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Abstract

Understanding (the category of) coherent sheaves on projective space.
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We want to understand the category coh(P!) (to further understand the underlying
variety P!). It’s an abelian category. Those categories are best understood via their
derived categories (especially if, and we do, we care about cohomology. To define coho-
mology we need cokernels, so we need an abelian category.). Why the derived category?
Because it’s better to consider the object with all it’s resolutions, functors like Fzt (which
are important for the structure!) are most easily defined as derived functors and quasi-
isomorphisms turn into isomorphism there.

The important example from a previous seminar (by Falko Gauss). Set X = P!
then we have an equivalence

Dbcoh(X) <+= D'rep(Kronecker quiver).

E— E?L’t.(OX D O)((]_), E)

How we exactly should understand this example (the functor) we will describe below.

Remark 1. Relevance.
(i) The right hand side is much easier to think of.
(ii) The sheaf T = Ox & Ox(1) contains all the complexity of the category.
Important reminder: The example uses that Ext*(7,7T) is concentrated at degree 0
(zero for everything else).

0.1 Generalizing the Example

We sketch a theorem which generalizes the example; then we explain the terminology in
the theorem, explain the example some more and finally very roughly mention how we
got the Kronecker quiver for the above equivalence.

Theorem 2. Let X be smooth projective, D = D’coh(X) and T a tilting sheaf (as the
T above, def. below) and A := Endo, (T), then there is a functor F which induces a
triangulated equivalence. This means the functor F (and a functor G) derived (RF and
LG) is an equivalence between the derived categories. The functor is

F := Home,(T,—) : Coh(X) — mod(A®)
(The functor G is —®4 T ).
Let’s explain this with the example from above a little further. Let X € coh(P!)
then we can form F(7,X) = Homo, (T, X). The right derived functor of this functor

is isomorphic to Ext'(X, —). So for that reason in the above example the functor is only
written for elements E of coh(X) considered as 0-complexes in D’coh(X).



0.2 Tilting Sheaf

So what is a tilting sheaf 77 It’s a sheaf that essentially captures all the complexity
of the category coh(X) for some smooth projective scheme X (for affine schemes this is
easy, see the example below). Set A = Endp, (T) as above. Then we define

Definition 3. Some 7 € coh(X) is a tilting sheaf, if it satisfies the following three axioms

(T1) A has finite global dimension = any module over A has a finite projective reso-
lution.

(T2) Extly (T,7)=0Vi>0

(T3) T generates D = D’coh(X) as a triangulated category (that’s different from the
usual “generating set of objects” property)

Example 4. Why is T = Ox @ Ox(1) for X = P! a good example of a tilting sheaf?

(T1) “Homs for line bundles only go upwards”.

(T2) this is just the property that Ext*(T,7T) is concentrated at degree 0.

(T3) this is the important part (as with exceptional sequences); Roughly we know
that any coherent sheaf can be resolved by sheaves that are sums of line bundles. So we
only need to show that all line bundles are “generated” by 7 which we get by “taking
cones and shifts”.

More important examples are

Example 5. (i) If X is affine, then coh(X) = fpmod(A) (by taking global sections
I'(X,—)). For affine X this functor is exact, (= (T2)), the tilting sheaf if Ox.
(ii) For X = P" the general tilting sheaf if T =0 & O(1) @& ... ® O(n).

Even rougher, and without definitions, we now sketch important consequences. With
that we can finally finish the example from above.

Corollary 6. (i) If X, smooth projective, admits a tilting sheaf, then its Grothendieck
(which can be endowed with a pairing called the Mukai pairing) is finitely generated and
free (this leads to the notion of a generalized root system due to Takahashi et al.).

(11) If X, smooth projective, admits a tilting sheaf, and that tilting sheaf is a sum of
line bundles, then those line bundles form an exceptional collection.

So in the example above (and in the generalized version) we get an exceptional se-
quence (O, O(1)) which lets us describe a quiver by setting the vertices as the elements
of the sequence, the edges as the bases of the hom spaces (and we get relations from
equality of morphisms).

~/

So in the example above, we have two edges and we know that Home, (Ox,Ox(1)) =
Ox(1) and thus we get a Kronecker quiver (details in what F. Gauss did in the previous
talk).



0.3 Serre Duality

The tilting sheaf in coh(P") is important for the structure. The second (and last) impor-
tant property is the Serre duality (which holds).

It states roughly: there is a unique wy (a line bundle = dualizing sheaf = canonical
bundle; unique up to isomorphism) such that for all F € coh(X), Vi, there is a natural
isomorphism

Ext'(F,w) = H" (X, F)*.

Serre duality is a “pretty” property relating two cohomology classes (a special case
being the Poincaré duality which lets us compute cohomology classes in terms of homology
classes). Since we are in the category coh(X) we have Ext'(F,G) = H'(X, Hom(F,G)).
So Serre duality reduces the work to compute cohomology groups.

Example 7. For X = P" we know the canonical bundle wx = O(—n—1). By the theorem
above we know the equivalence D’coh(X) = DPrep(Q°F) for some quiver @ (determined
by the exceptional sequence induced by the tilting sheaf T).

On the other hand we also know D’rep(Q°) = mod — kQ where kQ is the path
algebra over (). From the latter category we know, since k(@) is a principle ideal ring, that
all objects have a projective resolution of length 2. So the homological dimension of that
category is 1, so all those categories are hereditary (meaning Ext?(—, —) = 0 for i > 1).

This is also in line with what we know about the sheaf cohomology of X with coeffi-
cients in the Serre twisting sheaves.

0.4 Perspective

Connecting to the last example we point out why weighted projective lines have got-
ten some attention recently. See for [CK2009| for the following comment: According to
Happel here are only two classes of (connected) hereditary abelian categories that admit
a tilting object (in the sense of a tilting sheaf as above); module categories over path
algebras of quivers, and categories of coherent sheaves on weighted projective lines (pro-
jective spaces are trivial weighted projective lines). For any such category we have the
aforementioned equivalence.

0.5 Resources

Most of the material is from a seminar by Hiro Lee Tanaka, see [Web01]|. Some stuff
about derived categories of quiver is from [T'S2015], the last subsection refers to [CK2009].
Everything about homological algebra can be found in [GM1996].

The explicit structure of weighted projective lines, their structure sheaf and the ex-
plicit Serre duality can be found in the original work of [GL1987|.

References

[GL1987] Geigle, W., & Lenzing, H. (1987). A class of weighted projective curves
arising in representation theory of finite-dimensional algebras. In Sin-

4



[STK2014

[BR1936]

[CK2009]

[TS2015]

[Web01]
[GM1996]

gularities, representation of algebras, and vector bundles (Lambrecht,
1985) (Vol. 1273, pp. 265-297). Berlin, Heidelberg: Springer, Berlin.
http://doi.org/10.1007/BFb0078849

Shiraishi, Y., Takahashi, A., & Wada, K. (2014, January 19). On Weyl Groups
and Artin Groups Associated to Orbifold Projective Lines. arXiv.org.

Beltrametti, M., & Robbiano, L. (1986). Introduction to the theory of
weighted projective spaces. Expositiones Mathematicae. International Jour-
nal for Pure and Applied Mathematics, 4(2), 111-162.

Chen, X.-W., & Krause, H. (2009, November 23). Introduction to coherent
sheaves on weighted projective lines.

Tim Seynnaeve, 2015, http://www.math.uni-
bonn.de/people/oschnuer/wisel5/seminar/seynnaeve-
DerivedCategoryOfADynkinQuiver.pdf

http://math.harvard.edu/ ~hirolee/pdfs/280x-13-14-dbcoh.pdf

Gelfand, Manin - Methods of homological algebra. (1996). Gelfand, Manin -
Methods of homological algebra.



