2. Mai 2007

9. Übungsblatt Zahlentheorie

Aufgabe 1: (4 Punkte)

- a) Finden Sie (ohne Computer oder sonstiges stumpfsinniges Ausprobieren) alle Darstellungen von 10000 als Summe zweier Quadrate ganzer Zahlen!
- b) ditto für 810000.

Aufgabe 2: (8 Punkte)

- a) Schreiben Sie 65 als Produkt irreduzibler Elemente von $\mathbb{Z}[i]$!
- b) Finden Sie alle Darstellungen von 65 als Summe zweier Quadrate!
- c) Leiten Sie daraus eine Formel für π ab, und berechnen Sie über die zugehörige Potenzreihenentwicklung die Zahl π mit einer Genauigkeit von mindestens fünf Dezimalstellen!

Aufgabe 3: (4 Punkte)

a) Zeigen Sie, daß für jede ganze Zahl $m\in\mathbb{Z}$ auch $k=\frac{1}{6}(m-m^3)$ ganz ist und daß gilt

$$m = m^3 + (k+1)^3 + (k-1)^3 + (-k)^3 + (-k)^3!$$

b) Läßt sich jede natürliche Zahl als Summe von höchstens fünf positiven dritten Potenzen darstellen?

Aufgabe 4: (4 Punkte)

 $P(x_1,\ldots,x_n)$ sei ein Polynom mit ganzzahligen Koeffizienten in den Variablen x_1,\ldots,x_n . Zeigen Sie: Es gibt ein Polynom $Q(y_1,\ldots,y_m)$ in einer gewissen Anzahl m von Variablen derart, daß $Q(y_1,\ldots,y_m)=0$ genau dann eine Lösung mit $y_1,\ldots,y_m\in\mathbb{Z}$ hat, wenn $P(x_1,\ldots,x_n)=0$ eine Lösung mit $x_1,\ldots,x_n\in\mathbb{N}$ hat!