

Computational Visualization

- 1. Sources, characteristics, representation
- 2. Mesh Processing
- 3. Contouring
- 4. Volume Rendering

6. Application Case Studies

Computational Visualization: Volume Rendering

Lecture 4

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

Example Volume Renderings

enter

Visualiz

Oceanographic Simulations

- 2160×960×30×4(bytes) = 237 MB
- 237(MB)×115(timesteps) = 27 GB

- Ray Casting/Shading
- Opacity weighted Color Integration
- Volumetric Illustration
- Texture Based Rendering (Hardware Acceleration)
- Optical Models (Gaseous Phenomena)
- **First Principles**

Volume Rendering Algorithm

- Direct volume rendering
 - Ray-casting
 - Splatting
- Indirect volume rendering
 - Fourier

(a) Isosurface Rendering

(b) Direct Volume Rendering

- Texture based volume rendering
 - 3D Texture mapping hardware

Ray-Casting

View dependent

Ray-Casting (cont)

- Advantages
 - Not necessary to explicitly extract surfaces from volume when rendering
 - Can change the transfer functions to make various surfaces stand out within the volume

Ray-Casting (cont)

- Disadvantages
 - Do not have explicit representations for surfaces, therefore not straightforward to compute integral/differential properties
 - Much more computationally intensive to render volume since not dealing directly with the efficient polygon pipeline

Volumetric Ray Integration

Given Colors or Shade Before Resampling

Transfer Functions

- Mapping from data values to renderable optical properties
 - Density
 - Gradient

The Contour Spectrum

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

Ray-casting - revisited

- 1. From first principles, emitted intensity different from shaded intensity
- 2. From Blinn, Opacity-Weighting before interpolation helps quality
- 3. From short cut, cannot do separate interpolation

Derivation from First Principles of Volume Rendering

Ray intensity by line integral

$$I_{ray} = \int t(l) I_s(l) \alpha(l) dl$$
$$I_e(l) = I_s(l) \alpha(l)$$

- Associated color, opacity associated or multiplied
- Generalized to Volume Rendering $\widetilde{C} = \alpha C$
- Compositing Equations

$$\widetilde{C}_{\text{new}} = (1 - \alpha_{\text{front}})\widetilde{C}_{\text{back}} + \widetilde{C}_{\text{front}}$$
$$\alpha_{\text{new}} = (1 - \alpha_{\text{front}})\alpha_{\text{back}} + \alpha_{\text{front}}$$

See Blinn, SIGGRAPH'82, Porter and Duff, SIGGRAPH'84 Blinn IEEE CGA, Sep. 1994. See Drebin et al. SIGGRAPH'88

Works for back-to-front, front-to-back, parallel, etc.

A Shortcut to Represent Materials and Shading

- Assume that shading at material samples will give good results
- Levoy: separate interpolation of colors and opacities
- Pre-shade

Separate Interpolation of Colors and Opacities (Levoy '88)

Japan Strategy Strate

Opacity-Weighted Color Interpolation

C. M. Wittenbrink, T. Malzbender, and M. E. Goss, Opacity-Weighted Color Interpolation for Volume Sampling, Volume Visualization Symposium '98, Research Triangle Park, NC, 1998.

Opacity-Weighted Interpolation (Wittenbrink et. al. 98)

FTB color: $\tilde{C}_{\text{front(new)}} = (1 - \alpha_{\text{front}})C_{\text{back}}\alpha_{\text{back}} + \tilde{C}_{\text{front(old)}}$

BTF color: $\tilde{C}_{back(new)} = (1 - \alpha_{front})\tilde{C}_{back(old)} + C_{front}\alpha_{front}$

Opacity:

 $\alpha_{\text{new}} = (1 - \alpha_{\text{front}})\alpha_{\text{back}} + \alpha_{\text{front}}$

The colors that are composited must be pre-weighted with opacity, i.e. associate color:

Example Calculation

Rendering Comparison

Red tissue bleeds onto white bone

Color errors

Separate

Opacity-weighted

Difference

100x96x249 spiral CT dataset, classified to 8 bit

Rendering Comparison (cont)

Intensity errors

Banding results from black air marking surface

Separate

Torus volume, pre-antialiased

Spiral CT Rendering Comparison

Artifact appears to be aliasing Color & intensity errors

Separate

Summary: Opacity-Weighted Color Interpolation

- Opacity-weight $\omega_i = w_i \alpha_i$
- Compute ray sample opacity α =
- Compute ray sample color
- $\alpha = \sum_{i} \omega_{i}$ $\widetilde{C} = \sum_{i} \omega_{i} C_{i}$

Composite

$$\widetilde{C}_{\text{new}} = (1 - \alpha_{\text{front}})\widetilde{C}_{\text{back}} + \widetilde{C}_{\text{front}}$$

Volume Illustration

- Non-photorealistic rendering of volume models
- Properties
 - Volume sample location and value
 - Local volumetric properties, such as gradient and minimal change direction
 - View direction
 - Light information

Traditional Volume Rendering Pipeline

Volume Illustration Rendering Pipeline

- Boundary enhancement
 - Gradient-based opacity

$$o_g = o_v (k_{gc} + k_{gs} (\left\| \nabla_f \right\|)^{k_{ge}})$$

Original opacity

Value gradient of the volume at the sample

Boundary enhancement example

Original volume rendering

Boundary enhancement $k_{gc} = 0.7, k_{gs} = 10, k_{ge} = 2.0$

Oriented feature enhancement
 – Silhouette enhancement

$$o_{s} = o_{v} (k_{sc} + k_{ss} (1 - abs(\nabla_{fn} \cdot V))^{k_{se}})$$
gradient View direction

Silhouettes enhancement example

Original volume rendering

Silhouette and boundary enhancement

$$k_{gc} = 0.8, k_{gs} = 5.0, k_{ge} = 1.0;$$

 $k_{sc} = 0.9, k_{ss} = 50, k_{se} = 0.25$

Original volume rendering

Boundary enhancement

Silhouette and boundary enhancement

Boundary saturation increased and value also increased

Volumetric colored sketch of data

Boundary saturation increased and value decreased

- Distance color blending
 - Depth-cued color

$$c_{d} = (1 - k_{ds} d_{v}^{k_{de}}) c_{v} + k_{ds} d_{v}^{k_{de}} c_{b}$$

controls the size of
the color blending effectThe fraction of distance
through the volume
controls the rate of
application of color blendingBackground color

Voxel color

Distance color blending example

Original volume rendering

Distance coloring, boundary, and silhouette enhancement $c_{h} = (0,0,0.15), k_{ds} = 1.0, k_{de} = 0.5$

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

Feature halos

- The size of halo effect

$$h_{i} = \left(\sum_{n=1}^{neighbors} \frac{h_{n}}{\left\|P_{i} - P_{n}\right\|^{2}}\right) \left(1 - \left\|\nabla_{f}(P_{i})\right\|\right)$$

The maximum potential halo contribution of a neighbor

location

$$h_n = \left(\nabla_{fn}(P_n) \cdot \left(\frac{(P_i - P_n)}{\|P_i - P_n\|}\right)\right)^{k_{hpe}} \left(1 - \nabla_{fn}(P_n) \cdot V\right)^{k_{hse}}$$

Feature halos example

Original volume rendering

Halos, boundary, and silhouette enhancement $k_{hpe} = 1.0, k_{hse} = 2.0$

Tone shading example

Original volume rendering

Tone shading, boundary, and silhouette enhancement $k_{tv} = 0.3, k_{tb} = 0.3, k_{ta} = 1.0, k_{td} = 0.6$

Distance coloring, boundary, and silhouette enhancement

Halos, boundary, and silhouette enhancement

Tone shading, boundary, and silhouette enhancement

Gray scale data

Original volume rendered image

Tone enhancement of image data

Boundary volumetric sketch of data

• 2D square vortex results

Original gaseous rendering of jet

Tone shading, boundary, silhouette enhancement added

White silhouette color fading added to blue gaseous volume

To wake up with coffee! Or Mineralwasser !!

Texture Based Volume Rendering

3D Texture mapping hardware

Ray Casting

3D Texture Mapping

Parallel Texture Based Volume Rendering

Real-time multipipe texture based volume rendering of the time-varying oceanography temperature data.

Visualization of seismic simulation data on the CCV Visualization Lab's front multi projection system.

Shaded image of the Visible Human female data using texture hardware.

System Diagram

- 1. Adjust color table & transfer function using Windows interface.
- 2. Send a request to CORBA server.
- 3. The CORBA server distributes work to each node using MPI.
- 4. Each node renders each part of data using back-to-front composition.
- 5. The CORBA server takes the image pieces from each node and composites them into an image.
- 6. The Windows interface takes the final image.

Hardware Accelerated Rendering Algorithm

- 1. Load a 3D indexed volume data and normal vectors as RGB to texture memory on GF3
- 2. Set up a color look-up table
- 3. Set up combiners of GF3 for shading for color of texture, diffuse and specular
- 4. Calculate intersection between texture cube and texture mapped planes parallel with view planes
- 5. Composite the texture mapped planes using back-to-front composition

Hardware Accelerated Rendering

Texture-mapped planes blending

$$C_d = C_d + (1 - \alpha_d)\alpha_s C_s , \ \alpha_d = \alpha_d + (1 - \alpha_d)\alpha_s$$

 C_d : Destination color C_s : Source color

 α_d : Destination alpha α_s : Source alpha

Final composition of sub-images

 $C_d = C_d + (1 - \alpha_d)C_s \quad \alpha_d = \alpha_d + (1 - \alpha_d)\alpha_s$

- OpenGL Commands and notes
 - glBlendFunc (GL_ONE_MINUS_DST_ALPHA , GL_ONE)
 - $\alpha_s C_s$ should be pre-multiplied using a color table or register combiners of GeForce3

Image Enhancement

• Bilateral Filter $w_{ijk} = \exp\left[-\frac{(f(x, y, z) - f(i, j, k))^{2}}{2\delta^{2}}\right]$ $f_{new}(x, y, z) = \sum\sum \sum w_{ijk} \cdot f(i, j, k)$ $f(i, i, k): \text{ Original image} \quad f_{i}(x, y, z) : \text{ New image}$

enter

f(i, j, k): Original image, $f_{new}(x, y, z)$: New image

Normal Calculation

 – (Multi-Linear Centroid Averaging) MLCA

Unshaded Images of Each Node and A Final Image - Skin

• Perfomance : 4.01fps

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

Unshaded Images of Each Node and A Final Image - Bones

• Performance 4.01fps

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

Shaded Images of Visible Human Male Data Set

Visualization of bones and skin Data size 512^3

Shaded Images of Visible Human Male Data Set

Visualization of muscles and bones Data size : 512^3

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

Shaded Images of Visible Human Female Data Set

Visualization of skin Data size 512³

Performance

Mini-Halos Simulation

- Jim Blinn's 1982 SIGGRAPH paper on light scattering
- Nelson Max, "Optical Models", IEEE Transactions on Visualization and Computer Graphics, Vol. 1, No. 2, 1995.
- The mathematical framework for light transport in volume rendering based on S. Chandrasekhar "Radiative Transfer", Oxford Universtiy Press, 1950

Transport of Light

- Determination of Intensity
- Local Diffuse and Specular
- Global Radiosity, Ray Tracing
- Mechanisms in Ultimate Model
 - Emittance
 - Absorption
 - Scattering (single vs. multiple)

Blinn gaseous model- 1982

- <u>Assumptions</u>:
 - N surface normal
 - E eye vector
 - L light vector
 - T surface thickness
 - e angle btw. E and N
 - *a* angle btw. *E* and *L* aka phase angle
 - i angle btw. N and L

Blinn model (contd.)

- Assumptions (contd.):
 - particles are little spheres with radius *p*
 - *n* number density (number of particles per unit volume)
 - μ cosine of angle e, (*N*.*E*)
 - D proportional volume of the object occupied by particles

$$D = n\frac{4}{3}\pi p^3$$

- Cylinders must be empty

- Expected particles in a volume will be nV
- Probability that there are no particles in the way can be modeled as a Poisson process:

 $P(0,V) = e^{-nV}$

La computational

 Hence the probability that the light is making it through those tubes is:

$$P(0,V) = e^{-n^{\pi p^2 T'} / \mu_0} e^{-n^{\pi p^2 T'} / \mu}$$

- Transparency through the medium: $Tr = e^{-\frac{\tau}{\mu}}$
- τ is called the optical depth: $\tau = n\pi p^2 T$

Max model - 1995

- Several cases:
 - Completely opaque or transparent voxels
 - Variable opacity correction
 - Self-emitting glow
 - Self-emitting glow with opacity along viewing ray
 - Single scattering of external illumination
 - Multiple scattering

- *I*(*s*) = intensity at distance *s* along a ray
- $\tau(s)$ = extinction coefficient

$$\frac{dI}{ds} = -\tau(s)I(s)$$
$$I(s) = I(0)\exp\left(-\int_{0}^{s}\tau(t)dt\right)$$
$$= I_{0}T(s)$$

• T(s) = transparency between 0 and s

• On the opacity α :

$$\alpha = 1 - T(s) = 1 - \exp\left(-\int_{0}^{D} \tau(t)dt\right)$$
$$= 1 - \exp(-\tau D)$$
$$= \tau D - (\tau D)^{2} / 2 + \dots$$

- assuming τ to be constant in the interval

• The continuous form:

$$I(D) = I_0 \exp\left(-\int_0^D \tau(t)dt\right) + \int_0^D g(s) \exp\left(-\int_s^D \tau(t)dt\right) ds$$

• In general, cannot compute analytically

• Practical Computation Method:

$$I(D) = I_0 \exp\left(-\int_0^D \tau(t)dt\right) + \int_0^D g(s) \exp\left(-\int_s^D \tau(t)dt\right) ds$$

$$t_i = \exp(-\tau(i\Delta x)\Delta x) \approx 1 - \tau(i\Delta x)\Delta x$$

$$I(D) = I_0 \prod_{i=1}^n t_i + \sum_{i=1}^n \left(\prod_{j=i+1}^n t_j \right) g_i$$

= $g_n + t_n \left(g_{n-1} + t_{n-1} \left(g_{n-2} + \dots \left(g_1 + t_1 I_0 \right) \dots \right) \right)$

which leads to the familiar BTF or FTB compositing

g(s)

- g(s) could be:
 - Self-emitting particle glow
 - Reflected color, obtained via illumination

• The color is usually the sum of emitted color *E* and reflected color *R*

- Identical glowing spherical particles:
- projected area $a = \pi r^2$
- surface glow color = C
- number per unit volume = N $\frac{\text{occluded area}}{\text{total area}} = \frac{aNAdl}{A}$
- extinction coefficient $\tau = aN$
- added glow intensity per unit length
 g = CaN = Cτ

 \bigcirc

 \square

 \bigcirc

 \bigcirc

 \cap

Ο

• Special Case *g*=*C*τ: (and *C* constant)

$$\int_{0}^{D} g(s) \exp\left(-\int_{s}^{D} \tau(t)dt\right) ds = \int_{0}^{D} C\tau(s) \exp\left(-\int_{s}^{D} \tau(t)dt\right) ds$$
$$= C\left(1 - \exp\left(-\int_{0}^{D} \tau(t)dt\right)\right)$$

 $I(D) = I_0 T(D) + C(1 - T(D))$

This is compositing color C on top of background I₀

Max - self-emitting glow

• For $I_0=0$ and τ : varying according to f:

$$g(x) = r(x, \omega, \omega')i(x)$$

• *i*(*x*) = illumination reaching point *x*

$$- \bigcirc \\ \checkmark \dot{\omega'} \\ \omega'$$

- ω = unit reflection direction vector
- ω' = unit illumination direction vector
- $r(x,\omega,\omega')$: BRDF $|\nabla f(x) \cdot \omega'|$ for conventional surface shading effects

• For particle densities:

$$r(x, \omega, \omega') = w(x)\tau(x)p(\omega, \omega')$$
 O

- w(x) = albedo
 - Blinn: assumes that the primary effect is from interaction of light with one <u>single</u> particle
 - albedo proportion of light reflected from a particle: in the range of 0..1
- $p(\omega, \omega') = \text{phase function}$
- still unrealistic external reflection of outside illumination

ω

Blinn - Phase Function

- "how" we see the particles
- depends on the angle of eye *E* and light vector *L*
- smooth drop off ...

- Many different models possible
- Constant function $\varphi(a)=1$
 - size of particles much less than wavelength of visible light
- Anisotropic $\varphi(a) = 1 + x \cos(a)$
 - more light forward then backward essentially our diffuse shading
- Lambert surfaces $\varphi(a) = \frac{8\pi}{3} (\sin(a) + (\pi a)\cos(a))$
 - spheres reflect according to Lamberts law
 - physically based

- Rayleigh Scattering $\varphi(a) = \frac{3}{4} (1 + \cos^2(a))$ – diffraction effects dominate
- Henyey-Greenstein $\varphi(a) = (1-g^2)/(1+g^2-2g\cos(a))^{3/2}$ – general model with good fit to empirical data
- Empirical Measurments
 - tabulated phase function
- sums of functions
 - weighted sum of functions model different effects in parallel

Further reading

- **3D RGB Image Compression for Interactive Applications,***ACM Transactions on Graphics, Vol.20, No.1, pages 10-38, 2001*
- Compression-Based 3D Texture Mapping for Real-Time Rendering Graphical Models, Vol. 62, No. 6, pp. 391-410
- Compression-based Ray Casting of Very Large Volume Data in Distributed Environments HPC-Asia 2000, pages 720-725, Beijing, China, May 2000
- Parallel Ray Casting of Visible Human on Distributed Memory Architectures Proceedings of Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization May 26-28, 1999 Vienna, Austria. pp. 269-276

Computational Visualization

- 1. Sources, characteristics, representation
- 2. Mesh Processing
- 3. Contouring
- 4. Volume Rendering

- 5. Flow, Vector, Tensor Field Visualization
- 6. Application Case Studies

