimmt, ob das

det(4,, — AE) = (cos 2) — X)(—cos 2) — \) — sirf 2
=X\ —cog2) —sif2yh —1=X\2—-1;

wir haben also zwei igliche MelRergebnisse +1 undl entsprechend
der Tatsache, daf das Photon entweder durchgelassen wirdioki.
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Die Eigenvektoren dazu lassen sich ebenfalls leicht bestim Nach
der zweiten Darstellung voA ;, ist

4 _E= cos iy —sirfy — 1 2 simy cosy
v 2 siny cosy sinf ¢ — cog ) — 1

_ [ =2sirf¢  2siny cosy
~\ 2singcosy  —2cogy )’

und der Losungsraum des homogene lineare Gleichungssystem dazu

wird offensichtlich erzeugt vom Vekto(cgw

siny

) ; genauso ist

A +E= cosy —sirfy +1 2 simy cosy
W - 2 siny cosy sirfy —cos ey +1

[ 2cogy  2sinpcosy ) |
~\ 2sinpcosy  2sirfy !

hier wird der Ldsungsraum erzeugt von

(o) =(Se )

wie zu erwarten, schwingt also ein durchgelassenes Phoszhbkel3end
in Durchlassrichtung des Polarisationsfilters und ein dibsdes in der
dazu senkrechten Sperrichtung.

Mit diesen Vorbereitungen sind wir zwar weit entfernt vonesn auch
nur rudimenéren Versandnis der Quantentheorie, sie sollten aber aus-
reichen, um den Rest dieses Kapitels zumindest im Prinzieiehen.

§82: Quantenkryptographie

Die Quantenkryptographie ist die am wenigsten spekulétngendung
der Quantenphysik auf die Kryptographie; sie wurde beiritaelen
Versuchen erfolgreich getestet, und die dazudtbigten Geéte sind
kommerziell erfltlich. Die Reichweiten sind zwar bislang auf unter
etwa 150 Kilometer begrenzt, so dal3 sich Anwendungen aidi&er
wie Washington, D.C. oder die Londoner City besotken; bereits
ein realistisches Nahziel sind aber Experimente mit ngefliegenden
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Satelliten, mit deren Hilfe ein globales Netzwerk aufgebaerden
kdnnte.

Von allen Kryptosystemen, die wir bislang kennengelerriiema hat
nur derone time padoeweisbare absolute Sicherheit. Das liegt nicht
nur daran, dafd wir nur wenige Kryptosysteme kennen: Nach idem
Kapitel 3, §1 erwahnten Satz von FB\NNON mul3 ein Kryptosystem,
das absolute Sicherheit bietet, mit Scddeln arbeiten, die mindestens
so lang sind wie die Summe aller dantibertragenen Nachrichten.
Solche Schissel lassen sich mit klassischen Methoden nur schwer
und aufwendig vereinbaren. Die Quantenkryptographidt sl Pro-
tokoll zur Verfugung, mit dem zweiaumlich getrennte Partner solche
Schlisselluber eine unsichere Leitung so vereinbarénren, dal3 ein
Lauscher mit einer beliebig nahe bei eins liegenden volgagen Wahr-
scheinlichkeit kein einziges Bit an Information erhaltemk.

a) Informationstibertragung mit einzelnen Photonen

Die Grundidee des Verfahrens besteht darin, die Bits dumthele
polarisierte Photonen zu kodieren und beispielsweisantesieen, dafd
eine horizontale Schwingungsebeiieéine Eins und eine vertikaléif
eine Null stehen soll. Der Emgihger stellt dann sein Polarisationsfilter
horizontal; falls er dahinter ein Photon mif3t, wurde eindl §esendet,
ansonsten eine Eins.

Praktisch werden die Photonen meist approximiert durch kefrze
Lichtblitze, die mit hoher Wahrscheinlichkeit nicht melg ain Photon
enthalten, weil sie beispielsweise so kurz sind, dal3 siemukWahr-
scheinlichkeit 710 tiberhaupt ein Photon enthalten. Die Wahrschein-
lichkeit fur zwei oder mehr Photonen in einem nichtleeren Lichtblitz
liegt dann bei etwa 6%, was tolerierbar ist.

Da drehbare Polarisationsfilter nur langsam auf eine newgatitig
eingestellt werden dnnen, verwendet man in der Praxis andere Me-
thoden: Beispielsweisealt sich der BcKELsEffekt aus der nicht-
linearen Optik ausnutzen, wonach gewisse anisotrope aflasbeim
Anlegen einer Spannung ihren Brechungsindegern, oder aber man
verwendet (da die Spannung beimydKELS Effekt typischerweise in
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der GlRenordnung einiger hundert Volt liegen muf3, was sich nicht
sonderlich schnell schaltealit) fir jede gewinschte Polarisationsrich-
tung eine eigene Laserdiode oder sonstige geeignete uielhdégmit
dahinterstehendem Polarisationsfilter und vereinigt ldrefdend die
Strahlengnge. Auf diese Weise lassen sich Lichtblitze mit einer Fre-
guenz von bis zu 1 GHz erzeugen.

Da nicht jeder Puls ein Photon eathund auch \éthrend defbertra-
gung Photonen verloren gehen, mul3 der Eangér zuAchst wissen,

ob ein Photon angekommen ist; aul3erdem muf3 er dann dessen Polar
sationsrichtung bestimmen. Dazl3k er das Photon durch einen dop-
pelbrechenden Kristall (z.B. einen Kalkspat) gehen; jehdam ob es
parallel oder senkrecht zu dessen optischer Achse p@drist, ver&f3t

es den Kristall an einer von zwei wohldefinierten Stellentdr denen
Photomultiplikatoren und Detektoren stehen, so dafydde der bei-
den Polarisationsrichtungen ein Detektor ansprichtiiNiah miissen
Sender und Emgihger synchronisiert werden; dies geschieht beispiels-
weise dadurch, dal? eine festgelegte Zeitspanne vor jedseiRieller
Lichtblitz gesendet wird, der garantiert ankommit.

Entsprechende Apparaturen wurden erstmals im Oktober &286-
rimentell getestet, damaisber eine Entfernung von nur 32 cm. In-
zwischen ist man bei Glasfaserkabeln ein@nge voniiber 100 km
angelangt, sowohl bei aufgerollter Glasfaser im Laboradfei,echt-
en* Glasfaserverbindungen wie etwa der der Swiss TelekamGenf
nach Nyon (22,8 km) unter dem Genfer Sei@:. €&ine Vernetzung inner-
halb einer Stadt ist Quantenkryptographie also bereit$ehetaktika-
bel. Entsprechende Streckeber Tausende von Kilometern erscheinen
nach derzeitigem Stand der Technik unwahrscheinlich welgerib-
sorption in Glasfaserkabeln: Bei ddiir fTelekommunikation typischen
Wellenlangen um 1300 und 1550 nm hat man eiréeripfung von 0,35
beziehungsweise 0,2 dB/km, so dal3 nach knapp 30 beziehaisgsw
50 km nur noch ein Zehntel der abgeschickten Photameiggeblieben
ist. Fir Photonen mit nur 800 nm Welleéige, die sich einfacher detek-
tieren lassen, beigt die CAampfung sogar 2 dB/km, man hat also schon
nach finf Kilometern neun von zehn Photonen verloren.

Verglichen mit anderen Kryptosystemen, die audh dlie drahtlose
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Ubermittlung von Nachrichten benutzt werdeimken, ist die Notwen-
digkeit einer Glasfaserverbindunidperhaupt ein Nachteil: Besseave
es, wenn die Photonen kabellidlsertragen werdendknten.

Das Problem hierbei ist niatlich, dal3 es in der Luft, vor allem bei
Tageslicht, bereits ziemlich viele Photonen gibt. Dasllst@ings nicht
ganz so schlimm, wie es auf den ersten Blick aussieht, derimrirei-
chender Sorgfalt kann man den Ort, die Zeit und die Wedlegé der
ubermittelten Photonen sehr genau festlegen. Bei eindekilizhge von
etwa 770 nm (im infraroten Bereich also) ist die Atmodmhauch so
durchissig, dal? sich die Verlustrate in Grenzait.h

Wissenschaftler der National Laboratories in Los Alomssdten draht-
lose Quantenkryptographie erstmals am 13. August 1999 ¥hi8
113° Uhr unter dem wolkenlosen blauen Himmel von New Mexico
uber eine Entfernung von 1,6 km; 2002 testeten Physiker aushen
und Innsbruck kabellose Quantenkryptographie erfolgremischen
dem Gipfeln der Zugspitze und der Westlichen Karwendelspidl.h.
uber eine Entfernung von 23,4 km Luftlinie, wobei sie aufeeltetto-
Bitrate von 1000-1500 gemeinsamen Bits pro Sekunde kamer2Q06
schliel3lich testete eine Gruppe von Physikern ausdhen, Wien Sin-
gapur, Bristol und von der ESA Freiluft-Quantenkryptodriaperfolg-
reich Uber eine Strecke von 144 km zwischen La Palma und Teneriffa,
allerdings nur mit einer Ausbeute von 12,8 Bit pro Sekuneengel ist
die magische Grenze von 30 km, die es erlaubénde, Photonen an
Satelliten in erdnahen Umlaufbahnen zu schicken. Ein solShtellit ist
zwar von einem festen Punkt der Erde aus nur etwa acht Mipueefag

in direkter Sichtverbindung; diese Zeitwde aber, bei den angestrebten
Datenraten, ausreichen, um einen 8eBEl zu vereinbaren, mit dem
sich deutlich mehr als die typischerweise in einem Untemezhinner-
halb von 24 Stunden anfallenden Nachrichten vom und zuniligzate
verschiisseln lassen.

Die erste bekanntgewordeymaktische” Anwendung der Quantenkryp-
tographie war bei der Schweizer Nationalratswahl am 21o0k#t2007:
Ein Wahllokal bei Geniibertrug seine Austhlungsergebnisse via Quan-
tenkryptographie an die vier Kilometer entfernte Zentdds Kantons.
Da die Stimmzettebffentlich ausgeahlt werden und die Ergebnisse am
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nachsten Tag in der Zeitung steheirfte allerdings auch hier der kryp-
tographische Aspekt im Hintergrund gestanden haben; tereksie
ging es wohl um eine Werbemalinahme der Fidn@uantique(einem
Spin-off Unternehmen der UniveraitGenf), die den Verkaufihrer Tech-
nologie ankurbeln wollte. Im Oktober 2008 wurde in Wien imhiReen
des Forschungsprojekts SECOQC ein quantenkryptogrdpmsaddetz-
werk aus sechs Knoten und acht Verbindungen auf dem Glaséize
von Siemens Wien demonstriert.

b) Protokolle zur Quantenkryptographie

Natirlich wurde bei keinem der vorgestellten Experimente geafas
oben skizzierte Verfahren getestet, denn so wie beschriblatet es
keinerlei kryptographische Sicherheit: Ein Gegnénikte einfach alle
Photonen abfangen und neue auf die Reise schicken; faliesz de-
nauso polarisiert, wie die abgefangenen, wird weder ded&emoch
der Empanger etwas bemerken.

Um dies zu verhindert, arbeitet der Sender nicht nur mitikelroder
horizontal polarisierten Photonen sondern auch mit solalm&chwin-
gungsebenen von 4nd 135. Wie wir in §1 gesehen haben, wird ein
Photon, dessen Schwingungsebene urm gégeriber der Durchlass-
richtung des Polarisationsfilters gedreht ist, jeweils\Wathrscheinlich-
keit ein halb durchgelassen oder nicht.

Der erste Ansatz, diesuf kryptographische Zwecke auszunutzen,
stammt von GARLES BENNET und GLLES BRASSARD aus dem Jahr
1984; er wird heute kurz als das BB84-Protokoll bezeichkéer
entscheidet sich der Sender vor désertragung eines jeden Photons
zufallig fur ein Referenzsystem, bestehend entweder aus den Rielmtung
0° und 90, oder aus den Richtungen4énd 135. Danach entscheidet
er sich, wiederum zétflig, fir einen der beiden Bitwerte 0 oder 1 und
kodiert beispielsweise die Eins durch Polarisationsungtd’ oder 45,

die Null durch 90 oder 135.

Praktisch knnen die Zufallsentscheidungen beispielsweise durch Dig
italisieren von weil3em Rauschen erfolgen oder aber indempukar-
isierte Photonen durch ein um 4§edrehtes Filter schiel3t und mif3t,
welche transmittiert werden.
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Auch der Empénger vahlt fur jedes Bit zudllig eines der beiden Ref-
erenzsysteme; nimmt er dasselbe System wie der Absendegtwa

in der Halfte der Rlle vorkommt, kann er das abgeschickte Bit messen,
andernfalls erdlt er ein Zufallsergebnis.

Die folgende Tabelle fal3t die verschiedenetglichkeiten fir Sender
und Empénger noch einmal zusammen:

gesendetwird: 0° 0° 45° 45 90° 90° 135 13%
empfangen mit: + x + X + X + X
MelRergebnis: 0° ? ? 45 90° 7 ? 135

Hier bedeutef+*, dal’ der Empinger seinen Doppelspat so orientiert,
dal er 0 und 9C0-Polarisierung messen kannalrend, x“ entspre-
chend fir das um 45 gedrehte Bezugssystem steht. K in der
letzten Zeile soll besagen, dal3 hier das Mel3ergebnis nurZudail
abhangt und somit keine sinnvolle Information ealh

Um festzustellen, welche &lfte der gemessenen Bits sinnvolle In-
formation entilt, informiert der Emgdnger den Sender anschliel3end
uber einen gedhnlichen, nicht abbrsicheren Kanal, welche Photonen
angekommen sind und mit welchem Referenzsystem er sie gemes
hat. Der Sender teilt ihm dazu jeweils mit, ob dies die rogpatvahl war
oder nicht. Dieser Austausch soll im folgenden kurz als, dfeentliche”
Diskussion bezeichnet werden.

Fur die Photonen, bei denen beide mit demselben Refereensygsar-
beitet haben, notiert sich der Sender den gesendeten ukaigbdanger
den gemessenen Bitwert; bis auf allige Ubertragungsfehler soll-
ten diese somit beide dieselbe Bitfolge notieren. Der Laeiscder
nachtaglich zwar das korrekte Referenzsystem erfahren hat,t nich
aber denibertragenen Bitwert, kann zumindest aus ,dd¢fentlichen®
Diskussion nichts ddber erfahren. Seine sonstigenodlichkeiten
sollen weiter unten értert werden.

Zunachst aber soll hier noch das 1992 voeNRET vorgeschlagene lo-
gisch und technisch etwas einfachere B92-Protokoll vaefjewerden.
Hier verwendet der Sender nur die beiden Polarisatiortsmgien O
fur Null und 45 fur Eins; der Emgnger nur 135f0r Null und 90 fur
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Eins. Insbesondere braucht der Ednpder also keinen doppelbrechen-
den Kristall mehr mit zwei Detektoren, sondern nur noch EDeKELS
Zelle mit einemnachgeschalteten Detektor. Digdgilichen Mel3ergeb-
nisse sind in folgender Tabelle zusammengefal3t:

gesendet wird 0° 0° 45 4%
gemessen wird mit 90° 135 90° 13%
Photon wird detektiert? nein ~ ? ?  nein

Das, 7 in der letzten Zeile soll dabei bedeuten, dal’ der EEmgér mit
gleicher Wahrscheinlichkeit ein Photon mif3t oder auchtnich

Es gibt also nur zwei Kombinationen, bei denen der Eanger
uberhaupt ein Photon finden kann: Falls der Edmgier mit 0 gesendet
und der Empéinger mit 135 gemessen hat, oder wenn der Eangjer
mit 45° gesendet und der Enfoiger mit 90 gemessen hat. Falls ein
Photon gemessen wird, weild der Ed@pder also, mit welcher Polarisa-
tionsrichtung gesendet wurde und kann je nachdem eine NetlBins
notieren.

Im anschlieRendeybffentlichen Dialog mufl3 er dem Sender dann nur
mitteilen, in welchen Positionen er Photonen gemesseishaal} auch
der sich die Bitwerte dar notieren kann. Man beachte, dal’ bei diesem
Protokoll nur jedes viertabermittelte Photon zu einem BitweftHrt.

Mittlerweile wurde auch ein a@llig verschiedener Ansatz zur Quan-
tenkryptographie getestet, die Verwendung sogenannt&-Edare.
EPR stehtifir EENSTEIN-PODOLSKY-ROSENuUNd bezieht sich auf ein von
diesen drei Physikern entdecktes Paradoxon, desTEIN zurachst an
der Richtigkeit der Quantentheorie zweifeln liel3:

Angenommen, bei einem Experiment werden simultan zwei d?hot
nen gleicher Polarisierung erzeugt; die Polarisierungeseeils eine
Uberlagerung der beiden Zaside die wir alg0) und |1) bezeichnen.

Der Zustand des System ist da%zg?u |00) + % |11). Nun fliegen die bei-
den Photonen in entgegengesetzte Richtungen und das eme wiad
gemessen. Danach ist es entweder im Zusf@ndder im Zustandl),
und da beide Photonen ein guantenmechanisches Systeneatisad
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polarisierten Photonen bilden, ist der Zustand des Gegatatas ent-
weder |00) oder|11). Wird also kurz darauf auch das andere Photon
gemessen, e#tt man notwendigerweise denselben Wert wie beim er-
sten Photon. Dies giltauch dann, wenn erst durch die Mesemgrsten
Photons festgelegt wird, was wir d3) und was alg1) interpretieren
wollen.

Sobald das erste Photon gemessen wird (und dadurch seinen Zu
stand andert) mul3 also auch das zweite Photon, egal wie weit es
inzwischen entfernt ist, seinen Zusta@hdern. Dies widerspricht
der Relativiatstheorie, wonach keine Information mit einedb@eren
Signalgeschwindigkeit als der Vakuumlichtgeschwindigkbertragen
werden kann. Es ist allerdings inzwischen vielfach expentell veri-
fiziert und ist auch nur einer der Punkte, bei denen die Physikch
grofRe Probleme haben, di@rfihre Hauptanwendungsgebiete hervorra-
gend besitigten Gesetze der Quantentheorie und der Rekaistiteorie
unter einen Hut zu bringen: Die Suche nach gief3en vereinheitlicht-

en Feldtheoriehat zwar bereits eine ganze Reihe vielversprechender
Ansatze hervorgebracht, von einem Durchbruch ist die Physkach

weit entfernt.

Fir die Quantenkryptographie bedeutet das EPR-Paradoa@nman
auch von der Mitte der Leitung aus EPR-Paare auf den Weglsrhic
kann. Diese tragen unterwegs noch keinerlei Informatiernsés denn,

ein Lauscher erzwingt das), sondern bekommen diese erat) ae
einem Ende der Leitung gemessen wird. Um Angriffe des Laarsch
entdecken zu &nnen, mufd man auch hier mit zwei Referenzsystemen
arbeiten, also z.B. mit einem der beiden oben beschrield@mgakolle.

Wiener Physiker testeten diese Art der Quantenkryptogeaptiolg-
reich fur dieUbermittlung einer (wahrscheinlich nicht realen) Béahkr-
weisung durch die Wiener Kanalisation unter der Donau hicldlyDal3
der Versuch in der Wiener Kanalisation stattfand, hat wadthiger mit
dem Kinoklassiker,Der dritte Mann® zu tun als damit, dal? die Wiener
Stadtverwaltung entdeckt hat, daf3 sie mit ihrem weitveigtea Kanal-
netz Geld verdienen kann, wenn siei@sdie Verlegung von Glasfaserk-
abeln zu Verfigung stellt.)
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c) Angriffsmoglichkeiten

Sowohl beim BB84- als auch beim B92-Protokoll kennen Sendelr
Empfanger am Ende eine Bitfolgaber die ein Gegner zumindest durch
Abhoren der, offentlichen” Diskussion nichts in Erfahrung bringen
kann. Er hat aber nétlich auch noch die Nglichkeit, sich in den
anfanglichen Photonenaustausch einzuschalten.

Wie wir aus§l wissen, hat er aber keineddglichkeit, ein Photon zu
messen, ohne dessen Zustand zuandern. Falls er beispielsweise
ein mit 0°-Polarisierung gesendetes Photon mit Durchlassricht&hg 4
mil3t, hat er anschlieRend mit gleicher Wahrscheinlichégitmit 45
oder 135 polarisiertes Photon; er weil3 aber nicht, ob das Photon wirk
lich mit dieser Polarisierung ankam, oder ob es eine derelneiRblar-
isierungsrichtungen®und 90 hatte.

Hier ist extrem wichtig, dal3 mit einzelnen Photonen ge&ebevird:
Falls zwei Photonen im selben Zustainoertragen werden, kann man
sie durch einen Strahlteiler trennen und jedes in einemrand®eferen-
zsystem messen; beim BB84-Protokoll wird dann in dgfentlichen”
Diskussion klar, welche der Messungen zum richtigen Bitwignrte,
beim B92-Protokoll ist er in drei Viertel allerdile sofort klar, da eine
Polarisationsrichtung von 90m +-System nur gemessen werden kann,
wenn das Photon inx-Systemubertragen wurde, d.h. mit Polarisa-
tionsrichtung 48. Entsprechend kann 138n x-System nur gemessen
werden kann, wenn das Photon nfit@blarisiert war. Lediglich bei der
Kombination (0, 45°) ist nicht klar, welches Bit der Sendiépermitteln
wollte. Da Photonen durch kurze Lichtblitze realisiert dem, lassen
sich jedoch Blitze mit mehr als einem Photon nicht valtgtig vermei-
den, man muf3 also damit rechnen, dal3 ein Gegner unbemeskg&in
wisse Anzahl von Photonen messen kann. Eine ModifikatiomBé&s!-
Protokolls, das sogenannte SARGO04-Protokoll, erschwes, dla ein
Gegner dort zum unbemerkten AilrenzweiPhotonen aus einem Blitz
entnehmen muf3, so dafld ihm nur Blitze mit mindestens dreio@bat
etwas nitzen, aber auch die kommen idich vor.

Bei Blitzen, die nur ein Photon enthalten, mul3 der Gegnaedienessen
und anschlieRend wieder ein Photon auf die Reise schickensiéh-
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ersten vare es, ein Photon zu senden, das genau dieselbe Polarisatio
srichtung hat wie das abgefangene; in diesem Fall blielmeLseischen
unbemerkt. Diese Biglichkeit wird aber durch die Quantentheorie aus-
geschlossen, da er den Zustand des Photons nichtaradigtbestimmen
kann.

Am wenigsten vedlscht er beim BB84-Protokoll, wenn er ein Photon
losschickt, das die von ihm gemessene Polarisationsnghtat: Falls
er im richtigen Referenzsystem mal3, bleibt sein Eingriff diesem
Photon unbemerkt, andernfalls gibt es immerhin noch eirfé-g&
Wahrscheinlichkeit, dal3 der En@sfger, falls er im richtigen System
mif3t, den korrekten gesendeten Wert mifit. (Falls auch deaf&mger
im falschen System mif3t, wird das Bit nicht verwendet, so es@uf
seinen Wert nicht ankommt.) In etwa einem Viertel allél& sorgt
der Lauscher durch seinen Eingriff dafdal? der Emg@inger trotz glei-
chen Referenzsystems einen anderen Bitwert mif3t als dprilagdich
gesendeten.

Beim B92-Protokoll kann ein Lauscher, der wie der Eamger beim
B84-Protokoll mit Doppelbrechung arbeitet, jedes zweiienBessen:
Falls er im +-System 90mif3t, mufd das Photon mit 45olarisiert
gewesen sein, wenn er im-System 135 mil3t, mit 0. In diesem
Fall kann er ein entsprechendes Ersatzphoton schickererlardieren
Halfte der Falle mul er aber raten und vaischt somit auch hier wieder
insgesamt rund ein Viertel allé@bertragener Bitwerte.

d) Fehlerkorrektur

Unablangig von der Aktivilit eines Lauschers entstehen auch aus rein
physikalischen Ginden Fehler; eine Fehlerkorrektur ist also auf jeden
Fall notwendig. Dazu mul} als erstes die Fehlerrate abgedakerden.
Sender und Emgihger einigen sich daher in dgiffentlichen® Diskus-
sion auf eine Zufallsstichprobe der notierten Bits und lechen diese;
durch Vergleich der so gesatzte Fehlerrate mit der aus physikalischen
Grunden zu erwartendé@knen sie auch absatzen, wieviel Information

in die Hande von Gegnern gefallen sein kann.

Vor der Fehlerkorrektur wird nétlich die Stichprobe aus der Bitfolge
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eliminiert: Diese Bits wurden schliel3lich in dgiffentlichen” Diskus-
sion verglichen und sind somit dem Gegner bekannt.

Die Grundidee zur Fehlerkorrektur ist dieselbe wir in dexskischen
Kodierungstheorie: Bei jeder Informatiaifsertragung gibt es 8tun-
gen, die zu Fehlernthren. Um diese zu eliminierepertagt man
zusatzlich zur eigentlichen Information noch Atzliche Pifbits, mit
deren Hilfe man eine (vom verwendeten Codedalgige) Anzahl von
Bitfehlern pro Codewort korrigieren kann. Mathematisclsajeen ist
ein fehlerkorrigierender Code eine (meist lineare) Ahlmlg, die je-
dem Vektor aus einem gewissen Vektorralisjj einen Vektor aus ei-
nem ldherdimensionalen Vektorrauffy® zuordnet. Bei einem Code,
derd Fehler korrigieren kann, sind die Bilder der Vektoren &gsso
verteilt, dafd sich zwei verschiedene Vektoren aus dem Bildhin-
destens 2 + 1 Bit unterscheiden; der V@nderung von dichstens! Bit
eines Bildvektorsadl3t sich dieser also eindeutig rekonstruieren.

Nehmen wir an, die Fehlerrate sei so, dal3 ein Code, der infebhge von
m Bits d Fehler korrigieren kann, ausreicht. Qgemeinsame” Bitfolge
sei aus Sicht des Senders der Vekipaus Sicht des Emahgers aber
v’ = v +u, wobeiu der Fehlervektor ist. Wir nehmen an, daf? dénbge
aller dieser Vektoren ein Vielfaches vanist.

Falls sichv als Folge von Worten aus dem fehlerkorrigierenden Code
auffassen liel3e,dante der Emgnger einfach die Dekodierungsabbil-
dung dieses Codes auff anwenden, une zu erhalten. Da aber nur ein
Bruchteil der Blitze zu Komponenten varfihrt, hat der Sender keine
Moglichkeit, v entsprechend zu @parieren. Er behilft sich daher mit
einem Trick: Er vahlt einen zudlligen Bitvektor und kodiert diesen zu
einem Codevektan derselben Bnge wien. Sodann berechnet et tv
undibertagt diesen Vektoiiber die ungesicherte Leitung — je nach de-
ren Qualit eventuell wiederum gesichert durch einen fehlerkaeran-
den Code. Auch die Art der verwendeten Codes wird dem Bngsr
uber die ungesicherte Leitung mitgeteilt.

Der Empfainger kennt dann sowohl+ 1o als aucho’ = v +u, er kann
also deren Differenn + v — v’ = v — u = v + u berechnen. (Da wir
mit Bitvektoren rechnen, gibt es keinen Unterschied zwasgblus und
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minus.) Das ist aber das mit dem Fehiegesbrte Codewortv, die
Dekodierungsfunktion des fehlerkorrigierenden Codesudt also die
Rekonstruktion vonv. Damit ist dann aber auch berechenbar und
somit auchp.

e) Elimination der gegnerischen Information

Der Lauscher weil3 wenigaroerv als der Empénger; er kann zwar
eventuell auch etwas von der Fehlerkorrektur im zweiterri§grof-
itieren, hat aber immer noch keine vo#sdige Informationiiber v.
Dieses unterschiedliche Wissaherv wird nun im dritten Schritt, der
sogenannteprivacy amplificationausgenutzt, um auf einen Vektog

zu verkirzen,uber den der Lauscher mit hoher Wahrscheinlichkeit so
gut wie nichts weil3. Die &ngendifferenz zwischemund 3 entspricht
dabei der Information, die der Lauschi@berv gewonnen hat; diese
kann leicht aus der Fehlerrate berechnet werden.

Zur Berechnung von einigen sich Sender und Eng@pfger wieder in
»offentlicher’ Diskussioniiber die (zuéllige) Auswahl einer Hashfunk-
tion ¢ aus einer grol3en Anzahl vorher vereinbarter solcher Fomét.
Dies darf ershach Ubertragung der Photonen geschehen, denn wenn
der Lauscher diese Funktion kennt, kann er seinedf&thategie darauf
abstimmen und sie praktisch wirkungslos machen; insbesergibt es
also immer ein kleines Restrisiko, dald der Lauscher durdieraes Er-
raten der richtigen Funktion durch deren Anwendung keif@ination
verliert.

Bei einem hinreichend grof3en Raum von Hashfunktionen e$ed
Restrisiko jedoch verschwindend klein, und eine genaudoemation-
stheoretische Analyse zeigt, dal3 die Information, die @eischeiiber
©(v) hat, mit sehr hoher Wahrscheinlichkeit sehr nahe bei Mgtl Die
Behandlung der Einzelheiten dieser Analyse und des dakiateenden
Begriffsapparats Wwde hier zu weitiihren; interessierte Leser seien auf
die am Ende des Kapitels zitierte Originalard&BR] verwiesen, vor
allen den dortigen Paragraphen 4.2.

Zum Schluf3 sei nach angemerkt, daf3 auch dieze&augBBR] noch
nicht beweisen, dal3 Quantenkryptographie wirklich sigher auch
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nicht bis auf das er@dhnte Restrisiko. Wir sindamlich immer nur
davon ausgegangen, dafl? der Lauscher sich darauf Bektheinzelne
Photonen zu messen und in geeigneter Weise zu ersetzeacHhlath

konnte er stattdessen auch irgendwelche Interferenzanscigeen oder
andere Daterniber aus vielen Photonen zusammengesetzteaddst
messen und daraus Schluf3folgerungen ziehen.

Realistischerweise muld man zur Abatiung der Sicherheit des Ver-
fahrens dem Gegner erlauben, alle Messungen durgheerf, die die
Quantentheorie nicht ausidiklich verbietet, darunter auch solche, an
die bislang noch niemand gedacht hat.

Unter diesen Uméinden erfordert die Analyse seineroljlichkeiten
erheblich tiefere Methoden aus der Quantentheorie, alsidiache
Darstellung in dieser Vorlesung bieten kann. dgitf maniiber solche
Methoden, kann man dann allerdings beweisen, dal3 Quagieogra-
phie auch gegeiber einem Gegner mit unbesahkten Ressourcen im
erwahnten Sinne sicher ist; siehe dazu efsa].

§3: Quantencomputer

Die Quantentheorie ist nicht nur in der Lage, Kryptographaherer
zu machen, sie stellt potentiell auch eine ernste Bedrokxisgieren-
der Kryptoverfahren dar, die mit einem sogenannten Quantaputer
moglicherweise leicht gebrochen werdeinkien. Besonders géirdet
sind die asymmetrischen odeublic keyVerfahren, mit denen wir uns
in den Kapiteln vier undifnf besclaftigt haben.

a) Quantenregister und QBits

In einem klassischen Computer werden Bits dargestelltddiecbeiden
Zustinde eines bistabilen Schaltelements wie etwa eines Fgtder
durch eine Magnetisierungsrichtung oder et@hsliches. Unaldmgig

von der physikalisch-technischen Realisierung hat mananmem Ele-
ment, das sich stets in einem von zwei wohldefiniertenahdsn befind-
et; diese werden traditionell als O und 1 bezeichnet.
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Angenommen, wir verwenden stattdessen ein Photon. Dasmstieuti-
gen Stand der Technologie zwailhg unrealistisch, aber es ist wohl die
anschaulichste Art, das Prinzip eines Quantencomputeveratehen,;
weiter unten werden wir auch redlisrahere Anatze diskutieren.

Zur Kodierung eines Bitsdnnen wir etwa vereinbaren, dal3 die horizon-
tale Polarisation einer Null und die vertikale einer Eintssprechen soll;
mit einem Polarisationsfilter lassen sich Photonen in jedenbeiden
Zustinde unschwer produzieren; wir setzen zur iMzking

(5= (2) o = (33)

Genauso einfach lassen sich aber auch Photonen jeder aidagisa-
tionsrichtung produzieren; wirdonen unser Bit daher auch mit einem
Photon der Polarisationsrichtung4esetzen; sein Zustand ist dann

(i) = (arz) =2 0

Diesen Zustand bezeichnen wir als eiberlagerungder beiden
Zustinde |0) und |1). denn wenn wir ihn messen mir einem Polari-
sationsfilter waagrechter oder senkrechter Durchladsmngherhalten
wir eines der Ergebniss@®) oder |1), konnen aber nicht im Voraus
sagen, welches der beiden.

Indem wir den Winkel 45 durch einen anderen ersetzeinken wir
offenbar auch jeden anderen Zustand der Fan®) + 3 |1) erzeugen;
ein solches quantenmechanisches System mit einem zwaisiomalen
Zustandsraum bezeichnen wir als €Bit. Im Gegensatz zu einem
gewdhnlichen Bit, das nur die Werte 0 und 1 annehmen kann, sind f
ein QBit also beliebige Werte der Form|0) + 5|1) mit o, € C
moglich. (% + 3 = 1 bei Normierung auf &nge eins)

Setzt man mehrere QBits zusammen, entsteht ein Quantst@regi
Wichtig ist dabei, dal3 dieses Quantenregister ein eingigastenmech-
anisches System ist, es ist also beispielsweise durchagsam, dafd
der Zustandalle QBits sind0)* mit dem Zustand alle QBits sind 1)
Uberlagert ist. In diesem Fallten wir zwar nicht im voraus, wel-
ches Ergebnis eine Messung eines QBits aus dem Regéstiey;, vir
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konnten uns aber sicher sein, dal3 nach der Messung des eiitsn Q
jede Messung eines weiteren QBits zum selben Ergelihisd.

In DIRAC-Notation schreibt mafy, s, . .. a,,) fur den Zustand, in dem
dasi-te QBit den Wertw;, € {0, 1} hat; die 2 Vektoren, die man auf
diese Weise edilt, bilden offenbar eine Basis des Zustandsrauims f
das Quantenregister. (Mathematisch betrachtet ist dilzsefensorpro-
duktV; @ V, ® --- ® V,, der ZustandstumeV, der einzelnen QBits.)
Der Zustand eines Quantenregisters wird also beschrielneh @ine
Linearkombination von Vektoren der obigen Form wie etwa

2 V2
7|00...0>+7\11...1>

fur das Beispiel aus dem vorigen Absatz.

b) Quantencomputer

Genau wie ein klassischer Computer den Inhalt klassisclegisker
manipuliert, manipuliert ein Quantencomputer den Inhaitt Quanten-
registern.

Das fundamentale Grundgesetz der Quantenmechanik CeirGBIN-
GER-Gleichung, sagt aus, wie sich deren Inhaltwetern kann: 15t)(t))
der Zustandsvektor zur Zdiund wird das System durch keidal3eren
Einflisse gesirt, so ist

=H[y(t))

wobei H den HaMILTONschen Operator des Systems bezeichnet, je-
nen HERMITEschen Operator also, der die Gesamtenergie des Systems
beschreibt, untl = h /27 ~ 1,05458% 1034 Js das durch2dividierte
PLANCK sche Wirkungsquantum.

1

JUo
- ot

Die SCHRODINGER-Gleichung ist ein System linearer Differentialglei-
chungen mit konstanten Koeffizienten; seirsung &f3t sich mit Hilfe
der Matrixexponentialfunktion sofort hinschreiben:
(1) = e p(0) = U@ [(0)  mit U(t)=e "
Dabei ist .
U(t) -WT = e A gl th = p
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die Einheitsmatrix, deni = H nach Definition eines ERMITESChen
Operators. Somit ist der Operatbi(t), der die zeitliche Entwicklung
des Systems beschreibt, @witund insbesondere auch invertierbar.

Diese Invertierbarkeit ist ein gro3er Unterschied zu ktaten Com-
putern: Die Addition 3 + 5 = 8 etwaaldt sich nicht invertieren, denn
das Ergebnig8* enthéalt keine Information mehr daber, wie es zu-
standegekommen ist. Langfristig werden abebgiitherweise auch
klassische Computer bei immer weitergehender Miniaenisig der
Bauelemente mit reversibler Logik rechneriigssen, denn die einzige
Stelle beim Rechnen, bei der Energieverbrauch aus phisikah
Grunden nicht vermieden werden kann, ist die Vernichtung von |
formation.

Von den klassischen Logikoperationen, mit denen heutigenfiLer
arbeiten, ist nur die Negation reversibel undimith auch uniar:
Beziglich der Basig|0), |1)} des Zustandsraums eines Photons wird
sie durch die Matrix
0 1
(2 o)

beschrieben. Konjunktion und Disjunktion sind aus denaelGrund
wie die Addition nicht reversibel: i eine reversible Logikoperation
mufd die Anzahl der Ausgangsbits gleich der der Eingangseits.
Ein Beispiel einer reversiblen Operation mit zwei Eingdntgsist die
kontrollierte Negation

(x,y)H{

wobei® die Addition modulo 2 bezeichnet.

Beziglich der Basis{|00),|01),|10),|11)} wird die kontrollierte
Negation durch die urire Matri

(z,—~y) fallsz=1 _
(CL’, y) fa”SCC:O_(x7xEBy)1

x\/

0
0
0
1

olNolNol
oOor o
O OO

beschrieben, und sie ist auch quantenmechanisch rebésier

0
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Wichtiger ist das ©FFoL-Gate, das auf drei QBits operiert:
(2,9,2) = Ty, 2) = (9,2 (@ Ap))

denn mit seiner Hilfe lassen sich auf Kosten einesatzlghen Bits
,und‘ und,oder” realisieren:

T(xaya ‘0>) = (xayax A y) und T(—ﬂ?, Y, ‘1>) = ("3?, Yy, TV y) .

In der Standardbasis des Zustandsrauingifei QBits vertauscht das
TorrFoLGate einfach die beiden Vektorehl10) und |111), es wird
also durch eine urdre Matrix beschrieben. Seine quantenmechanis-
che Realisierungohne Phasenverschiebung ist etwas trickreich, aber
moglich. Insbesondere kann er als eine Folge von Operationeje-
weils hochstens zwei Eingangsvariablen geschrieben werden,iwas f
die technische Realisierung von grol3er Bedeutung istrdkti®nen
zwischen drei Quantenbits gleichzeiti§ren zu weit jenseits des derzeit
Machbaren.

Ein Quantencomputer kann also mit der Negation und derrFdL+-
Gate alle logischen Berechnungen duidiren. Arithmetische Operati-
onen ldnnen nach den klassischen Regeln der Schaltalgebra &dieg
zuruckgetihrt werden; auch sie sind somit in einem Quantencomputer
realisierbar.

c) Der Algorithmus von Shor

Als Beispiel fir die kryptographische Relevanz eines Quantencomputers
wollen wir die Faktorisierung einer ganzen Zaflbetrachten.

Der dimmste Ansatz zur Faktorisierung von Hand beseht darinwirall
x undy unablangig voneinander die Zahlen von 2 sdurchlaufen
lassen und jeweils das Produkg berechnen; falls dieses glei¢h ist,
haben wir eine Zerlegung vaN gefunden.

Fur eine etwa hundertstellige ZalN' (mit deren Faktorisierung ein
heutiger Computer keine gi8eren Schwierigkeiten hat)anen hierzu
rund 16°° Multiplikationen notwendig, mit klassischen Computern
ein Ding der Unnaglichkeit: Selbst wenn alle heutigen Computer seit
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Beginn des Universums daran gerechnattdn, ware erst ein ver-
schwindend kleiner Bruchteil der Produkte berechnet.

Fur einen Quantencomputer dagegen sind die$& Multiplikationen
iberhaupt kein Problem: Da 8 ~ 2332 ist, nehmen wir zwei Quan-
tenregister, y aus etwa 350 QBits und bringen beide in den Zustand, in
dem alle Basisvektoren denselben Koeffizienten haben.fddazrech-
nen wir das Produkt der beiden Registerinhalte auf revierSieise,
d.h. wir berechnen das Tripet (y, xy). Dieses ist in einem Zustand, in
dem alle Kombinationenz{ v, zy) mit 0 < z,y < 2°°° liberlagert sind,
insbesondere also auch dié@y tdiexy = N ist. Der Quantencomputer
kann also all diese Multiplikationen gleichzeitig duraghfen.

Damitist allerdings leider das Faktorisierungsprobleminacht gebst,
denn wir missen das Tripel ja auch noch messen. Dabei kollabiert der
uberlagerte Zustand und wir erhalten als Ergebnis ein (ipe), zy)

aus naifirlichen Zahlenjiber das wir keinerlei Kontrolle haben. Insbe-
sondere ist die Wahrscheinlichkeit, dafl’ an dritter Stededhl NV steht,
verschwindend gering, so dal’ dieser sehr einfache Anstatiigenicht

zum Ziel fuhrt.

Ein Quantencomputer kann also zwar sehr viele Operatiolegrhgei-
tig durchfihren, aber diesal3t sich nur ausnutzen, wenn man das Ziel
der Rechnung anschlieRend auch wirklich messen kann.

Deshalb geht der Algorithmus vorH8R das Faktorisierungsproblem
vollig anders an: Wie vonERMAT bis hin zu den modernsten Siebalgo-
rithmen immer wieder ausgenutzt wird, hat man dann eine@liéacen,
eine Zahl zu faktorisieren, wenn man sie selbst oder eirfadhes als
Differenz zweier Quadrate darstellen kann: Ist

kN =2° —y* = (z — y)(z +y),

so kann man hoffen, dal3 ggd¢ y, V) und ggT@ +y, N) echte Teiler
von NN sind.

Der Algorithmus von 80R nutzt dies aus, indem eiiif eine zuéllig
gewahlte Zahk: zwischen 2 undV — 2 ihre Ordnung modul®’ berech-
net, d.h. die kleinste natliche Zahlr, fur die

" =1 modN
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ist. Eine solche Zaht mul3 es nicht gebeniif N = 4 undx = 2 bei-
spielsweise gibt es keine. Elementare zahlentheoretBetrachtungen
zeigen, daf’ die ziv teilerfremde Zahlen bémlich der Multiplikation
modulo N eine zyklische Gruppe bilden; genadiir fdiese Zahlen gibt
es also ein solches und fur alle anderen ist der ggT vanund N ein
echter Teiler vonVv.

Fallsr existiert und ungerade ist, hat man Pech gehabt und begicht n
einmal mit einem neuen; andernfalls ist

("2 +1)@"/?—1)=2" —1=0modN,

wir sind also genau in der obigen Situation urithken ggTs berechnen.
Falls dies keine echten Teiler sind, haben wir wieder Pedtlalgteund
mussen mit einem neuenvon vorne anfangen. Dadie kleinste Zahl
ist, fur diex” — 1 durch NV teilbar ist, passiert das genau dann, wenn
2"/? + 1 durchN teilbar ist, also im Fall, dag”/2 = —1 mod N. Der
Algorithmus ist somit genau danriitzlich, wenn dieser Fall nicht allzu
oft (oder gar immer) eintritt.

Ist etwap eine ungerade Primzahl uid = p™, so kann bei geraden
die Primzahlp keinesfalls TeilebeiderFaktoren

/241 und 2% -1

sein, da sich die beiden nur um zwei unterscheiden. Alsanst eler
beiden durchp™ teilbar, was natrlich nur der erste sein kann. Somit
versagt der Algorithmus vonHoR in diesem Fall iir jedesz.

Im kryptographisch besonders interessanten Fall,daf pq Produkt
zweier ungerader Primzahlen ist, sieht es aber — je nachd@iakt
leider oder zum Glck — ganz anders aus: Da modulo einer Primzahl
y = +1 die beiden einzigendsungen der Gleichung = 1 sind, zeigt
eine einfache, wenn auch etwas langwierige Argumentatimsr den
chinesischen Restesatz, daRmindestens die &ifte aller zulN primen
Zahlen die Ordnunggerade und"/? nicht kongruent-1 moduloN ist.
Hier liegt also die Erfolgswahrscheinlichkeit igver 50%; wiederholt
man die die Rechnung mit einem anderekhommt man bereits auf 75%,
nach sieben zdétlig gewahlten Werten vo: auf iber 99%, nach zehn
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aufuber 999%. Falls es also gelingt,effizient zu berechnen, ist dieses
Verfahren extrem géhrlich fur das RSA-System.

Die Berechnung vomr stellt uns vor einahnliches Problem wie die
Berechnung eines diskreten Logarithmus, und in derdfatder Algo-
rithmus von $I0OR zur Bestimmung vom auch auf einen Algorithmus
zur Berechnung diskreter Logarithmen; auch die Verallgearang auf
entsprechende Problenig elliptische Kurven stellt keine prinzipiellen
Probleme.

SHOR geht folgendermaRen voriiIFN < 2L braucht er einen Quanten-
computer mit zwei Quantenregistern dégen Z beziehungsweisk.

Im ersten speichert er digberlagerung aller Zahlenvon 0 bis 2% — 1,

fur das zweite berechnet er den Zustanldoch erstes Register modu-
lo N. Der Aufwand hierdir liegt fur die klassische Berechnungsmethode
durch fortgesetztes Quadrieren in debGenordnung vori® Operatio-
nen.

Der Computer befindet sich dann in einem Zustand, in dem abeeP
(a,z* modN) mit 0 < a < 2?F Uiberlagert sind. Wird nun der Inhalt
des zweiten Registers gemessen, ist die Charakals Messen der Zahl
eins nailrlich verschwindend gering; das Mel3ergebnis vinggndeine
Zahlb zwischen O undV — 1 sein.

Durch die Messung des zweiten Registers hat sich aber dalt lshds
ersten vedindert: DergesamteComputer istein quantenmechanisches
System, das in einen Zustand gebracht wurde, in dem dertId&al
zweiten Registers gleichhoch dem Inhalt des ersten Registers ist. Die
Messung des zweiten Registers kann an dieser Tatsache aicidrn,
und da das zweite Register nach der Messung die Zahthalt, kann
eine Messung des ersten Registers nun nur noch ein Ergebeisrn,

fur dasz® mod N = b ist. Ein solches Ergebnisitzt uns aber nichts,
und deshalb @rfen wir das erste Register keinesfalls messen.

Da das erste Register doppelt so lang ist wie das zweite det#@s sich
immer noch in eineriiberlagerten Zustandamlich in detUberlagerung
aller Zahlen 0< a < 22%, fur diez® = b mod N ist. Istag die kleinste
solche Zahl, sind dies genau diejenigen Zahlen der kgym kr mit
k € Ny, die kleiner sind als%; hierbei istr die gesuchte Ordnung.
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Bei den Zahlen imiberlagerten Zustand im Register handelt es sich
also um eine periodische Folge vam = {ZZL;GO} Zahlen; was uns
interessiert, ist ihre Periode

Die Periode eines Gitteraft sich optisch aus dem Beugungsspektrum
des Gitters bestimmen; genauso wollen wir auch hier vonmgemesl
nicht denlnhalt des ersten Registers messen, sondern so etwas wie
seinBeugungsspektruriin wesentlicher Aspekt der Quantentheorie ist
schlief3lich, dal3 auch einander ausschlielRendé#ddsteines Teilchens
miteinander interferieren: Falls etwa ein Photon zweéigirtthe Wege

zu einem Punkt zuicklegen kann, tritt auch im Falle eines einzigen
Photons Interferenz auf.

Das rechnerische Analogon zum Beugungsspektrum isQdenten-
FOURIER-TransformationErsteres leitet man bekanntlich aus deovH
GENschen Prinzip ab, wonach jeder Punkt, in dem das Gitter thssly
Ist, Ausgangspunkt einer neuen Welle ist; diese wird baésisan durch
eine komplexe Exponentialfunktion, und das Beugungsspekist ge-
geben durch die Summe aller dieser Exponentialfunktionen.

Ganz entsprechend ordnet die Quanteier-Transformation eines
Registers der &nge Z dem Inhalt|x) dieses Registers (aufgefalit als
Zahl zwischen 0 und? — 1 oder alsUberlagerung mehrerer solcher
Zahlen) den Zustand 2L_4

2—L Z 627r72|95)1//22L |I/>

v=0

zu. Manuberzeugt sich leicht, dal’ dies eine amngtAbbildung definiert;
das liegt einfach an der wohlbekannten Formel

iezmi-u/mz{m falls mlk
et 0 sonst

hinter der die Symmetrie der-ten Einheitswurzeln zum Nullpunkt der
komplexen Zahlenebene steckt —falls m /ggT (m, k) grol3er als eins

ist. Rechnerisch kann man die Formel auch so beweisen, daffiima
Summe mit?*™*/™ multipliziert;

m+1

m m
ekaz/m . E €2k7r1~1//m — E ekalu/m — E :62k:7m-1//m ’
v=1 v=2 v=1
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dennGZkﬂi(m+1)/m — 62]{:71'1' . 62]~<:7ri/m — 62k:7ri/m. Somit ist

(1 . eZkﬂ'i/m) ) ZBZIﬂm’J//m =0.
v=1
Falls m kein Teiler vonk ist, verschwindet der erste Faktor nicht, also
muf3 die Summe verschwinden. Ist dagegeasin Teiler vonk, so sind
alle Summanden gleich eins, die Summe also gleich

Schwieriger ist es, diese Abbildung quantenmechanisclealisieren;
dazu braucht man die sogenannte schnedlgdfErR-Transformation, die
durch geschickte Gruppierung der Summanden nach dem pieie

und herrscheeine deutlich effizientere Berechnung der Abbildung er-
laubt. Wie $10R gezeigt hat,dl3t sie sich auch so aus einzelnen Rechen-
schritten zusammensetzen, dald das Ergebnis jedes emZatheitts
sich durch einen Quantenprozesse ermittaldi,l dessen Ergebnis nur
von zwei QBits abhngt.

Diese Quanten-BURIER-Transformation wird nun also auf das erste
Register angewandt' dadurch kommt dieses in den Zustand

22k _ m
) 2L
2 § : 6271'7,(a0+,m°)1//2 |V>
u=1

ﬂ\

2L _1

2L\/7 Z 2miag Z 2mirpy /22F |V>

Dam = [@} ~ 2%l /r ist, laRkt sich die Klammer approximieren
durch

- 2mirpuy /22F — 2mipv/m — { m falls m\y
(& ~ e - .
Z: z:: 0 sonst
Der Zustand des ersten Registers ist also uadgefleich
27Tiao m—1
2 \/ m
2L — E T Ipy) = VE:O lrv) .

Durch Aufsummleren der geometrischen Reihe kann manliet auch
leicht den genauen Wert der geometrischen Reihe berechnen.
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Falls wir ein Register messen, dessen Inhalt durch die appadi-

ve Zustandsfunktion beschrieben wird, erhalten wir &dherheitein
Vielfaches vonr als Ergebnis, wobei die verschiedenen Vielfachen al-
lerdings gleiche Wahrscheinlichkeit haben.

Die exakte Zustandsfunktionifirt zu leichten Abweichungen davon:
Die Betragsmaxima der Koeffizienten liegen zwar bei denfa@tien
der wirklichen Periode? /r, aber weiter davon entfernt liegende Werte
sind nicht mehr unmglich, sondern nur noch unwahrscheinlich. Die
Abbildung zeigt die berechneten Wahrscheinlichkeiterdien FallL =
5undr = 14 mit 2L /r ~ 73,14

0.07 ¢
0.06%
0.05—?
0.04—}
o.o3—ff

0.02+

0.01}

f ; ; piN A N
0 50 100 150 200 250 300

Wahrscheinlichkeitsamplitiden fir die exakte Zustandsfunktion

Wir wiederholen deshalb das Experiment mit demselbenehrfach
(eine genauere Analyse zeigt, daf’ etiv&Viederholungen mit hoher
Wahrscheinlichkeit gdigen) und haben dann verschiedene MelRwerte
fur v. Fur die meisten, wenn nicht gar alle dieser Werte gibt es eine
Zahl )\, so dal3 .
2 v A

VAR A . oder %L

ist.
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In der hinteren Gleichung ist die linke Seite bekannt; vonréehten
kennen wir weder ghler noch Nenner. Wir wissen aber, dal3 der Nen-
nerr als Ordnung vor moduloN kleiner als/V ist und damit sehr viel
kleiner als der Nenner?2 auf der linken Seite, der jagBer alsN? ist.

Zur Bestimmung vomrr mussen wir alsoiir die verschiedenen Bche
\/2?E Approximationen finden, deren Nenner kleiner istAls

Die besten rationalen Approximationen einer reellen ZahNennern
einer vorgegebenen GRenordnung liefert, wie wir in Kap. 46d),
gesehen haben, deren Kettenbruchentwicklung; also bezachir fur
jeden Mel3wer}, alle Konvergenten des Kettenbruchs#y mit Nen-
ner kleinerlN und suchen dann nach einem Nennater bei ndglichst
vielen Mel3werten auftritt. Dieser ist ein Kandidat tlie gesuchte Ord-
nung vonz, und wir verfahren damit wie im&®Rschen Algorithmus
angegeben.

d) Was kdonnen Quantencomputer?

Wie wir gerade gesehen haben, gibti@s@uantencomputer einen Fak-
torisierungsalgorithmus, der sehr viel effizienter istadlgs, was wir @ir
konventionelle Computer kennen. Damit stellt sichimiath die Frage,
was ein Quantencomputer sonst noch alles so kann.

In der ersten Hlifte des zwanzigsten Jahrhunderts gab estausthe
Diskussionen nicht nuiiber die Grundlagen der Mathematik, sondern
auchuber den Begriff de,Berechenbarkeit‘. Es gab viele Versuche,
diesen intuitiven Begriff mathematisch exakt zu definienemter an-
derem durch verschiedene Klassen rekursiv definiertertiamén, den
A-Kalkil oder durch TRING-Maschinen. Als es in der zweitenaHte
des zwanzigsten Jahrhunderts Computer gab, kamen danatiohk
tionen dazu, die vereinfachte Modelle eines Computers dbsieren,
vor allem die sogenannten RAM-Maschinen. (RANRandomAccess
Mashine.) Wie sich bei jeder Definition ziemlich schnell hsstellte,
war sieaquivalent zu den vorherigen.

Bereits 1936 stellten KONZO CHURCH (1903—-1995) und AAN TUR-
ING (1912—-1954) die These auf, dal} ihre jeweiligen Definitioden
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intuitiven Berechenbarkeitsbegriff formalisieren. Bisnz Beginn un-
seres Jahrhunderts hat sich diese TheseabdwEs gab zwar gele-
gentlich Ansitze, beispielsweise mit Analogcomputern Berechnungen
auszutihren, dieliber die Mbglichkeiten einer RAM-Maschine hinaus-
gehen, aber genauere Untersuchungen zeigten stets, dafiathiefunk-
tionierte.

2003 vebdffentlichte TEN D. KIEU einen probabilistischen Quantenal-
gorithmus, der das sogenannte zehntieBERTsche Problemdst, d.h.

er kann entscheiden, ob ein Polynom mit ganzzahligen Kaoerffien
ganzzahlige Nullstellen hat. Dieses Problem ist nach dassidchen
Berechenbarkeitsbegriffen w@dbar: BeispielsweiséBt sich das Hal-
teproblem @ir TURING-Maschinen auf die tisbarkeit einer diophanti-
schen Gleichung zickfuhren. Das von Ku vorgeschlagene Verfahren
benutzt allerdings keinen Quantencomputer, sondern lggerakineres
System; wie @vID DEUTSCHschon 1985 zeigte, kann ein Quantencom-
puter nur Problemeéken, die zumindest im Prinzip auch ein klassischer
Computer dsen kbnnte. kir Quantencomputer gilt also die These von
CHURCH und TURING. Eineahnliche Erkenntnis steckt wohl auch hin-
ter FEYNMANS Vortrag von 1982, wo er zur Simulation physikalischer
Vorgange ein quantenmechanisches System vorschlug, deslmgise
auf Quantencomputern beruht.

Das Ergebnis von BuTtscHschliel3t allerdings nicht aus, das ein Quan-
tencomputer ein Problemdadglicherweise sehr viel schneller und damit
Uberhaupt erst praktikabebden kann. Es gibt Beispiele von Proble-
men, die ein Quantencomputer in einer Zeit proportigiaksen kann,
wahrend ein klassischer Computer eine Zeit proportional betigen
wurde; allerdings handelt es sich dabei um eher uninteresspgrziell

zu diesem Zweck konstruierte Probleme.

Nachdem wir gesehen haben, daf3 Quantencomputer so viedllechn
faktorisieren Knnen als klassische Computer, dal3 iassRSA keine
sicheren Parameter mehr gibt, und aucham wurde, dal3 dasselbe
fur diskrete Logarithmen gilt, ist klar, dal3 Quantencompnité grof3en
Registerngen alle in dieser Vorlesung behandelten asymmetrischen
Kryptoverfahren obsolet machen werden odéraen. Man kann al-
lerdings auch zeigen, dal} es asymmetrische Kryptoveriaiibd, die
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auch gegen Angreifer mit Quantencomputern sicher sind -shuaias
bislang ein reiner Existenzbeweis und es gibt meines Wsssach keine
Ansatze fir ein konkretes Verfahren dieser Art.

Bleibt also die Frage, welche Auswirkungen Quantenconmuédie
hier behandelten symmetrischen Kryptoverfahren haben.

Wie wir hoffen, gibt es gegen die heute gaichlichen dieser Verfahren
keine Angriffsnoglichkeit, die schneller ist als das Durchprobieren aller
Schlissel. Selbst wenn dies zutrifft, schlief3t estniath nicht aus,
dal} es Quantenalgorithmen geb@émikten, die schneller sind als die
besten Quantenalgorithmen zum Durchprobieren alleriSskl, aller-
dings sind bislang in der offenen Literatur noch keine emsipenden
Ansatze aufgetaucht.

Wie Lov GROVER 1996 gezeigt hat, dnen Quantencomputer aller-
dings schneller alle Scissel durchprobieren als klassischeaikéend
einer klassischer Computer im Extremfall Versuche braucht um
N Schhssel durchzuprobieren und im Mitt#®1/2, braucht ein Quanten-
computer im Mittel nur etwa/N Versuche. Um auch noch gegsrer
einem Gegner mit Quantencomputer gegen diesen Angrifesizh
sein brauchen wir also bei symmetrischen Kryptoverfahiemgkiche
Sicherheit ungefhr die doppelte Scisselainge.

Nun konnte es nairlich sein, dal3 ein Gegner einen besseren Algorith-
mus als den von RovERkennt. Im Gegensatz zur klassischen Situation
haben wir allerdings hier die Sicherheit, dal3 ein solchgoAthmus
nicht wesentlich besser sein kannaWWend es in der klassischen Kom-
plexitatstheorie so gut wie keine Beweise flie in der Kryptologie rele-
vanten unteren Schranken gibt, hab@&nBETT, BERNSTEIN BRASSARD

und VAZIRANI 1997 bewiesen, dal’ es keinen schnelleren Quantenalgo-
rithmus als den von OVERzur Suche in einer Liste ungeordneter Daten
der LangeN geben kann. Grundszlich reicht also bei symmetrischen
Kryptoverfahren die Verdoppelung der Sas$éelnge zur Verteidigung
gegen Quantencomputer — sofern man spezifische Angriffergem
bestimmtes Verfahren ausschlieRen kann, wasriet praktisch nie
moglich ist. Aber dieses Problem kennen wir schon zu i@en denn
auch bei konventioneller Rechnungrinen wir uns nur gegen aktuell



Kap. 8: Kryptologie und Quantenphysik 338

bekannte Angriffe sdiitzen.

e) Experimentelle Realisierung

Das grol3e Problem beim Bau von Quantencomputern isDéieo-
harenz: Ein Uberlagerter Zustand bleibt nur erhalten, wenn keinerlei
Wechselwirkung miul3eren Systemen eintritt; di€dik sich auch mit
groRem Aufwand nurdfr sehr kurze Zeitspannen sicherstelleAOBS
entwickelteQuantencodeglie nach dem Vorbild klassischer fehlerkor-
rigierender Codes ein gewisses Mal3 an Dékehz verkraften@nnen,
aber auch dami@él3t sich diese Zeitspanne nur begrenzt ausdehnen. Ein
Quantencomputer auf der Basis von Photonen mit ihren extreren
Dekoharenzzeiten erscheint deshalb im Augenblick jenseits jedé-
nischen Realisierbarkeit.

Am vielversprechendsten ist im Augenblick ein Ansatz, derMiVIR-
Spektroskopie arbeitet. Bei dieser handelt es sich um elr@sseitiber
dreil3ig Jahren gebuchliche chemische Analysemethode, die inzwi-
schen auchifr bildgebende Verfahren in der Medizintechnik eingesetzt
wird. Sie beruht auf der magnetischen Resonanz gewissenk&time.
Zwar zeigen nur wenige Isotopen Kernresonanz, aber es hancke
dabei um Isotopedufiger und wichtiger AtoméeH, 2H, 1B, 1B, 13C,

N, 1N, 70, 19F, 295 und3!si.

Als Beispiel einesiir einen ersten Quantencomputer geeigneten Mole-
kiills wurde (nicht unbedingt ganz ernsthaft) #adfeinvorgeschlagen,
das in der Tat genug solche Atome ailthum einen kleinepSuper-
computer in der Kaffeetasse” zu realisieren:

1
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Protonen und Neutronen in einem Atom haben jeweils $fif2, wobei
sich benachbarte Protonen sowie benachbarte Neutroneilgentipar-
allel ausrichten. Bleibt dabei ein Gesamtgjiimig, richtet sich das Atom
in einem umgebenden Magnetfeld deai®e von etwa 9 bis 15 Tesla
in einer von wenigen wohldefinierten Richtungen aus, zvasattenen
es durch Aufnahme beziehungsweise Abgabe von Strahluagseu
wechseln kann. Mit geeigneten Radiowellé@ft sich also zwischen
verschiedenen Zushden hin- und herschalten; durch Aufnahme ei-
nes Resonanzspektrums lassen sichigiel viele Atome gemittelten)
Zustinde ablesen. Dadurch, dafl3 man hier nicht mit Quanteirmlesh
einzelner Partikel arbeitet, sondenner viele Partikel mittelt, wird auch
das Problem der Dek@hnenz entsdrft.

2001 realisierten Wissenschatftler bei IBM auf dieser Bagien Quan-
tencomputer mit sieben QBits und schafften es, damit di¢ Zahach
SHORs Algorithmus zu faktorisieren. Sie arbeiteten allerdinght mit

Koffein, sonder mit einem Dicarbonylcyclopentadieny! fflRerobuta-
dien-2-yl) Eisen (¢;HsF;0,Fe), wobei die sieben QBits deinrff Fluor-

19 Atomen sowie zwei Kohlenstoff-13 Atomen zugeordnet ware

QBits in einzelnen Atomen benutzt die um 1995 in Innsbruckzko-

lerte lonenfalle.Hier werden lonen durch elektromagnetische Felder
in einer linearen Anordnung gehalten; die QBits werden é&ddiurch
Anregungszusginde der lonen (von denen jedes durch einen eigenen
Laser kontrolliert wird) und der Gitterschwingungen (Pbioen) zwi-
schen den einzelnen lonedberlagerte Zusginde, die mehrere QBits
umfassen, werdeiaber die Vibrationsenergie ihres Schwerpunkts kon-
trolliert.

Am National Institut of Standards in Boulder, Colorado, deirso
die kontrollierte Negation implementiert; Faktorisiegileiner Zahlen
erscheint durch Weiterentwicklung und VedGerung der Apparatur
moglich, allerdings issen dazu noch einige technische Probleniisgel
werden.
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84: Andere nichtkonventionelle Rechnerarchitekturen

Nicht nur Quantencomputerdoknen tir zumindest einige Kryptover-
fahren geéhrlich werden, sondern jede nichtklassische Rechnerar-
chitektur ist zumindest potentiell eine Bedrohung. Erdspende An-
satze fir nichtkonventionelle Architekturen gibt es viele, begtgpweise
zellulare Automaten und neuronale Netze in all ihren verschiedene
Auspragungen; abgesehen von Quantencomputern gibt es aberatur no
einen Ansatz, der in Hinblick auf die Kryptographie ernétliasku-
tiert wurde: Die sogenannten DNS-Computer. Sie stelleh haatigem
Kenntnisstand keine Bedrohungrgiger Kryptoverfahren darpknten
allerdings interessant werddirdie Sicherung von Markenwaren gegen
Falschungen. & Interessenten sei daher kurz eines der Prinzipien
skizziert, nach denen DNS-Computer arbeiténrken.

Alles Leben beruht auf der Informationsverarbeitung in detien ei-
nes Organismus. Diese arbeitet mit komplexen chemischekti®a-
szykeln, die bei weitem noch nicht alle verstanden sind.\liaktigste
Speichermedium ist die Desoxyribonukleinse, kurz DNS, der Zelle.

Die Informationsdichte dort ist ungeheuer hoch: In troekarzustand
berdtigt ein Bit gerade einmal ein Volumen von 1#nin der Zelle
etwa 100 nm. Fur einen Kubikzentimeter trockener DNS kommt man
somit auf eine Speicherkapaitvon 13 Bit, das ist eine achtel Billion
Gigabyte; fir DNS in der Zelle kommt man mit einem Kubikzentimeter
immerhin noch auch 125 Milliarden Gigabyte —verglichen&peicher-
chips auf Siliziumbasis oder CDs und DVDs eine ungeheuregden
Beispielsweise lauchte man gif3enordnungsafiig fast eine Billion
CDs, um die in einem Kubikzentimeter DNS enthaltene Infdromezu
speichern.

Hinzu kommt, daf? die Information in der DNS massiv paralébarbeit-
et werden kann mit einem Energieaufwand pro Operation, nigefahr
zehn GbRenordnungen unter dem heutiger Supercomputer liegt.

Wenn man dieses Potentidlrfklassische Probleme der wissenschaft-
lichen oder gewerblichen Informationsverarbeitung natzimachen
konnte, ware dies eine Revolution, die auch die Kryptographie mas-
siv verandern viirde.
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Seit 1994 gibt es einen ersten Hinweis darauf, dal3 diesiahtl nicht
vollig unrealistisch ist: Damal$kte der Mathematiker und Informatiker
LEONARD M. ADLEMAN (der hier bereits im Zusammenhang mit dem
RSA-Verfahren enahnt wurde) in einem molekularbiologischen Labor
ein (ziemlich einfaches) graphentheoretisches ProbletrHitfe von
DNS. Um seine Vorgehensweise und das Potential der Methode z
verstehen, assen wir zuachst kurz den Aufbau der DNS betrachten.

a) Die Desoxyribonukleinsaure

Die Desoxyribonukleingure hat ihnren Namen vom hier abgebildeten
Zuckermolekil Desoxyribose, aus dem ihr Gest aufgebaut ist.

Die Desoxyribose

Die funf Kohlenstoffatome werden mit bis 5 bezeichnet; in der Ab-
bildung ist dies als Index eingetragen. An der Phosphafgwon 5
und der Hydroxygruppe von' 3ehlt jeweils ein Wasserstoffatom: Hier
werden die Zucker zu einer Kette zusammengesetzt, wobisi st
die 5-Phosphatgruppe einé-Blydroxygruppe folgt. Am Kohlenstoff-
atom 1 stehtBase;hier wird eine jener vier Basen eingebaut, die die
eigentlichen Informationstiger der DNS sind: Adenin, Guanin, Thymin
und Cytosin.

Wie man an den Abbildungen siehfyrknen sich zwischen Adenin und
Thymin sowie zwischen Guanin und Cytosin die gestrichelgezeich-
neten Wasserstofficken ausbilden; diese sorgen igafdal? DNS nur
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Guanin Cytosin

selten in einzelnen Singen vorkommt: Meist kombinieren sich zwei
Strange zu einem Doppelstrang, wobei jedem Adenin ein Thymeh un
jedem Guanin ein Cytosin geg@ersteht. Man bezeichnet diese Basen
deshalb als zueinanderAnsON-CRICK-komplemertr.

Aus geometrischen @nden hat ein DNS-Doppelstrang die bemte
Form der Doppelhelix, die wiederum selbst weitere geosete Struk-
turen bildet. kir die Informationsverarbeitung in der Zelle sind alle dies
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geometrischen Strukturen sehr wichtig; die entsprecheikxhanis-
men sind aber noch nicht so gut verstanden, dal? man sie adueibonex-
perimenten ausnutzeminte, so dal3 diese Strukturém @ins irrelevant
sind.

b) Die Polymerase-Kettenreaktion

Ein wesentlicher Bestandteil des molekularen RechneniersfAufbau
von DNS-Sequenzen sowie die Vervidtigung von Sequenzen mit
erwiinschten Eigenschaften. Ein wichtiges Hilfsmittelidast die 1987
von KARY B. MuLLIs entwickelte Polymerase-Kettenreaktion. (Es gibt
inzwischen auch theoretische Aatze, die ohne diese relativ langsame
Operation auskommen wollen.)

Polymerasen sind Enzyme, die in der Zelle die Duplizierueg Id-
formation aus DNS-Séingen steuern; sie sind je nach Lebewesen ver-
schieden, und auch innerhalb derselben Zelle gibt es oftenelfoly-
merasen mit verschiedenen Aufgaben. Das besonders gusdrte
Bakterium Escherichia colietwa entklt drei DNS-Polymerasen; die
am strksten vertretene DNS-Polymerase | ist eine Kette mit 928
Aminosauren. Es handelt sich hier also um sehr komplexe Enzyme,
die deshalb auch heute noch nicht synthetisiert werderdesarauch

fur die Laborarbeit von Bakterien produziert werden.

Polymerasen werden zusammen mit zwei sogenariiemern einge-
setzt, d.h. mit zwei Folgen von DNS-Basen; diese sorgeriirdaf
dal} selektiv ein DNS-Strang produziert wird, demMON-CRICK-
komplemenrdr ist zum Sfick zwischen den beiden Primern auf einem
vorhandenen DNS-Strang. Insbesondere muf3 DNS alsogggirvor-
liegen, bevor eine Polymerase aktiv werden kann. In denledxe Zelle
sorgen Enzyme daf, dal3 beatigte Teilstange zur Verfigung stehen;
im Labor geht man brutaler vor und teilt den ganzen Dopaistdurch
Erhitzen auf eine Temperatur von98 95° C.

Da diese Temperatur praktisch alle Enzyme zetsarbeitet man heute
nicht mehr mit der Polymerase vé&ischerichia colisondern meist mit
der sogenannten Tag-Polymerase des Bakterilinesmus aquaticus,
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das in heiliem Wasser lebt und daher auch eine hitzeisige Polyme-
rase hat, die ihre optimale katalytische Wirkung bei etwa@&ntfaltet.

Zur Vervielfaltigung von DNS geht man folgendermaf3en vor:

Man gibt die DNS zusammen mit den beiden Primern, der Tag-
Polymerase und den vier Nucleotiden, aus denen die DNS laadige
ist, in ein Ge&l3 und denaturiert zéchst die DNS durch Erhitzen,
d.h. man zerlegt sie in ihre Einzelgtrge. Sodannihlt man ab auf
etwa 55 C; dies fihrt dazu, dal’ sich die Primer an die passenden
Stellen der DNS-Sénge angliedern. Eine Eshung der Temperatur
auf etwa 78 C aktiviert die Polymerase, die nun dafsorgt, dal3 (aus-
gehend von den’&nden der Primer) WsoN-CRicK-komplemenire
Nucleotide an die DNS-Singe angelegt werden.

Damit hat man die geilsnschten DNS-Sequenzen verdoppelt, was im
allgemeinen nicht ausreicht; deshalb wird das Verfahreva e25—
35 Mal wiederholt, was zu einer etwa millionenfachen Vermel
fuhrt. Das Verfahren kann in sogenannten Thermocyclermaatisch
durchgeiihrt werden, da es nur auf die zyklische Temperaturstegerun
ankommt.

c) Adlemans Experiment

Gegeben seien eine gewisse Anzahl voad&in sowie Stral3en, die
Stadte gewissen anderenafiten verbinden. Man finde eine Stral3en-
verbindung, die eine vorgegebene Stadt mit einem vorgegebZiel

so verbindet, dal3 jede Stadt genau einmal besucht wird.

Dies ist eine von vielen Varianten eines graphentheotetisdro-
blems, dasiir grol3e Anzahlen von &titen und Verbindungsstrafl3en
rechnerisch nur mit groRem Aufwand gst werden kann. (Es ist NP-
vollstandig.) ADLEMAN beschénkte sich allerdings auf nur siebe@a&te
und fand heraus, dal3 der durchschnittliche menschlicha@&der etwa
54 Sekunden braucht um sein spezielles Problerdsen. Interessanter
ist aber die Art und Weise, wie er diesédung statt durch Hinschauen
durch sieben Tage Arbeit im Labor produzierte.
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Die Grundidee ist folgende: Jede Stadt wird durch eine Folge
zwanzig DNS-Basen kodiert; al$)sung soll jene Folge von 140 DNS-
Basen produziert werden, die den (irDI&EMANS Beispiel einzigen)
Losungsweg angibt.

Die Herstellung kurzer DNS-Sequenzen mit vorgegebeneerdakye
gehobrt heutzutage zu den Standardtechniken der Molekulaxipie]
grof3e Labors haben Automaten, die solche Sequeiiben die Polyme-
rase-Kettenreaktion) erzeugen, kleinere kaufen sie vargdel3en: kEr
25% kann man innerhalb von wenigen Tagen ein Reagenzglasrbek
men, das etwa 16 DNS-Sténge mit einer vorgegebenen Folge von
zwanzig Basen eniit.

Fur jede der sieben &tlte wurde also ein solches Reagenzglagtigin
dazu aber auch noclirf jede Stral3e zwischen zweia8ten. Nairlich
mussen die Basenfolgeiif S&dte und fir Stral3en aufeinander abges-
timmt sein: ADLEMAN faldte die Basenfolgeif die:-te Stadt auf als ein
Paar {,,y,) aus zwei Basenfolgen deiahge zehn, und wenn es eine
Stral3enverbindung zwischetter undj-ter Stadt gibt, kodierte er diese
durch die Basenfolgeyf, T;), wobeli die Uberstreichung hieriir das
WATSON-CRICK-Komplement stehen soll.

Der erste Schritt der eigentlichen Berechnung bestand date diese
Sequenzen (jeweils etwa fMolekille) in Wasser aufziisen und Lig-
ase dazuzugeben. (Ligasen sind Enzyme, die kurze DNS-Segjueu
langen zusammefen.) Dazu kommt noch etwas Puffer @idhliches,
und unge@hr eine Sekunde afer sind im Reagenzglas viele doppel-
strangige DNS-Sequenzen zu finden, diégichen Wegen durch den
Graph entsprechen.

Unter diesen Sequenzen sind mit praktisch 100%-iger Sheliteauch
solche, die der tsung des Problems entsprechen; das Problem be-
steht genau wie bei ddiberlagerten Zuanden in Quantencomputern
darin, diese herauszufiltern. Ein Vorteil gegerr Quantencomputern

ist allerdings, daf3 man beim molekularen Rechnen durch lhesn
ublicherweise nichts zestt.

Im zweiten Schritt ging es darum, Sequenzen zu finden, die egeW
mit dem Richtigen Anfangs- und Zielort géten. Finden bedeutete in
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diesem Fall, dal3 diese Sequenzen stark vermehrt werdeensalhd

das ist ein klarer Fallifr die Polymerase-Kettenreaktion: Man nehme
die WATSON-CRICK-Komplemente des Start- und des Zielorts als Primer
und lasse die Reaktion laufen. Danach sind alle Sequeneedehen
Anfangs- und Zielort stimmen, etwa millionenfach véargt; die, bei
denen nur einer der beiden Orte stimmt, etwa dreil3igfacth den Rest
uberhaupt nicht. Entnimmt man also eine kleine Probe zuténesr-
arbeitung, so entit diese kaum noch Sequenzen, bei denen einer der
beiden Orte falsch ist.

Im dritten Schritt ging es darum, alle Sequenzen auszusondie eine
falsche lange haben. Ein Weg, der jede Stadt genau einméahibgent-
spricht einer Folge von siebengsiten und damit einem DNS-Strang der
Lange 140. Zur Isolation dieser &tige fihrt eine Art chromatographis-
ches Verfahren, di&el-Elektrophorese.

Hierbei wird ausgenutzt, dal’ die betrachteten Molekegativ geladen
sind (man achte auf dasOn der Desoxyribose). Bringt man di&kung
also auf einen Gel auf, meist Agarose oder Polyacrylamid, legt

ein elektrisches Feld an, s@mgt die Wanderungsgeschwindigkeit ab
sowohl von der elektrischen Ladung als auch der Milgkse und

(in geringerem Ausmal3) einigen anderen GegebenheiterM&lieode

Ist aber jedenfalls trennscharf genug, um Sequenzen, dé&mge sich

um zwanzig Nucleotide unterscheidet, zugiedig zu trennen; nachdem
die Molellle einige Zeit gewandert sind, entnimmt man die aus der
140er-Region und verwirft den Rest.

Unter den noch verbleibenden Sequenzen befinden sich imaoér n
zahlreiche Nichthbsungen, denn eine Folge von siebead&n erhlt

man auch, wenn man einiged8te ausif3t und andere daf mehrfach
besucht. Es mul} also entweder sichergestellt werden, da® Readt
mehrfach besuchtwurde, was mit molekularbiologischerhigdén sehr
schwer sein drfte, oder aber, dal3 jede Stadt mindestens einmal besucht
wurde.

Letzteres istifir den Anfangs- und den Zielort bereits bekannt; bleiben
also noch i@inf S&dte. Fir diese verwendeteBAEMAN eine Kombina-
tion aus molekularbiologischer und physikalischer Vosyedweise: Um
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diejenigen Molekile auszusondern, die die Sequeitizdine gegebene
Stadt nicht enthalten, heftete era¥8on-CRrick-Komplemente dieser
Stadt an kleine Eiseitigelchen mit einem Durchmesser von etwand,
gab dies zu der denaturierten (d.h. wieder durch Erhitzegimzel-
strange zerlegten) noch verbliebenedsung und lies die Singe sich
wieder kombinieren. Dabei paarten sich die Sequenzen amlgigeln
mit Teilsequenzen jener Moléle, die einen Weg durch die betrachtete
Stadt beschreiben. Die so entstandenen DNS-Sequenzem ailsoanit
Eisenkugeln verbunden und konnten so mit einem Magnetenam R
des Reagenzglases festgehalten werdénrend der Rest des Glases
ausgeschittet wurde.

Danach wurde frisches Wasser zugegeben und das ganze eibder
zur Denaturierung; jetzt aber wurde der Magnet an das &slteagen-
zglas gehalten, so dal? der die Sequenzen mit Eiggri&hen festhielt.
Der Rest wurde umgegossen in ein anderes Reagenzglas, waldsn
gleiche Spiel @ir die rachste Stadt wiederholt werden konnte, bis alle
funf Stdte abgearbeitet waren.

Falls danach noch Molgite Ubrig waren, konnte es sich nur um
Losungen handeln. Da es aber wahrscheinlich nur noch relatnge
waren, vermehrte sie AEMAN zurachst durch eine Polymerase-
Kettenreaktion undiberzeugte sich durch Gel-Elektrophorese davon,
dal} seine tsung wirklich Sequenzen derahge 140 enthielt. Zur
vollstandigen losung des Problems muf3ten diese dann nur noch
analysiert werden.

Auch hierzu dient wieder die Polymerase-Kettenreaktioverbindung

mit Gel-Elektrophorese: i jeden Zwischenortifhrte ADLEMAN eine
Polymerase-Kettenreaktion durch, wobei er als Primer digSdih-
Crick-Komplemente von Anfangsstadt und Zwischenort nahm. Da-
durch wurde die Teilsequenz bis zu diesem Zwischenort stark
mehrt, und durch Gel-Elektrophoresa#3t sich feststellen, wie lange
sie ist. Diese Bnge, geteilt durch zwanzig, ist die Position der Stadt im
Losungsweqg.

d) Wie geht es weiter?
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ADLEMAN hat mit seinem Experiment zwar kein neues Problerogel
aber er hat gezeigt, daf3 molekularbiologische Verfahranirmest
grundsitzlich zur Losung rechnerischer Probleme benutzt werdiam k
nen — bis zu ihrem effizienten Einsatz ist es sicherlich nochamger
Weg.

Das durchgeihrte Experimentiberpiift mit brutaler Gewalt (fastlle
moglichen Wege durch den Graphen, was schon bei 280t&t eine
DNS-Menge verlangen wde, die mehr wiegt als die Erde. Mit klassi-
schen Computern und den besten derzeit bekannten Alga@nithassen
sich dagegen auch Probleme mit einigen Tauseadt&h behandeln.

Auch der letzte Schritt des Experiments funktionierte restdalb, weil
das Problem eine eindeutigésung hatte. Dies ist allerdings kein grol3es
Problem, denn alternative Methoden zur Bestimmung der ridakge

in einem DNS-Strang gibt es riatich: Schlief3lich wurde inzwischen
sogar das gesamte menschliche Genom eritssélt.

Um ein Getihl fir die mbgliche Relevanz des molekularen Rechnens in
der Zukunft zu bekommen, insbesondere auch in Bezug auf gig-K
tologie, ist es vielleicht ganzinizlich, zum Vergleich ein®llig anderes
Thema zu betrachten, die bisherige Geschichte der Faktamg gan-
zer Zahlen.

Das einfachste Verfahren zur Faktorisierung einer ganadh/¥ ist das
systematische Durchprobieren aller Zahter. /N dieser Algorith-
mus ist vergleichbar mit BLEMANS oben beschriebener Methode.

Wie wir bei der Diskussion vonEbRs Algorithmus gesehen haben,
liefert der Ansatz von ERMAT ein alternatives Verfahren; berechnet
man, wie es ERMAT tat, fir a = 1,2,3,... systematisch die Zahlen
N + @2 in der Hoffnung, darunter ein Quadrat zu finden, so lassén sic
zumindest Zahlen mit zwei nahe beieinanderliegenden Faktteutlich
schneller zerlegen.

Das neunzehnte Jahrhundert war von der Mechanisierun@gjem
der ersten Hlfte des zwanzigsten Jahrhunderts erreichte diese aach di
Zahlentheorie, als D.H.BHMER eine Siebversion deEHRMAT-Methode
mit Zahn@&dern und Fahrradketten zur Faktorisierung verwendete.
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Bei den elektrischen und elektronischen Rechner griff digenTechnik
schneller auf die Zahlentheofider: D.H. LEHMER hatte bereits auf den
ersten Computern seiner Unive&iHintergrundprogramme laufen, die
sich mit der Faktorisierung von Zahlen beaftigten, wenn es sonst
nichts zu tun gab.

In den Siebzigerjahren, als Computer leistuabgi genug waren, um in
Zahlbereiche vorzudringen, die vorher jenseits praktikgichfihrbarer
Rechnungen lagen, war wieder die Mathematik gefragt, dikemletz-
ten dreil3ig Jahren immer neue Faktorisierungsalgorithenénickelte.
Diese mul3ten auf den jeweils aktuellen Computern impleiertnter-
den, wobei in den Achtzigerjahren vor allem dieA2-Computer eine
sehr grol3e Rolle spielten und aufgrund ihrer Pipeline-Ae&tur zur
Entwicklung und Optimierung neuer Programmiertechnikearmgen.

In den Neunzigerjahren brachte das Internet dighthkeit zum verteil-
ten Rechnen; 1994 wurde dadurch jendibente 129-stellige Zahl fak-
torisiert, die 1978 bei der Vorstellung des RSA-SystemsBaspiel
diente und von der man damadlberzeugt war, dald sie auch in hundert
Jahren noch sicher sei. (Heut@lthdas Bundesamtif Sicherheit in der
Informationstechnik Zahlen mit mindestens 1024 Bitsicher; ab 2005
verlangt es die doppeltednge.)

Fur Fortschritte bei der Faktorisierung waren also jeweits Aspekte
mal3geblich:

e Bessere mathematische Algorithmen

e Bessere Maschinen

e Besseres Verahdnis des Umgangs mit diesen Maschinen.
Auch die weitere Entwicklung des molekularen Rechnens wiothl
von dreiahnlichen Aspekten aldimgen.

Sechzehn Jahre nacilbBEMANS Experiment kann man versuchen, zu-
mindest ein bilRchedber jeden dieser drei Aspekte zu spekulieren.

Die weitaus gofdte Zahl von Publikationen im Umkreis der DNS-
Computer besdiftigt sich mit theoretischen Algorithmen sowie mit
abstrakten Maschinen und formalen Sprachen zur Modetigerdes
molekularen Rechnens. Viele dieser Arbeiten kommen vooréie
schen Informatikern ohne Chemieausbildung uddtén wohl selbst
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innerhalb der Informatik schon in wenigen Jahren vergessem bis zu
einer Erprobung im Laboridfte es kurzfristig auch vom verbleibenden
Rest kaum eine bringen. Langfristig allerdingsnkiten einige wenige
dieser Anatze durchaus zu brauchbaren Verfahren weiterentwickelt
werden.

Von bessereMaschinendirfte der Fortschritt des molekularen Rech-
nens angesichts der hochentwickelten trgbfaren chemischen Labor-
technik in den Achsten Jahren wohl kaum d&gen; vielmehr geht
es darum, zudchst zu erforschen, welche primitiven Grundoperationen
wie durchgefihrt werden Bnnen, um effizient molekular zu rechnen.
Mit dieser Frage besdltigen sich eine ganze Reihe molekularbiologis-
cher Laboratorien, die beispielsweise mit an Olaetien angehefteten
Molekillen undahnlichem arbeiten und teilweise auch schon erste Er-
folge melden Bnnen: So gelang inzwischen die molekulare Addition
zweier (kleiner) Biarzahlen. Im Augenblick ist noch nicht abzusehen,
ob sich mehrere Grundparadigmen durchsetzen werden, tddreo
Entwicklung aufdenDNS-Computer zusteuert.

Der dritte Aspekt, der bessere Umgang mit der Maschineaien kvohl
erst dann zum Tragen kommen, wenn die Entwicklungen beino-Alg
rithmenentwurf und bei den molekularbiologischen Atzen anfangen,
gegeneinander zu konvergieren, wenn also die entspreehé&ngberten
anfangen, Notiz voneinander zu nehmen. Dies setzt eitens@iaus,
dalf die Labors stabile und zuvaskige Verfahren entwickeln. Vor allem
aber wird ein wirklicher Fortschritt erst dannoglich sein, wenn es
eine nennenswerte Anzahl von Wissenschaftlern gibt, di®kbin der
Molekularbiologie als auch in der Algorithmik zumindesheigewisse
Mindestqualifikation haben.

Der Zeitrahmen dair hangt wesentlich davon ab, ob es gelingt, ausre-
ichend Studenterilf eine solche duale Qualifikation zu begeistern und
sie ihnen auch zu erdglichen, oder ob die Studenten angesichts des
Booms sowohl in der Informationstechnik als auch der Moli#iolo-
gie vollauf mit der Qualifikation in einem dieser Gebietermden sind.

An diesem Punkt geraten die Spekulationen ins Gebiet déikP@o
Spekulationen nur selten zu etwas Jvarftigem fihren; daher soll dieses
Kapitel besser hier enden.
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Kapitel 9
Kryptographische Protokolle

Bislang hatten wir Kryptologie nur im Zusammenhang mit \¢higsse-
lung und mit elektronischen Unterschriften betrachtedi@sem Kapitel
sollen einige darber hinausgehende Aspekte betrachtet werden.

Eine wichtige solche Anwendung ist beispielsweise die fiti&is-
feststellung: Der Gebrauch einer Geldkarte (oder auchsewtebil-
telephons) Angt wesentlich davon ab, dal3 die Auszahlinzgy. die
Gespachsgehhren dem richtigen Konto belastet werdémken.

Bei Geldkarten wird dies heute so realisiert, dal3 der Bemine Ge-
heimzahl eingeben muf3, die in verdatdelter Form im Magnetstreifen
der Karte kodiert ist. Die Versciiéselung Angt nicht nur ab von der Ge-
heimzahl, sondern auch von den Kontodaten des Inhabera/iskeihe
Bijektion zwischen den nur knapp zehn Tausend verschied8&erbeim-
zahlen und Feldern auf dem Magnetstreifen besteht. Zuchitiisselung
wird ein Triple DES benutzt, dessen Sassel im gesamten System kon-
stant ist und der daher sehr sa@llig geheimgehalten werden muf3; er
ist nur den Computern der Clearingstellen bekannt.

Geldautomaten odeggoint of saleTerminals niissen daher sowohl die
eingetippte Geheimzahl als auch die Information auf dem rid&g

streifen an so eine Clearingstelldermitteln; dort wird beides ver-
glichen und die Zahlung entweder autorisiert oder auchtnich

Die dabei verwendeten Terminals funktionieren so, daf} éndier
die Ubermittelte Kundendaten nicht zu Gesicht bekommt; algslist
natirlich denkbar, daf3 ein bétgerischer ndler Geate so manipuliert,
dal? sie sowohl eine Kopie des Magnetstreifens als auchrmetpte
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Geheimzahl in einer ihm z@gglichen Weise speichern. Mit diesen
Informationen kann er sich dann gedier Dritten als Karteninhaber
ausgeben und beliebigpber dessen Konto veérflen. Sicherer @are ein
Verfahren, das dem&hdler zwar garantiert, dal3 er den legitimen Karten-
inhaber vor sich hat, bei dem er aber keine Chance hat, iaderischer
Absicht an dessen Daten zu gelangen.

Andere nichtklassische Anwendungen der Kryptologie sitvehedas
Werfen von Minzen (fir eine zudllige EntscheidungKopf oder Zahl*)

via Telephon oder auch ein Pokerspiel per Internet. Digirdainge-
setzten Protokolle &nen durchaus auch ernste Anwendungen haben,
beispielsweise beim verteilten Rechnen, wenn die Zuwegison Auf-
gaben an die einzelnen Rechner nach einem Zufallsverfahfelut.
Falls die Kosteniir die Inanspruchnahme der verschiedenen Rechn-
er von verschiedenen Personen getragen werden, solltes didinitiv
daran interessiert sein, daf3 niemand dem Zufall auf inregdosach-
hilft.

81: Werfen einer Miinze per Telephon

Beim Werfen einer Mnze geht es darum, dal3 zwei Partner A und B
eine Entscheidung herbaliren, die @ir beide als z\dllig erkennbar
ist. Bei einer Telephonverbindung ohne Videokanal sindeebAtinzen
natirlich nutzlos.

Die Zahlentheorie liefert eine praktikable Alternative:wihlt zwei
grofRe Primzahlem und ¢ und schickt deren ProdukV = pq an B.
Dieser wahlt eine Zufallszahk zwischeny'N + 1 undN — 1 — /N
und schickty = 22 an A.

Day moduloN ein Quadrat ist, ist es erst recht ein Quadrat mogulo
und modulgg. Der wesentliche Punkt ist nun, dal3 sich Quadratwurzeln
modulo einer Primzahl leicht berechnen lassen: Im eintachFall,
wennp = 3 mod 4 ist gilt fir ein Quadraty = 22 modp nach dem
kleinen Satz von ERMAT die Gleichung

+1 2 +1
<ypT> EypT Exp-'-l:xp-xECL"CL'EymOdp,
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die beiden Quadratwurzeln vgnmodulop sind alsoj:ypT+l mod p.

Fur Primzahlenp = 1 mod 4 ist die Berechnung der Quadratwurzel
etwas aufwendiger, aber wie bereits in Zusammenhang mitdeara-
tischen Sieb in Kap. 48b) diskutiert, gibt es entsprechende Algorith-
men. Falls A damit nicht vertraut ist, kann er sichimith auch einfach
auf Primzahlem, ¢ = 3 mod 4 besclanken.

Aberechnet nun die Quadratwurzetw,, +w, vony modulop und mo-
dulog; zwei davon setzt er nach dem chinesischen Restesatz ziesamm
zu einer Quadratwurzel moduloN. Dabei hat evier Moglichkeiten:

Je nach Wahl der Vorzeichen bekommt er entweder den (ihrmkanipe
ten) Wertz oder dessen Negatives, oder aber einen neuenierder
modulo der einen Primzahl kongruentmodulo der anderen aber kon-
gruent—z ist. Er mul3 sichiir eine dieser vier Nglichkeiten entschei-
den und schickt die betreffende Zahl an B. Diese Entschegidon A
simuliert den Minzwurf.

Falls die geschickte Zahl gleichz ist, ertalt B keine neuen Informa-
tionen und hat verloren; dies geschieht offenbar in 50% &hdle.

In deniibrigen 50% der &lle schicktA eine Zahh, die modulo genau
einer der beiden Primzahlen kongruenist. Somit ist ggT¢ — u, V)
gleich dieser Primzahl, und auf diese Weise kann B die Zah&iN f
torisieren. In diesem Fall hat B gewonnen und schickt zum é8g&w
einen der beiden Primfaktoren an A.

Fallsp undg hinreichend grof3 und verschieden sind, Bdteine reali-
stische Mbglichkeit, N auf andere Weise zu faktorisieren, insbesondere
nichtin den wenigen Sekunden, mitdenen er bei korrektecltfuhrung

des Protokolls auskommen muf3. Auch sonst kann er den Ausgenig

zu seinen Gunsten zu beeinflussen: Bnkte zwar versuchen, zwei
Zahlenz undu # 4+ mit gleichem Quadrat zu finden und eine davon
an A schicken, aber wie wir bei der Diskussion des quadratis&neins
gesehen haben, ist genau das die derzeit effizienteste Metun Fak-
torisierung vonN und damit nicht leichter als diese Faktorisierung.

Auch A hat keine Mbglichkeit, das Ergebnis zu seinen Gunsten zu be-
einflussen, denn er kann zwar alle vier QuadratwurzelnpooduloN
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berechnen, weil3 aber nicht, welche davon die Zabt, deren Quadrat
ihm B Ubermittelte.

82: Poker per Telephon

Poker ist ein Kartenspiel, das traditionellerweise in aachten Hinter-
zimmern von Restaurants gespielt wurde, wobei meist aushAlko-
hol im Spiel war. Der moderne Internetuser allerdingghite sich nicht
einen ganzen Pokerabend lang von seinem Computer trendemuf®
daher einen anderen Weg finden. Das kryptographische Pndidsteht
darin, dal3 bei einem traditionellen Pokerspiel die Karmmejls ge-
mischt, abgehoben und verteilt werdefssen und am Ende niemand
die Karten seiner Mitspieler kennen darf.

Der Ansatz is@hnlich wie bei den blinden Unterschriften, die £lek-
tronisches Bargeld benutzt werden, allerdings wird st&fARIn ein-
facheres Verfahren verwendet, das Verfahren voAUrRs und HeLL-
MANN. Es funktioniert saahnlich wie RSA, jedoch wird anstelle des
Produkts zweier Primzahlen nur eine Primzalalls Modul verwendet.
Zur Verschiisselung dient ein zu— 1 teilerfremder Exponert mit dem
eine Nachrichin verschiisselt wird alsn® mod p. Zur Entschiisselung
dient ein zweiter Exponetmit der Eigenschaft, dafe = 1 modp—1
ist, denn nach dem kleinen Satz vOERMAT ist dannm®® = m mod p.
Ahnlich wie bei RSA kanni mit dem erweiterten 8kLiDischen Algo-
rithmus (angewandt aufundp — 1) bestimmt werden.

Die Berechnung votd kann jeder ausihren, der die zur Anwendung des
Algorithmus notwendigen Zahlemund e kennt; der Algorithmus von
POHLIG und HELLMANN ist also kein asymmetrisches Verfahren, sondern
ein symmetrisches Kryptoverfahren, dessen &3#l geheim bleiben
muf3. Man kann wahlweise das Pagalrd) als Schilissel betrachten oder
aber die Primzahp innerhalb eines Netzwerks eifirfalle man fest
wahlen undbffentlich bekanntgeben und dann nur den Exponentds
geheimen Sclilssel betrachten.

Auf den ersten Blick vereint das Verfahren vooHIG und HELLMANN
alle Nachteile der symmetrischen und der asymmetrischgpt&gra-
phie: Wie bei allen symmetrischen Verfahren hat man dasl@moHdes
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Schlisselaustauschs, und das bei einem Rechenaufwand, deredem d
RSA-Verfahrens entspricht!

Tatsachlich muf3 die Sicherheit des Verfahrens vamBG/HELLMANN
nach Wllig anderen Kriterien beurteilt werden als die des RSA-
Verfahrens: Die empfohlene Scislselange von 2048 Bit bei RSA
erklart sich aus dem Stand und dem zu erwartenden Fortschritt bei
Faktorisierungsalgorithmen; diese aber spiei@ndie Sicherheit von
POHLIG/HELLMANN keinerlei Rolle. Hier mul3 ein Angreifer versuchen,
den bei RSAbffentlich bekannten Exponentenzu ermitteln; falls er
die moglichen Exponenten einfach durchprobiert, ist er ualgein der-
selben Situation wie bei einem Angriff auf DES oder AES, sB d&an
vielleicht argumentierendnnte, dal3 ungahr dieselben Sicherheitspa-
rameter wiefir Algorithmen dieser Art geahlt werden sollten, d.h. nach
heutigem Stand mindestens 128 Rit Primzahl und Exponent.

Dies ist aber zu optimistisch: Wie wir schon bei der Diskassiler
Sicherheit von DES gesehen habeifissen sich bei einer guten Block-
chiffre die Transformationen wie eine Zufallsauswahl aes bllen
Permutationsgruppiéber der Menge aller dglicher Bbcke verhalten;
insbesondereidfen sie keine zu kleine Untergruppe dieser symmetri-
schen Gruppe erzeugen.

Diese Bedingungisthier klar verletzt: Die Transforma@nnron ®HLIG

und HELLMANN bilden sogar bereits eine (zyklische) Untergruppe der
vollen Permutationsgruppe. Dies gibt einem Angreifer gjJarze Rei-

he zuatzlicher Mbglichkeiten; insbesondere mul} er bei einer Attacke
mit bekanntem Klartext nur ein diskretes Logarithmenpeabliosen,
wozu es, wie wir aug4 von Kapitel finf wissen, deutlich schnellere
Algorithmen gibt als das vollahdige Durchsuchen des Sab$elraums.

Wenn wir trotzdem oft mit deutlichikzeren Sclilsselingen arbeiten
als bei Verfahren mit diskreten Logarithmen, rechtfertgh das vor
allem aus der Art der Anwendungen: Das Verfahren vorilkc und
HELLMANN wird in erster Linie eingesetziif Protokolle, die in Echtzeit
ablaufen; falls man dazu dann auch nadmoc Schlissel einsetzt,irtzt
eine Kryptanalyse dem Gegner nur dann, wenn er sie innewalimer
Sekunden oderdthstens Minuten durchren kann. In solchen Situ-
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ationen sind die Sicherheitsanforderungerurah erheblich geringer
als etwa bei elektronischen Unterschriften, die oft jednmglsicher sein
mussen.

Speziell beim Kartenspiel per Telephon (oder Internetdwias Ver-
fahren folgendermal3en eingesetzt:

Die n Teilnehmer einigen sich auf eine Primzahtie hinreichend grof3
sein mul3, dal’ niemand in der zur \fegting stehenden Zeit einen nen-
nenswerten Teil aller Gglicher Exponenten durchprobieren kann. Eine
Grofienordnung von 100 Bit oder dreil3ig Dezimalstellen saldeu
mehr als ausreichend sein. Aul3erdem wird jedemd®pielkarten eine
natirliche Zahl 1< z, < p— 1 zugeordnet. Dabei kann es um eine fort-
laufende Nummerierung handeln oder aber auch um eine streifte,
bei der beispielsweise Farbe und Wert der Karte in den zAffenz,
kodiert sind.

Sodann vahlt jeder den- Spieler zwei Exponented, , e, derart, dafd
die, = 1 modp — 1 ist; nach dem kleinen Satz vOmERMAT ist also

(xek)d’“ = x modp fur alle natirlichen Zahlenc.

Vor dem Start des eigentlichen Spielsissen die Karten gemischt wer-
den.Ublicherweise ist dies Aufgabe eines der Spieler; die amisehen
nur zu, dafd alles seine Richtigkeit hat, und vielleicht le@tér vonihnen
auch noch ab.

Beim Spiel per Telephon kann niemand beim Mischen zuselssiiadb
werdenalle Spieler daran beteiligt. Der Kartenstapel wird simuliert
durch die Folgei ;),-, ., der Karten, wobei die erste Komponente
eines jeden Paars die Position der Karte im Stapel angibt.

Jeder Spieler @ahlt eine Permutation, der Menge der Zahlen von eins
bis n. Mit dieser mischt er den Stapel, wobei er gleichzeitig dset&n
mit seinem Exponentet), verschiisselt.

Der erste Spieler ersetzt also jedes Paar,} auf dem Stapel durch
(m1(4), x;* modp), sortiert die entstehende Liste wieder nach ihren er-
sten Komponenten und gibt die so entstandene Folgg (-, , weiter

an den zweiten. Der ersetzt jedes Paay,{ durch (r,(:), y;> modp),
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sortiert wieder nach der ersten Komponeudev.,bis jeder Spieler seine
Permutation angewandt hat. Dgyemischte* Stapel besteht also aus
den Paareffr, o - - o my(i), ¥ modp), sortiert nach ihren ersten
Komponenten.

Zum Spielen riissen die Karten wieder entsiabselt werden, allerdings
so, dal® nur der Emahger den Klartext, erkennen kann. Wenn daher
einer der Spieler eine Karte vom Stapel erhalten soll, nis@irt rechter
Nachbar die oberste Karte vom Stapel und entsd#lt sie mit seinem
Exponenteni,.. Dann reicht er sie weiter aseinenrechten Nachbarn,
der seinen Exponentel).., (oderd,, falls £ = r) anwendeusw.,bis

die Karte ihren Emgnger erreicht hat. Nachdem auch dieser noch mit
seinemd-Exponenten potenziert hat, wurde die Kartezu

?1"'erdl"'dr - x,(ieldl)(eZdZ)"'(eT'dT') = CL-Z modp’

CL-Z

ist also wieder erkennbar.

Ausgespielt werden die Karten nun unvers&sielt nach deiiblichen
Regeln des jeweiligen Kartenspiels; wer also die Karteausspielen
mochte, schickt die Zaht, per E-Mail oder sonstige Software an alle
Spielteilnehmer.

Im Gegensatz zur Situation bei einem realen Kartensgiehkn diese
nun allerdings nicht sicher sein, dal} jeder nur Karten aelssgie ihm
auch wirklich ausgeteilt wurden: Beim Skat etwankite der Alleinspie-
ler wahrend des Spiels unbemerkt ejgediickte” Karte ausspielen.
Um dies zu verhindern, werden nach Spielende alle Exponehte,
bekanntgegeben, so dal3 sich jeder vergewissern kann,giE§eaeecht
gespielt wurde.

Speziell beim Poker, wo Bluffen ein wesentlicher Teil desefpist,
sollte allerdings auch nach Spielende nicht bekannt we®emand
wirklich Karten auf der Hand hatte, die soviel wert sind, \@esug-
gerierte. Mit etwas komplizierteren Verfahren kann auddr kiie Ein-
haltung der Spielregeln kontrolliert werden.



Kap. 9: Kryptographische Protokolle 362

83: Zero Knowledge Protokolle

Wer heute mit einer Kreditkarte oder Bankkarte bezahlti gibm
Zahlungsemginger recht viel Information in die Hand: Aul3er der
Karten- oder Kontonummer sind auch sein Name, seine Bahinging
und ahnliches auf der Karte kodiert. Ddyer hinaus muf3 er beim
Bezahlen entweder eine Unterschrift hinterlassen (dienwtit allzu
schwer nachzumachen ist) oder eine PIN eintippen, die vemeima-
nipulierten Geat aufgezeichnet werden kann. Der Karteninhaber muf
also ziemliches Vertrauen in den Zahlungseamgfer haben, kann des-
sen Vertrauensiwrdigkeit aber oft nichfiberpiifen: Schliel3lich hat nicht
jedes von der Mafia gahrte Restaurant ein Bronzeschild an dér it
der Aufschrift A FRoub MEMBER OFMOB ENTERPRISESCENTRAL EU-
ROPELTD.

Eine Alternative zur Kartenzahlungase das im Zusammenhang mit
RSA behandelte elektronische Bargeld, jedoch scheintdietes zu-
mindest derzeit kommerziell nicht durchzusetzen.

Eine andere Nglichkeit besiinde darin, dal3 der Karteninhaber keine
PIN eintippt, sondern nur beweist, dal3 er die PIN kennt. akedn,
bei denen jemand beweist, dal3idrer eine Information veiiigt ohne
irgendeinen Tell dieser Information preiszugeben, béxestman in der
Kryptologie als Zero Knowledge Protokolle oder, falls nehswenig
Information preisgegeben wird, als Minimal DisclosuretBkolle.

Zur lllustration der grundszlichen Idee betrachten wir zachst eine
durch ein Nummernschlol3 gesichertar.TDiese sei in einem runden
Gang, dessen beide Enden durdir@dnh mit einem Vorraum verbunden
sind.

Wenn B sieht, dal3 A durch die einéiiTin den halbkreigirmigen Gang
eintritt und durch die andere herauskommt, kann er sicher dal3 A
durch die mit Nummernschlol3 gesicheri@& §egangen ist, eithrt aber
nicht die dort einzugebende Geheimzahl.

Kann umgekehrt auch A sicher sein, daltilBerhaupt nichterfahren
hat aul3er der Tatsache, dal3 A die Nummer kennt? Offensicimicht,
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/

denn auf jeden Fall weil3 B, dal3 A durch diarigegangen ist. Das ist
nicht weiter schlimm, aberdante B noch mehr erfahren haben?

Die Antwort auf diese Frage ist vor allem deshalb sehr salgyieveil
~etwas* nur schwer zu definieren ist. Mmichts* haben wir weniger
Schwierigkeiten:

Angenommen, wir filmen den gesamten Ablauf der Verifikatiealls
dabei ein Film entsteht, den B auch ohne Teilnahme von A zosam
mit einem Statisten C auch dreheankte, hat er offensichtlich nichts
erfahren, was er nicht schon vorher wul3te. Im vorliegenaddéinstdieses
Kriterium nicht erfillt, denn C kann ohne Kenntnis der Geheimzahl den
halbkreisbrmigen Gang nicht durchqueren.

Mit einer kleinen Anderung des Protokolls geht das: Nun geht A
zunachst allein in den Vorraum und verschwindet dort nach sé&iadl
hinter einer der beideniFen. Danach erst kommt B mit seiner Kamera
in den Vorraum und kann bestimmen, durch welche der beidearTA

zu ihm kommen soll.

Damit kann B allerdings nicht wissen, ob A wirklich durch desicherte
Tlr gegangen ist: Falls er zu Beginn durch digd verschwunden ist,
aus der ihn B kommen seherdohte, kann er einfach herauskommen
ohne seine Geheimzahl anwendenden Zissen. B wird daher erst
dann glauben, dal3 A diese wirklich kennt, wenn das Protokelrfach
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wiederholt wird, und selbst dann gibt es immer noch ein Fsstr
von 2" bein Versuchen.

A kann nun aber wirklich sicher sein, dal3 B keine neuen In&tionen
bekommen hat: Nundnnte B auch mit einem Statisten C ein Video
drehen, in dem alles so &hift wie beim echten Protokoll mit A: B mul3
nur C vorher informieren, durch welché&ifer kommen soll, oder aber er
schneidet nachtiglich alle Szenen heraus, in denen C durch die falsche
Tur kommt.

In einer digitalen Version &nnte man die Geheimzahl beispielsweise
ersetzen durch die beiden Primteiler eines Prodikts pg zweier
grofRer Primzahlen. Adnnte die Kenntnis dieser Primteiler beweisen,
indem er zu einer von B vorgegebenen Quadratzamiodulo N eine
Quadratwurzel produziert. Hierbei aHrt allerdings B, wie wir beim
Munzwurf per Telephon gesehen haben, mit einer Wahrscblekdit
von 50% die beiden Primzahlen, wasiindith inakzeptabel ist.

Praktikabel ist dagegen die folgende Version, diaigRr (den wir vom
RSA-Verfahren her kennen) und sein damaiger Doktoram@@\FIAT
1986 vorgeschlagen haben: Aawlt als Geheimzahl irgendein mit
VN < z < N —+/N und vebffentlicht y = 2> mod N. Soll er nun
gegeiriiber A nachweisen, dal3 erkennt, erzeugt er z@chst eine nur
fir diesen einen Austausclilljge ZahlvN < v < N — v/ N und
schicktv = 2 mod N an B. Dieser kann nun entscheiden, ob er eine
Quadratwurzel (moduldV) ausv oder ausyv sehen mchte. Falls er
sich fur v entscheidet, schickt ihm A entwederoder —u, ansonsten
+zu. A kann also beide Anfragen beantworten, braucht aber nuidoe
zweiten Alternative seine Geheimzahl

Trotzdem sollte B stets zallig zwischen seinen beiden ddglichkeit-

en wahlen, denn wenn er sich stets oddrerwiegend iir die zweite
entscheidet, &nnte sich ein Betrger C fir A ausgeben, indem griber

den BUKLIDiIschen Algorithmus invertiert, eine Zufallszahlerzeugt,
undv = y~1u? mod N an B schickt. Verlangt B nun eine Wurzel aus
yv, SO kann er einfach schicken. WWirde B jedoch eine Wurzel aus
verlangen, mf3te C passen, denn so etwas kann er nur dann berechnen,
wenn er eine Wurzel augkennt. C kann sich also immer so vorbereit-
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en, dal’ eeineder beiden raglichen Fragen von B korrekt beantworten
kann; beide Fragen kann aber nur beantworten, wer eine W\auze
moduloN kennt.

Die Faktorisierung voiV spielt hier offensichtlich keinerlei Rolle, denn
A muf3 nie Wurzeln modulp oder modula; ziehen. Daher muf{ auch
nicht unbedingt ein Produkt zweier Primzahlen sein, aitegslmul3 die
Primzerlegung vorV so schwierig sein, dafd sie niemand finden kann,
denn wer immer eirx finden kann mitz2 = y mod N kann sich bei
diesem Protokoll als A ausgeben.

Die Simulation mit einem Statisten ist auch hier wieder jeotos:
Entweder der Statist ethrt vorher, welche Frage B stellen wird und
kann sich darauf vorbereiten, oder aber alle Szenen, inndensich
fur die falsche Alternative entschieden hat, werden arefgébhd her-
ausgeschnitten.

84: SchluRbemerkung

Munzwurf oder Kartenspielen per Telephon gedn sicherlich nicht zu
den praktisch relevantesten Anwendungen der Kryptolageesind je-
doch relativ elementare Beispiele aus einem Problemldersjurchaus
auch ernstzunehmende Themen behandelt wie etwa das Retiinen
verdeckten Daten:

Hinter Daten aus geologischen Explorationen oder Sensardan
Satelliten steckt meist ein gewaltiger (auch finanziellkufwand, so
dal} diese Daten einen grol3en Wert haben und nicht ohne Beageadm
andere weitergegeben werden. Sigssen allerdings oft auch mit sehr
spezialisierten Verfahren ausgewertet und aufbereitedeve und auch
das kann nicht jeder.

Falls der Besitzer der Daten eine Auswerturigmwcht, die er selbst nicht
durchtihren kann, braucht er also die Hilfe eines Spezialistemdehte
diesem jedoch nicht seine Daten anvertrauen, denn derdliperieil}
schlie3lich, was man damit machen kann und wird sidglicherweise
uber Strohmanner dann Sdhrfrechte, Optionen un@hnliches verschatf-
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fen. Umgekehrt rachte aber auch der Spezialist seine Programme nicht
weitergeben, denn wer darer vertigt, braucht ihn knftig nicht mehr.

Auch beim sogenanntetioud computingvare ein Rechnen mit ver-
schlusselten Dateninizlich: Hier werden die einzelnen Schritte eines
komplexen Algorithmus mehr oder weniger allig auf Rechner mit
freier Kapaziat verteilt in einem grof3en Cluster, das durchaus nicht nur
vertrauens\irdige Computer enthalten mulf3.

Berdtigt werden hierzu vollgindig homomorphe Versdidselungsver-
fahren, d.h. Verschisselungsfunktionep, die nicht nur (wie etwa RSA
und FOHLIG/HELLMAN ) mit der Multiplikation kompatibel sind, sondern
mit allen Rechenoperationen. Erste solche Verfahren gibt es, adtgsd
sind sie bislang so aufwendig, daf’ es kaum eine Rechnung detite,
bei der sich ihr Einsatz lohnt. Die entsprechende Forsclstein aber
noch ganz am Anfang; vielleicht wird es schon in naher Zukaoth
praktikable Verfahren geben.

Um zu sehen, dal3 Rechnen mit verdeckten Daten zumindestgtan
lich moglich ist, betrachten wir ein extrem einfaches Beispiaigé-
nommeny Personen, die sich gegenseitig vertrauen, wollen inr Burch
schnittsgehalt berechnen, allerdingsahte (oder darf) keiner den an-
deren sein Gehalt nennen.

In diesem Fall reicht zupMerschlisselung® der Daten die Addition einer
zufalligen Zahl: Der erste @hlt eine Zufallszaht und addiert dazu sein
Gehaltg,; das Ergebnis; = z+ g, gibt er weiter an den zweiten. Dieser
addiert sein Gehalj, und gibtz, = z; + g, weiter an den dritterisw.
Der letzte schlie3lich gibt,, = z,,_; + g,, weiter an den ersten. Da

Zp = Zn—1+gn :Zn—2+gn—1+gn == Z+gl+"' +gn
ist, kann dieser die Summe der Gdtler berechnen als, — z, und damit
ist auch der Durchschnitt bekannt.

§5: Literatur

Kryptographische Protokolle werden zunehmend auch in datal
lehrichern behandelt; ein einfach lesbares relatmrees Buch, das
sich ausschlief3lich darauf spezialisiert, ist
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ALBRECHTBEUTELSPACHER JORG SCHWENK, KLAUS-DIETERWOLFEN-
STETTER Moderne Verfahren der Kryptographie — Von RSA zu Zero-
KnowledgeVieweg, '2010

Dort findet man auch einige Literaturhinweise zur @hskicheren
Besclaftigung mit weitergehenden Verfahren.



