17. Oktober 2005

1. Übungsblatt Höhere Mathematik II

Fragen: (je ein Punkt)

Die Antworten auf die nachfolgenden Fragen sollten nicht länger als etwa zwei Zeilen sein und lediglich eine kurze Begründung enthalten. Antworten ohne Begründung werden nicht gewertet.

- 1) Richtig oder falsch: $\tanh z = \frac{e^z e^{-z}}{e^z + e^{-z}}$ ist eine auf $\mathbb C$ holomorphe Funktion.
- 2) Richtig oder falsch: Die Funktion $z \mapsto z |z|$ ist holomorph.
- 3) Richtig oder falsch: Jede holomorphe Funktion $f: \mathbb{C} \to \mathbb{R}$ ist konstant.
- 4) Finden Sie eine holomorphe Funktion $f: \mathbb{C} \to \mathbb{C}$ mit $\mathfrak{Re} f(x+iy) = \mathfrak{u}(x,y) = x^2 y^2$! Ist f eindeutig bestimmt?
- 5) Richtig oder falsch: Die holomorphen Funktionen $f: \mathbb{C} \to \mathbb{C}$ bilden einen \mathbb{C} -Vektorraum.

Aufgabe 1: (5 Punkte)

- a) Bestimmen Sie alle komplexen Zahlen z mit der Eigenschaft $z^2 = i!$
- b) Zeigen Sie: Jede komplexe Zahl vom Betrag eins läßt sich in der Form $\frac{z}{\overline{z}}$ schreiben, wobei der Betrag von z beliebig vorgegeben werden kann.
- b) Schreiben Sie $\sin^2 x \cos^2 x$ als Summe reiner Sinus- und Cosinusterme!

Aufgabe 2: (5 Punkte)

- a) Bestimmen Sie alle komplexen Nullstellen der Sinus- und der Kosinusfunktion!
- b) Bestimmen Sie die größte Teilmenge $D_1\subseteq \mathbb{C}$, auf der $\tan z=\frac{\sin z}{\cos z}$ als holomorphe Funktion erklärt werden kann, und die größte Teilmenge $D_2\subseteq \mathbb{C}$, auf der $\cot z=\frac{\cos z}{\sin z}$ als holomorphe Funktion erklärt werden kann!
- c) Bestimmen Sie die Ableitungen von Tangens und Cotangens auf D₁ bzw. D₂!

$$\begin{array}{ll} \textbf{Aufgabe 3:} & \textit{(5 Punkte)} \\ \textbf{Berechnen Sie für } \gamma{:}\left[0,8\right] \rightarrow \mathbb{C} \ \ \text{mit } \gamma(t) = \left\{ \begin{array}{ll} t-1-i & \text{für } 0 \leq t \leq 2 \\ it+1-3i & \text{für } 2 \leq t \leq 4 \\ -t+5+i & \text{für } 4 \leq t \leq 6 \\ -it-1+7i & \text{für } 6 \leq t \leq 8 \end{array} \right. \\ \end{array}$$

a)
$$\int_{\gamma} z \, dz$$
 b) $\int_{\gamma} \frac{dz}{z}$ c) $\int_{\gamma} \frac{dz}{z^2}$!