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CCV Mannheim Summer School 2002

Computational Visualization
1. Sources, characteristics, representation

2. Mesh Processing

3. Contouring

4. Volume Rendering

5. Flow, Vector, Tensor Field Visualization

6. Application Case Studies
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CCV

Computational Visualization:
Mesh Processing

Lecture 2
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CCV Outline

• Triangle and Tetrahedral Meshing 
• Hexahedral Meshing 
• Filtering (Anistropic Diffusion)
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CCV Meshing  I
• To generate a 

boundary element 
triangular mesh from a 
set of cross-section 
polygonal slice data.

• Subproblems 
– The correspondence 

problem
– The tiling problem
– The branching 

problem
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CCV Sub-problems

• Correspondence

• Tiling

• Branching
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CCV
Incremental Construction

Algorithm Steps
Step 1: Form closed contours from image slices.
Step 2: Create any required augmented contours.
Step 3: Find correspondences between contours.
Step 4: Form the tiling region of each vertex.
Step 5: Construct the tiling.
Step 6: Collect the boundaries of untiled regions.
Step 7: Form triangles to cover untiled regions 

based on their edge Voronoi diagram (EVD).



Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

ComputationalVisualization

Ce
nte

r

CCV Algorithm Steps
• A multi-pass tiling approach followed by the

postprocessing of untiled regions
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CCV
Algorithm Steps on actual data
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CCV Using the Edge Voronoi Diagram as Ridges
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CCV
Boundary Element Triangular Mesh
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CCV Meshing  II
• To generate a  3D finite 

element tetrahedral mesh of 
the simplicial polyhedron 
obtained via the BEM 
construction of cross-section 
polygonal slice data.

• Subproblems 
– The shelling of tetrahedra 

to reduce polyhedron to 
prismatoids

– The tetrahedralization of 
prismatoids
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CCV What is prismatoid?

A prismatoid is a polyhedron having for bases 
two polygons in parallel planes, and for lateral 
faces triangles or trapezoids with one side lying 
in one base, and the opposite vertex or side lying 
in the other base, of the polyhedron.
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CCV The Shelling Step

• Shell tetrahedra from the polyhedron, so 
the remaining part is a prismatoid or can 
be divided into prismatoids.
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CCV Prismatoid Tetrahedra

• To tetrahedralize a non-nested prismatoid 
without Steiner points.

1. For each boundary triangle on both slices, 
calculate its metric.

2. Pick up the boundary triangle with the best 
metric and form one set of tetrahedra.

3. Update the advancing front and go to Step 1.
4. If the remaining part is non-tetrahedralizable, 

postprocess it.
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CCV Metric, Weight Factor, Grouping
• Metric = volume/(edge)3

• Weight factor

• Grouping can 
avoid irregular 
remaining part
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CCV Protection Rule
Lemma 1: Suppose a top boundary triangle ∆u1u2u3 is under 

the constraint that no more than one type 1 triangle is 
between the two type 0 triangles containing the contour 
segments u1u2 and u2 u3. Furthermore, let the bottom 
vertices of the two type 0 triangles be v1 and v2. Our 
grouping operation cannot apply to ∆u1u2u3 to form a set 
of tetrahedra, if and only if all the following conditions are 
satisfied.

1. v1v2 is exactly one contour segment.
2. One of the slice chords u2v1 and u2v2 is reflex and the other is convex.
3. Both u1v2 and u3v1 are not inside the prismatoid.
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CCV

Classification of 
Untetrahedralizable Prismatoids

1. Has two boundary triangles on the top face 
and one line segment on the bottom face.

2. Has one bottom triangle which is treated as three 
boundary triangles.
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CCV Multiple Tetrahedralizable Cases

One-to-many branching

many-to-many branching

Dissimilar region (the right bottom 
portion of the bottom contour)

Dissimilar region (the inner 
portion of the top contour)
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CCV Multiple Tetrahedralizable Cases

Appearing/disappearing vertical 
feature of a solid interior

Appearing/disappearing vertical feature 
(the top inner contour) of a void interior

A branching, a dissimilar portion (the inner 
portion of the top right contour), and an 

appearing/disappearing vertical feature (the 
inner contour at the left of the top slice)

Nested prismatoids
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CCV Multiple Tetrahedralizable Cases

Solid region between two slices 
of a human tibia

Multiply-nested prismatoid
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CCV Examples 

Hip joint (the upper femur and 
the pelvic joint)

(a) Gouraud shaded

(b) The tetrahedralization

Knee joint (the lower femur, the pper
tibia and fibula and the patella)

(a) Gouraud shaded

(b) The tetrahedralization
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CCV Mini-summary

• The characterization, avoidance of non-
tetrahedralizable polyhedra is one of the 
main challenges

• The mix of numerical precision and 
topological decision making needs 
precise rules so errors don’t propagate.



Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

ComputationalVisualization

Ce
nte

r

CCV Further reading
[1] C. Bajaj, E. Coyle, K. Lin. Arbitrary topology shape reconstruction from 

planar cross sections. Graphical Models and Image Processing, 
58(6):524-543, Nov.1996.

[2] C. Bajaj, T. Dey, Convex Decompositions of Polyhedra and 
Robustness. Siam Journal on Computing, 21, 2, (1992), 339-364.

[3] MEYERS, D., Multiresolution Tiling. Computer Graphics Forum 13, 5 
(December 1994), 325--340.

[4] C. Bajaj, E. Coyle, K. Lin. Tetrahedral meshes from planar cross 
sections. Computer Methods in Applied Mechanics and Engineering, 
Vol. 179 (1999) 31-52
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CCV
Univariate Subdivision

Subdivision Curves

Butterfly curve
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CCV
Subdivision
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CCV
Subdivision
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CCV
Subdivision
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CCV
Bivariate Subdivision

Catmull Clark Subdivision[1]:

(contd.)
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CCV
Bivariariate  Subdivision (contd)

Vertex Rule Edge Rule Face Rule
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CCV
Surface Subdivision

Limit surface is C2

Tensor product cubic B-spline
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CCV
Bivariate Subdivision

• Alternate formulation of Catmull Clark:

• Bilinear subdivision plus smoothing
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CCV
Univariate Subdivision

The subdivision rule for cubic B-splines can be 
expressed as linear subdivision followed by 
smoothing with the mask (               ).

Geometric interpretation of mask: reposition 
a vertex as the midpoint of the midpoints of 
the two segments that contain the vertex. 

1 1 1      
4 2 4



Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

ComputationalVisualization

Ce
nte

r

CCV
Bivariate Subdivision

Bi-cubic subdivision is equivalent to Bi-
linear subdivision followed by smoothing 
with the tensor product of the univariate
mask with itself, i.e.

1 8 8 1 6 

1 1 1
1 6 8 1 6

1 1 1 .
8 4 8
1 1 1
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CCV
Trivariate Subdivision

Centroid smoothing: Given a vertex v, compute 
the centroids of the topological d-cubes that 
contain v. Reposition v at the centroid of 
these centroids.
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CCV
Multivariate Subdivision

Generalization to MLCS:
Multi linear Interpolation Centroid smoothing



Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

ComputationalVisualization

Ce
nte

r

CCV
Subdivision

MLCS Subdivision of a cube:
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CCV
Subdivision

Hexahedron:
• The hexahedron is a polyhedron with 6 planar faces.
• A hexahedral mesh consists of only the hexahedra
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CCV
Subdivision

Hexahedral mesh with MLCS:
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CCV
Subdivision

MLCS with Creases:
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CCV

Bring on the coffee!  Or  
Mineral Wasser !!
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CCV

Filtering Meshes and Function Fields on Meshes

Function on surface mesh Surface Mesh
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CCV Filtering  Problem

Given a discretized noisy triangular surface mesh                    
(geometric information) and a discretized noisy function-
vector                    . 

Our goals are :

• Smooth out the noise and to obtain smooth geometry as 
well as surface function data at different scales. 

• Construct continuous (non-discretized) representations for 
the smoothed geometry and surface function data. 

• Provide approaches for visualizing the smoothness of both 
the geometric and physical information during the smoothing 
process. 

Gd ú IR3

Fd ú IRkà3
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CCV De-Noising/Fairing Surfaces

Triangle
Surface 
Mesh



Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

ComputationalVisualization

Ce
nte

r

CCV Fairing Functions on Surface: Texture Map



Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

ComputationalVisualization

Ce
nte

r

CCV Related work  in Image Processing

• Gabor ,1965,  PDE based image processing,  Jian, 1977, 
Took off thanks to  Koenderink, 1984  Witkin 1983. 

• Perona and Malik,  1990,   anisotropic diffusion, smoothing 
and enhancing sharp features.

• Osher and Sethian, 1988,   curvature based velocities. 

• Mumford and Shah, 1989,  PDE based segmentation.  

• Terzopoulos et al, 1988,  PDE based on active contours for image 
segmentation.
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CCV
Previous Work for Mesh Fairing

1.  Optimization

a.  Minimize thin plate  energy (Kobbelt 1996, Desbrun, Meyer, 
Schroder, 1999).

b.  Minimize membrane energy(Kobbelt, 1998 , Desbrun, Meyer, 
Schroder, 1999).

Ep(f) =
R
f2uu + 2f2uv + f2vv

c.  Minimize curvature (Welch, Witkin, 1992).

Em(f) =
R
f2u + f2v

d.  Spring energy( 2000).

Ec(S) =
R
ô2
1 + ô2

2
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CCV

2. Signal Processing(Guskov, Sweldens, Schroder,1999; 
Taubin, 1995) using surface relaxation as low pass 
filter

Rpi =
P

j∈V2(i)

wi,jpj

where wi,j are chosen to minimize something, 
e.g. the dihedral angles.
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CCV Loop Subdivision Surfaces

…
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CCV Loop’s Subdivision Surface Scheme

,,...,1,
8

33 1101 nixxxxx
k
i

k
i

k
i

k
k
i =

+++
= +−+

Edge rule:

Refinement of a triangular mesh around a vertex

Vertex rule: 

)....()1( 210
1

0
k
n

kkkk xxxaxnax ++++−=+



Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

ComputationalVisualization

Ce
nte

r

CCV

Filtering by Loop Subdivision Limit Surfaces

Limit Surfaces
Triangulation Meshes
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CCV

Isocontours from volumetric data
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CCV Geometry Driven Diffusion

Linear heat conduction equation.

0=∆−∂ ρρt

For equalizing spatial variation in concentration

Evolution (time dependent)

∆ = div á, ∇
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CCV

For the surface M, the counterpart of the Laplacian ∆ 
is the Laplace Beltrami operator ∆M. Hence, one
obtains the geometric diffusion equation

∆M = divM ∇.0=∆−∂ xx Mt ,

for surface point x(t) on the surface M(t)
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CCV Model of Geometric Diffusion

Partial Differential Equation

∂ t =− 0))((div)( )()( ∇ txtx tMtM

MM =)0(

where  M(t)  is the solution surface at time t, x(t) is 
surface point.

Divergence divM(t) v for a vector field is defined 
as the dual operator of the gradient:

v ∈ V

R
M divMvþdx := à R

M vT∇þdx, ∀þ ∈ C∞(M)
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CCV
More Related Work

• Desbrun et al (1999), use an implicit discretization of geometric  
diffusion  to  obtain  strongly  stable numerical smoothing scheme.

• Clarenz et.  al (2000) introduce the anisotropic geometric
diffusion to enhance features while smoothing

Above based on a discretized surface model.
Hence, the first and the second order derivative information,
such as normals, tangents and curvatures are estimated using
some local averaging or fitting scheme.
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CCV

Variational form

))((

,0)),(()),(( )()()()(

tMC

txtx tTMtMtMtMt

∞∈∀

=∇∇+∂

θ

θθ

where

(f, g)M =
R
M fgdx, (þ,ψ)TM =

R
M þTψdx

• How to represent M(t) ?

• How to choose θ ?
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CCV Spatial Discretization

∀ò ∈ VM(t)
∂tx(t), ò( )M(t) + ∇M(t)x(t),∇M(t)ò TM(t)

= 0,( )

Let

Then we have a set of ordinary differential equations

x(t) =
X
i=1

m

ci(t)þi(x), ò = þj(x)

P
i=1

m

c0i(t)(þi(x), þj(x))M(t) +
P
i=1

m

ci(t)(∇M(t)þi(x),∇M(t)þj(x))TM(t) = 0

j = 1, , má á á
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CCV

Where φi are the Loop limit surface basis functions (box splines)
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CCV

Loop Subdivision Limit Surfaces
(Box splines) 
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x(t)=
X
i=1

m

ci(t)þi(x), ò=þj(x)

(u,v,w)→(v,w,u): N1, N2, N3, N4 → N10, N6, N11, N7

(u, v, w)→ (w, u, v) : N1, N2, N3, N4 → N9, N12, N5, N8
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CCV

Let be approximation of            , where    is the timestep. Then
The semi-implicit discretization  is

Xn x(nü) ü

ü
Xn+1àXn

, þi

ð ñ
M(nü)

+

Time Discretization 

á á á(∇M(nü)Xn+1,∇M(nü)þi)
TM

= 0 = 1, i , ,m
(nü)

Since

x(t) =
P
i=1

m

ci(t)þi(x)
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CCV

Then we have a linear system.

(Mn + üLn)C((n + 1)ü) = MnC(nü)

where C(t) = [c1(t), á á á, cm(t)]

Mn = (þi, þj)M(nü)
m

i,j=1
( )

and

Ln = (∇M(nü)þi,∇M(nü)þj)TM(nü)
m

i,j=1( )
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CCV Solving the linear system

• and      are sparse.Mn Ln

• is symmetric and positive definite.Mn

• is symmetric and nonnegative definite.Ln

• is symmetric and positive definite.Mn + üLn

The system is solved by the conjugate gradient method.
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CCV Numerical Integration 

Integration rules over
triangle.
are barycentric 
coordinates of the 
nodes,     are the weights.
The last row represents
the algebraic precision.

(1àviàwi,vi,wi)

Wi
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CCV Anti-Shrinking

Denote the x,y and z components of the surface point x(t) as
x1(t), x2(t) and x3(t), respectively. Then, we have

(∂txi(t), xi(t))M(t) = à (∇M(t)xi(t),∇M(t)xi(t))TM(t)

and

∂t

∂(x(t),x(t))M(t) = 2(∂tx(t), x(t))M(t) =à 4Area(M(t))

Since                          , the surface point x(t) shrinks towards the 
origin at the average speed of . 

Area(M(t)) > 0
4Area(M(t))

∂t

∂(Area(M(t))
= à R

M(t)H
2dx
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CCV

To avoid such a shrinking, the surface point is magnified by a factor         

ë =
(x(t),x(t))M(t)

(x(0),x(0))M(0)

r
õ 1

4
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CCV

Shrink Bunny
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CCV Diffusion Tensor 

∂tx(t)à div(a(x)∇M(t)x(t)) = 0

a(x) is a symmetric, positive define linear mapping on the
Tangent space

a(x) : TM → TM

The problem is how to choose the diffusion tensor?
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CCV Anti – Crease by Diffusion Tensor

Initial
Mesh

a=(area)
of triangle.
After 2228
iterations.

0.45

After
11,114
iterations

Limit
surface
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CCV Change Shape by Diffusion Tensor

a(x) = x2
1 + x2

2, where x = (x1, x2, x3)
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CCV Enhance  Sharp Features 

Let                    be the principle directions of         at print       . 

Then any vector z in the tangent plane could be expressed as

v(1)(x), v(2)(x), M(t) x(t)

N(x) Be the normal at that point.

z = ëv(1)(x) + ìv(2)(x) + îN(x)

Then define a, such that

az = g(k1)ëv
(1)(x) + g(k2)ìv

(2)(x)+ îN(x)

where

g(s) =
2(1+

õ2
s2
)
à1

1 ,
ú s ô õ

s > õ,

is given constant.õ > 0
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CCV
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CCV



Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin

ComputationalVisualization

Ce
nte

r

CCV

Initial functions After three iterations After five iterations

Mean curvature plot: non-smooth functions at x=0, y=0, z=0
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CCV Smoothness visualization 

Iso – Contour plot

Initial data After 4 fairing iterations
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CCV

Riemannian Curvature Plot

After 1 iterationInitial data After 4 iterations
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CCV Mean Curvature Plot

After 1 iteration After 4 iterationsInitial data
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CCV Functions on Surface: Texture Map

Initial dada After 1 iteration After 4 iterations
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CCV Remaining Problems

1.  Error analysis

2.  Play with the tensor.

3.  Bad triangulations.
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CCV Further reading
[1] Bajaj, C. and Pascucci, V. 2000. Time critical adaptive refinement and smoothing. In 

proceeding of the ACM/IEEE Volume Visualization and Graphics Symposium 2000, 
Salt Lake City, Utah, 33-42.

[2] C. Bajaj, T. Dey, Convex Decompositions of Polyhedra and Robustness. Siam Journal 
on Computing, 21, 2, (1992), 339-364.

[3] C. Bajaj, E. Coyle, K-N. Lin, Tetrahedral Meshes from Planar Cross Sections, 
Computer Methods in Applied Mechanics and Engineering, Vol. 179, 1999, 31-52.

[4] C. Bajaj, E. Coyle, K-N. Lin, Arbitrary Topology Shape Reconstruction from Planar 
Cross Sections, Graphical Modeling and Image Processing, Vol. 58, No. 6, 1996, 524-
543.

[5] C. Bajaj, G. Xu, Smooth Shell Construction with Mixed Prism Fat Surfaces, Geometric 
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1. Sources, characteristics, representation

2. Mesh Processing

3. Contouring

4. Volume Rendering

5. Flow, Vector, Tensor Field Visualization

6. Application Case Studies
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