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Computational Visualization
1. Sources, characteristics, representation

2. Mesh Processing

3. Contouring

4. Volume Rendering

5. Flow, Vector, Tensor Field Visualization

6. Application Case Studies
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Computational  Visualization:
Flow, Vector, Tensor Field Visualization

Lecture 5
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Outline: 
Scalar and Vector Topology

•I PROBLEM   DOMAIN 
•Scalar  Fields ---- restrictions to  surfaces
•Vector  Fields ---- extensions to functions

on surfaces
•Different Grids --- unstructured, curvilinear
•II  TOPOLOGY  COMPUTATION
•Critical Points --- nonlinear system solvers;  multiplicity, index
•Local   Analysis --- eigenvalues, newton factorization
•Streamlines --- advection; dual stream surfaces

•I PROBLEM   DOMAIN 
•Scalar  Fields ---- restrictions to  surfaces
•Vector  Fields ---- extensions to functions

on surfaces
•Different Grids --- unstructured, curvilinear
•II  TOPOLOGY  COMPUTATION
•Critical Points --- nonlinear system solvers;  multiplicity, index
•Local   Analysis --- eigenvalues, newton factorization
•Streamlines --- advection; dual stream surfaces
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Interrogation of Axial Vortices
(with  G. Blaisdell, Purdue University)

• How is the turbulent kinetic 
energy produced ?

• Are the production terms of 
kinetic energy related to the 
large helical vortices ?

• Do the helical vortices rotate,  
move axially or remain 
stationary? 

• How is the turbulent kinetic 
energy produced ?

• Are the production terms of 
kinetic energy related to the 
large helical vortices ?

• Do the helical vortices rotate,  
move axially or remain 
stationary? 
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CCV Line Integral Convolution

• Input vector field and 
texture (white noise)

• Output intensity 
value on each pixel

• Output image is highly 
correlated along the 
streamlines and 
uncorrelated in directions 
perpendicular to the 
streamlines
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CCV Line Integral Convolution
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v• Given a vector field    , the streamline equation is

Image intensity at a point x is defined as
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where T is the input white noise texture and )(sσ

is the streamline with

xs =)( 0σ

xs =)( 0σ

)(sk is a symmetric filter function. 
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CCV LIC Example

Input vector field L=20

L=200 L=800
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• Original LIC
– Random white noise values averaged 

along a local streamline.
– Flow lines not delineated clearly

• Double LIC
– Use the output image of first LIC as the 

input of the second LIC
– Pixel intensities averaged along a 

previously integrated streamline.
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• Given two scalar fields U(x, y, z), V(x, y, z)
defined over a 3D volume, 

• Inner Volume
I(u, v) = Volume( U(x, y, z) <= u and V(x, y, z) <= v})

• Outer Volume
O(x, y) = Volume( U(x, y, z) > u and V(x, y, z) > v}),

where u, v are called isovalues of U, V respectively.
• (I, O) is a vector field defined over the domain 

{U, V}. It is called a vector signature 
function.

• Vector signature function can be other 
properties of the two scalar fields. 
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Vector Signature Functions:Use of  
Vector Field Topology

• Consider two scalar fields F(x),    G(x)
• IF(w) is the region inside F(x)=w
• IG(w*) is the region inside G(x)=w*
• OF(w) is the region outside F(x)=w
• OG(w*) is the region outside G(x)=w*

• IV(w,w*) = Vol (IF(w) intersect IG(w*))
• OV(w,w*) = Vol (OF(w) intersect OG(w*))

• Vector field V defined in a 2D domain
• V(w,w*) = (IV,OV) 

electrostatic

vanderWaal
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Vector Correlation Signature Example

Glucose potentials (Electrostatics, vanderWaal)

Inner volume Outer volume

Single LIC Double LIC

electrostatic

vanderWaal
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CCV Construction of  Vector  Topology

• I Detect stationary (critical) points 
• II Classify  critical  points
• III Link with  integral curves of vector 

field 

• I Detect stationary (critical) points 
• II Classify  critical  points
• III Link with  integral curves of vector 

field 
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CCV 3D Vector  Field

Critical Points

First Order  Local Analysis 
at the Critical Points

Eigenstructure of

[ ]),,(),,,(),,,( zyxhzyxgzyxf

0
),,(
),,(
),,(
=
















zyxh
zyxg
zyxf
















=

zyx

zyx

zyx

hhh
ggg
fff

J



Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

ComputationalVisualization

Ce
nte

r

CCV

Vector   Local Topology
(2D critical point classification)

Spiral Source

Spiral Sink
R - - I <>0

Center
R =0 I <>0

Saddle Source

Sink
R - - I=0

Spiral Source
R + +     I<>0

Saddle
R - - I=0

Source
R + +   I =0
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CCV Vortex  Core in Turbulent Flow

• Vortex core 
(red) computed 
by vector field 
topology.  
Green curves 
are streamlines 
computed near 
critical points on 
the vortex core.

• Vortex core 
(red) computed 
by vector field 
topology.  
Green curves 
are streamlines 
computed near 
critical points on 
the vortex core.
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CCV Vector Field Visualization

An isocontour of vorticity
magnitude is displayed with 
partial transparency.  The red 
contour represents a region 
of positive production term 
of turbulent kinetic energy. 
The green contour 
represents negative 
production terms.
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Challenge: Detect Vortices, Topology 
Changes in Cosmological Explosions
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CCV Scalar Field Topology

Pion Collision Simulation 

Close-up  snapshot  of  above

Topology of wind 
speed in a climate 
model simulation

Topology of a 
mathematical 
function reveals 
information hidden 
in contour display
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CCV 3D Scalar Field
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at the Critical Points
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CCV Critical Points with Linking Curves
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CCV Integral Curves of Vector Field

dt
XdXU =)(

Ref:   Dual Stream Functions, David Kenwright’s Thesis1993, Auckland
Also: Bajaj, Xu, Spline Approx. of Algebraic Surface-Surface Intersection 
Curves, Advances in  Comp. Math, 1996

Solution of ODE : Runge-Kutte, 4th Order Integration

Dual  Stream Functions for Solenoidal Vector Fields (zero 
divergence) [Yih1957]

and obey law of mass conservation

Single Stream Functions for 2D incompressible flow (Lagrange1781)

y
Up

x
Up

∂
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=

∂
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=

for integral curves
0=Ψ∂

gfUp ∇×∇=
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Topology preserving, Finite Element
Interpolants

Open question:
What is the true interpolant which 
does not perturb the topology of the 
underlying data ?
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Vector Topology in 3D:
Topology Preserving Interpolation

Open Questions :  Field Topology preservation ?
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Scalar Topology
(3D structure enhancement)
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Scalar Topology
(Road Map for Data Exploration)
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CCV Scalar Topology

dynamic structure tracking
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51-timestep simulation of a Pion Collision  
(Original 12 data variables over a  

rectilinear mesh)

Pion Collison 
after  3% error-bounded decimation (all variables) 

of 60% -85% per timestep 

Feature Preserving  Decimation of Pion
Collision
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Topology Preserving  Simplification (J. of 
Computers & Graphics, 1998)

Original Data (130050 tri)
7% Error

(90% reduced, 13061 tri)
Data Courtesy Tsuyoshi Yamamoto and Hiroyuki Fukuda, Hokkaido University
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CCV Gated MRI Closeup

Original Data (130050 tri)
7% Error

(90% reduced, 13061 tri)
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To wake up with coffee!  
Or  Mineralwasser !!
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Curves   f(x,y) = 0, 2D Scalar 
Fields

• I Critical  Points are Singularities
• nodal, cuspidal, tacnodal, higher order
• II Classification of singularities
• simple: eigenvalues of Hessian  of  f
• higher order:  Weierstrass preparation followed by
• a Newton factorization both using bivariate Hensel

Lifting
• Ref:  Abhyankar, Bajaj,  Rational Parameteriz. Of Algebraic Curves, 

CAGD
• Bajaj, Xu, Rational Spline Approx. of Plane Algebraic Curves, J of 

Comp. Math, 1995, 
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Weierstrass (x^3-x^2+y^2,6)

Newton ((x^2+y^2)^2+3*x^2*y-y^3,0,4)

localpower2d (x^3-x^2+_y^2,s,6,0,0)

•••

•••

•••

Weierstrass, Newton and Pade’



Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

ComputationalVisualization

Ce
nte

r

CCV

Global  Parameterization of 
Real Algebraic  Curves

• Computation of Real Curve Genus

• Real Rational Parameterization of Real 
Curves of Genus 0

Ref:  
• Abhyankar, Bajaj, Computer Aided Design 1987
• Recio, Sendra, Winkler 

J. of Symbolic Computation, 1995, 1997
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Piecewise Rational Parameterizations of 
Real Algebraic Curves

Problem
Given a real algebraic plane curve C: f(x, y) = 0 of 
degree d and of arbitrary genus, a box B defined by

an error bound          ,
and integers m,n with                   construct a  C0 or
C1 continuous piecewise rational   -approximation of all 
portions of C within the given bounding box B, with 
each rational function       of degree              and degree

.

},,),{( δγβα ≤≤≤≤ yxyx 0>ε
dnm ≤+
ε

i

i

Q
P mPi ≤

nQi ≤



Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

ComputationalVisualization

Ce
nte

r

CCV Sketch  of  Algorithm

Compute  all  intersections  of  C within the given bounding 
box B and also the    tracing direction  at  these points. Next, 
compute all singular points  S and x-extreme  points T in the 
bounded plane curve CB. 

Compute a Newton factorization for each singular point (xi,
yi)in S and obtain a power series  representation for each 
analytic branch of C at (xi, yi ) and given by

1.

2.



 ik

i sxsX +=)(
,)( )(

0
ji

jj scSY ∞
=∑= i

i yc =)(
0 (2.1)

or





,~)( )(
0

ji
jj

scsX ∞
=

∑= i
i xc =)(

0
~

(2.2)

ik
i

sysY +=)(
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3. Without loss of generality,  consider the case where 
the analytic branch at the singularity is of type (2.1). Compute

the (m,n) Padé approximation of Y(s). That is 
)(
)(

sQ
sP

mn

mn

)()(
)(
)( 1++=− nm

mn

mn sOsY
sQ
sP

4. Compute β > 0 a real number, corresponding to points 
and 

on the analytic branch of the original curve C, such that 
is convergent for

))(~),(~( ββ YyXx ii == ))(ˆ),(ˆ( ββ −=−= YyXx ii

)(
)(

sQ
sP

mn

mn [ ]ββ ,−∈s

Sketch  of  Algorithm (contd)
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5. Modify                          to                        is C1 continuous 
approximation of Y(s) on [0, β]

)(/)( sQsP mnmn )(~/)(~ sQsP mnmn

6. Denote the set of all the points                        the set T and 
the boundary points of CB by V. The curve CB yields a natural
graph G having V, as its vertex set and the set of curve 
segments of CB joining any pair of points in V, as its edge set
E. Now starting from each (simple) point            in V we trace
out the graph G, approximating each of its edges E by C1 

continuous piecewise rational curves.

),ˆˆ(),~~( ,, iiii yxyx

)( , ii yx

Sketch  of  Algorithm  (contd)
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Piecewise  Rational  Parameterization 
Approximations for  decreasing error
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Hensel Lifting

Consider              of degree d and  monic in y),( yxf

⋅⋅⋅++⋅⋅⋅++= k
k xyfxyfyfyxf )()()(),( 10

We wish to compute real power series factors g(x,y) and h(x,y) = g(x,y)h(x,y)
The technique of Hensel lifting allows one to reconstruct the power series factors

⋅⋅⋅++⋅⋅⋅++= i
i xygxygygyxg )()()(),( 10

⋅⋅⋅++⋅⋅⋅++= j
j xyhxyhyhyxh )()()(),( 10

From initial factors )()()(),0( 000 yhygyfyf ==

Expansion at Singular Points
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Weierstrass Factorization

A Weierstrass power series factorization is of the form 

,)()(),0(
)(00 )(

100

yh

e

yg

yyaayfyf ⋅⋅⋅++==

Where  g(x,y) is a unit power series

The Weierstrass preparation can be achieved via Hensel Lifting from the initial 
factors:

),(

0
1

1 ))()((),(),(
yxh

e
e

e xayxayyxgyxf +⋅⋅⋅++= −
−
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Newton Factorization

Let

)()(),( 0
1

1 xayxayyxh e
e

e +⋅⋅⋅++= −
−

Then it is possible to factor h(x,y) into real linear factors of the type using Hensel Lifting

)))(((),( 1 tyyxh i
e
i η−∏= =
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CCV Surfaces   f(x,y,z) = 0, 3D Scalar Fields

• I Critical  Points (& Curves) are Singularities
• points: difficult ?
• curves: nodal, cuspidal, tacnodal, higher order

• II Classification of singularities
• simple points: eigenvalues of Hessian  of  f
• higher order points :   ??
• Curves : some similar to  singular points on curves. Others ?

• Ref:  Bajaj, Xu, Rational Spline Approx. of  Real Algebraic 
Surfaces, J of Symbolic Computation, 1997
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Topology Preserving Spline Approximations 
and Display of Real Algebraic Surfaces



Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

ComputationalVisualization

Ce
nte

r

CCV

Global Rational Parameterization 
for Real Algebraic Surfaces

• Computation of  Arithmetic  Genus, 
Second Plurigenus

• Parametrization  of Real Surfaces 
satisfying  Castelnuovo criterion for  
rationality ?

• Ref:  J. Schicho,  Journal of Symbolic 
Computation 1997
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Given two skew lines
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On the cubic surface f(x, y, z) = 0, the cubic  rational parametrization 
formula for a point p(u, v) on the surface is 
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⋅−⋅∇==
−⋅∇==
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Global Rational Parameterization of 
Non-Singular Real Cubic Surfaces
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0)ˆ,ˆ(ˆ)ˆ,ˆ(ˆ
32 =+ yxgyxf

THEOREM 1. The polynomial P81(t) obtained by taking the 
resultant of        and       factors as                        , 
where is the denominator of 
K(t) and L(t), and P(6)(t) is the numerator of                                    
.

2̂f 3ĝ 6
6

6
32781 )]([)]()[()( tPtPtPtP =

+′′= 3
3 )( tBtP AtDtF ′′+′′+′′ 2

]))()[()()(( 2
36 tPtStPtS =

THEOREM  2.   Simple real roots of P27(t) = 0 correspond to real
lines on the surface.

Twenty-Seven Lines on the Cubic Surface

(Schlafi’s double-six)
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Rational  Parametrization of Cubic A- Patches in BB 
form

Ref: (ACM Transactions on Graphics’97)
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CCV Triangulation and Display of Rational Parametric Surfaces

A rational parametric surface is defined by the three rational functions:

,
),(
),(),(

tsW
tsXtsx = ,

),(
),(),(
tsW
tsYtsy =

),(
),(),(
tsW
tsZtsz =

1.  Domain poles.  The map yields a divide by zero at points satisfying W(s,t) = 0, the pole of 
the rational functions. These domain poles are algebraic curves. 

2.  Domain base points.  The map is undefined at points satisfying X(s,t) = Y(s,t) = Z(s,t) =
W(s,t) = 0. There are finitely many such points, called domain base points.

3.  Surface singularities.  The given rational surface may be singular. 

4.  Complex parameter values.  Some real points of the surface are generated only by complex
Parameter values.

5.  Infinite parameter values. Some finite points of the surface are generated only by infinite 
parameter values. 
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THEOREM 1 Let (a,b) be a base point of multiplicity q.  Then for any m ∈ R, the image 
of a domain point approaching (a,b) along a line of slope m is given by (X(m),Y(m),Z(m)
W(m) = 

)),(),(( 00
i

iiq

q
q
i

i
iiq

q
q
i m

i
q

ba
ts

Xm
i
q

ba
ts

X
















∂∂

∂
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∂∂

∂
∑ −=−=

COROLLARY 1 If the curves X(s,t) = 0, …,W(s,t) = 0 share t tangent lines at (a,b),
then the seam curve (X(m),Y(m),Z(m),W(m)) has degree q-t. In particular, if X(s,t) = 0
have identical tangents at (a,b), then for all m ∈ R the coordinates (X(m),…,W(m))
represent a single point.

Ref: Bajaj, Royappa Triangulation and Display of Arbitrary Rational Surfaces
IEEE Visualization Conference 1994

Image of a Base Point is a Rational Curve
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CCV Saddle Points Computation

F001

F011
F111

F101

F000 F100

F010
F110

• Trilinear Interpolant
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• Face Saddle Point

• Body Saddle Point

Saddle Points Computation

F(x,y) = ax + by + cxy + d         (bilinear interpolant)
First derivatives : Fx = a + cy = 0 , Fy = b + cx = 0
Saddle point S = ( -b/c , -a/c )

First derivatives = 0 :
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CCV Face and Body Saddle Points

We obtain saddle point :
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CCV Decision on Topology

• Resolving Face Ambiguity
– Ambiguity

– Decision based on the value s of saddle point

s is black s is white
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–Decision based on the value of saddle points

• Resolving Internal Ambiguity
– Ambiguity

(i) s is black tunnel
(ii) s is white two pieces
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31 Cases
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Reconstruction from Slices
(Bajaj, Klin, J of GMIP’95)
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Topologically correct  reconstruction from 
Volumetric Images

Points cloud

Knee Joint
A-Patch  BEM

Signed DistanceAlpha-Solid
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Use of weights for multiresolution
samplings( Siggraph’95)
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CCV Connect-the-dots

• Inferring topology from proximity• Inferring topology from proximity

Reconstruction from points is in general
an underconstrained problem
Reconstruction from points is in generalReconstruction from points is in general

anan underconstrainedunderconstrained problemproblem
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CCV Sampling a 1-manifold

Neighborhood
intersection
property

Sampling
density
property

Yes No
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CCV

Sampling and Reconstruction 
Theorem (IJCGA’96)

• Let B be a compact 1-manifold without boundary, 
and S a sampling. If

• 1. for any closed disk D of radius r, B �D is either 
(a) empty, (b) a single point, (c) an interval;

• 2. an open disk of radius r centered on B contains 
at least one point of S

• then the alpha-shape W�, � = r2, is homeomorphic
to B and

• max   min || p - q || < r
• p �W� q � B

• Let B be a compact 1-manifold without boundary, 
and S a sampling. If

• 1. for any closed disk D of radius r, B �D is either 
(a) empty, (b) a single point, (c) an interval;

• 2. an open disk of radius r centered on B contains 
at least one point of S

• then the alpha-shape W�, � = r2, is homeomorphic
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• max   min || p - q || < r
• p �W� q � B
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CCV

Feature Preserving Reconstruction of CAD 
Models

PointsPoints Triangle meshTriangle mesh Reduced meshReduced mesh Smooth modelSmooth model

3D3D DelaunayDelaunay tri. tri. 
and and α−α−solidsolid

MeshMesh
reductionreduction

AA--patchpatch
fittingfitting
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CCV Feature Surface Fitting

– Uses cubic A-patches 
(algebraic patches)

– C1 continuity

– Uses cubic A-patches 
(algebraic patches)

– C1 continuity

• Sharp features (corners, 
sharp curved edges)

• Singularities

•• Sharp features (corners, Sharp features (corners, 
sharp curved edges)sharp curved edges)

•• SingularitiesSingularities
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CCV

Feature Preserving Model 
Reconstruction

Input Data
2*104 pts 

α-solid
17786 triangles 

Reduced mesh
248 triangles 

A-patch tetrahedral
support mesh 

A-patch fit
face- and 
edge-
patches 

Reconstructed
model
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CCV Sharp Features Reconstruction:
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CCV Further reading
• Line integral convolution
• Brian Cabral and Leith Casey Leedom, Imaging vector fields using line integral convolution, Proceedings of the 20th annual 

conference on Computer graphics, p 263-270

• Fast Line Integral Convolution
• Detlev Stalling and Hans-Christian Hege, Fast and resolution independent line integral convolution, Proceedings of the 22nd 

annual ACM conference on Computer graphics, p 249-256
• Rainer Wegenkittl and Eduard Gröller, Fast oriented line integral convolution for vector field visualization via the Internet, 

Proceedings of the conference on Visualization '97, p 309-316

• Flow Fields
• Han-Wei Shen; Kao, D.L., A new line integral convolution algorithm for visualizing time-varying flow fields, Visualization and 

Computer Graphics, IEEE Transactions on , Volume: 4 Issue: 2 , April-June 1998, Pages 98 -108
• Interrante, V.; Grosch, C., Strategies for effectively visualizing 3D flow with volume LIC, Visualization '97., Proceedings , 1997 p 

421 -424, 
• Wegenkittl, R.; Groller, E.; Purgathofer, W., Animating flow fields: rendering of oriented line integral convolution, Computer 

Animation '97 , 1997 p 15 -21
• Forssell, L.K.; Cohen, S.D., Using line integral convolution for flow visualization: curvilinear grids, variable-speed animation, 

and unsteady flows, Visualization and Computer Graphics, IEEE Transactions on , Volume: 1 Issue: 2 , June 1995 p 133 -141
• Forssell, L.K.,Visualizing flow over curvilinear grid surfaces using line integral convolution, Visualization, 1994 p 240 -247

• Others
• Han-Wei Shen, Christopher R. Johnson and Kwan-Liu Ma, Visualizing vector fields using line integral convolution and dye 

advection, Proceedings of the 1996 symposium on Volume visualization, Page 63
• Verma, V.; Kao, D.; Pang, A., PLIC: bridging the gap between streamlines and LIC, Visualization 1999, p 341 -541
• Gerik Scheuermann, Holger Burbach and Hans Hagen, Visualizing planar vector fields with normal component using line 

integral convolution, Proceedings of the conference on Visualization '99, Pages 255-261
• C. Rezk-Salama, P. Hastreiter, C. Teitzel and T. Ertl, Interactive exploration of volume line integral convolution based on 3D-

texture mapping, Proceedings of the conference on Visualization '99, Pages 233-240
• de Leeuw, W.; van Liere, R., Comparing LIC and spot noise, Visualization '98. Proceedings , 1998 p 359 -365
• Ming-Hoe Kiu; Banks, D.C., Multi-frequency noise for LIC, Visualization '96. Proceedings. , 1996 p 121 -126
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CCV Further Reading

•Bader(1990)- gradient fields in molecular systems.
•Bergman, Rogowitz, and Treinish(1995) - enhancing colormapped 
visualiztion.
•Gershon(1992) - Generalized Animation
•Jones and Chen(1994), Lorensen and Cline(1987), Wilhelms and
Gelder(1990) - isocontours in 2d and 3d scalar data.
•Fowler and Little(1979) - detecting ridges and valleys.
• McCormack, Gahegan, Roberts, Hogg, Hoyle(1993) - detecting 
drainage patterns in geographic terrain.
•Interrante, Fuchs, and Pizer(1995) - enhancing surface displays
•Itoh and Koyamada(1994) - Isocontour extraction.
•Helman and Hesselink(1991), Globus (1991), Asimov (1993) - vector 
field topology.
•Yih (1957), Kenwright, Mallinson (1992) - dual stream functions
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visualiztion.
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• McCormack, Gahegan, Roberts, Hogg, Hoyle(1993) - detecting 
drainage patterns in geographic terrain.
•Interrante, Fuchs, and Pizer(1995) - enhancing surface displays
•Itoh and Koyamada(1994) - Isocontour extraction.
•Helman and Hesselink(1991), Globus (1991), Asimov (1993) - vector 
field topology.
•Yih (1957), Kenwright, Mallinson (1992) - dual stream functions



Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

ComputationalVisualization

Ce
nte

r

CCV Further Reading

• J. Hultquist, Construcing stream surfaces in steady 3D vector fields,
proceedings of visualization ‘92

• J. Van Wijk, implicit stream surfaces, proceedings of visualization ‘93
• Scheurman, Hagen, Rockwood,  constructing degenerate vector fields, 

proceedings of visualization ‘97
• Bajaj, Pascucci, Schikore, scalar topology for enhanced  visualization, 

proceedings of visualization ‘98

• J. Hultquist, Construcing stream surfaces in steady 3D vector fields,
proceedings of visualization ‘92

• J. Van Wijk, implicit stream surfaces, proceedings of visualization ‘93
• Scheurman, Hagen, Rockwood,  constructing degenerate vector fields, 

proceedings of visualization ‘97
• Bajaj, Pascucci, Schikore, scalar topology for enhanced  visualization, 

proceedings of visualization ‘98
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CCV Mannheim Summer School 2002

Computational Visualization
1. Sources, characteristics, representation

2. Mesh Processing

3. Contouring

4. Volume Rendering

5. Flow, Vector, Tensor Field Visualization

6. Application Case Studies


