

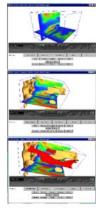
Computational Visualization

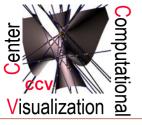
1. Sources, characteristics, representation

- 2. Mesh Processing
- 3. Contouring

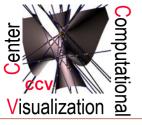
4. Volume Rendering

- 5. Flow, Vector, Tensor Field Visualization
- 6. Application Case Studies, right: Chandrajit Bajaj, CCV, University of Texas at Austin



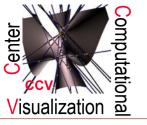


Computational Visualization: sources, characteristics and representation Lecture 1

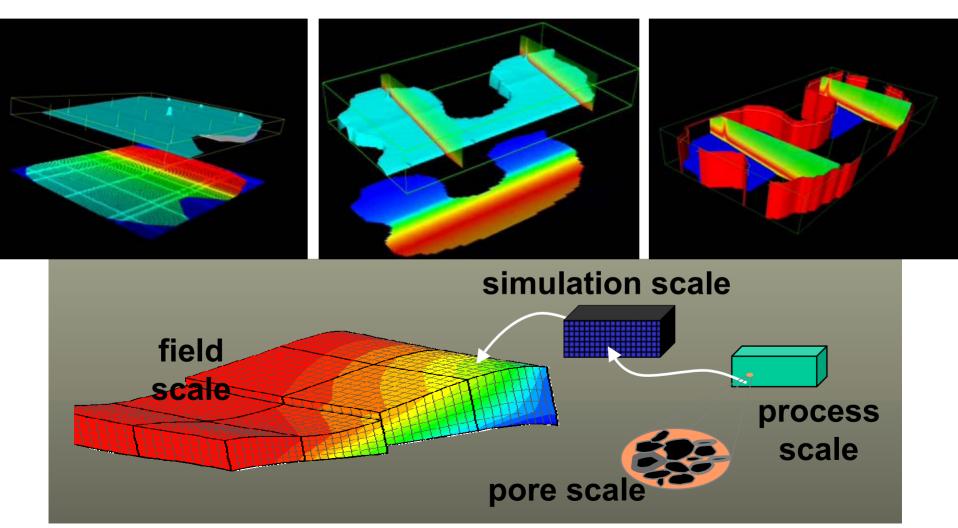


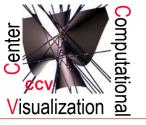
Outline

- Data Sources: Meshless and Meshed
- Mesh and Field Data Characteristics
- Mesh Representations
- Mesh Finite Elements

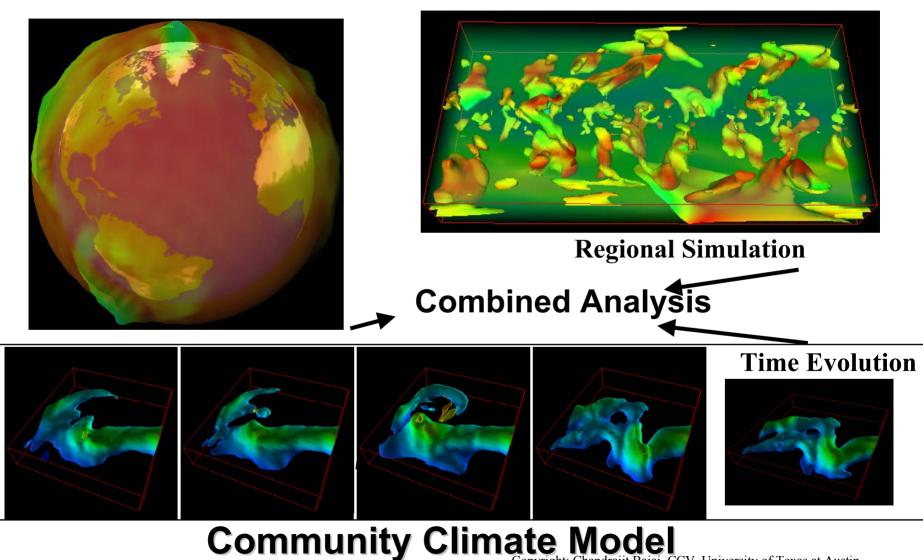


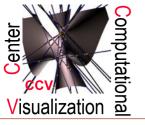
Oil Reservoir Modeling



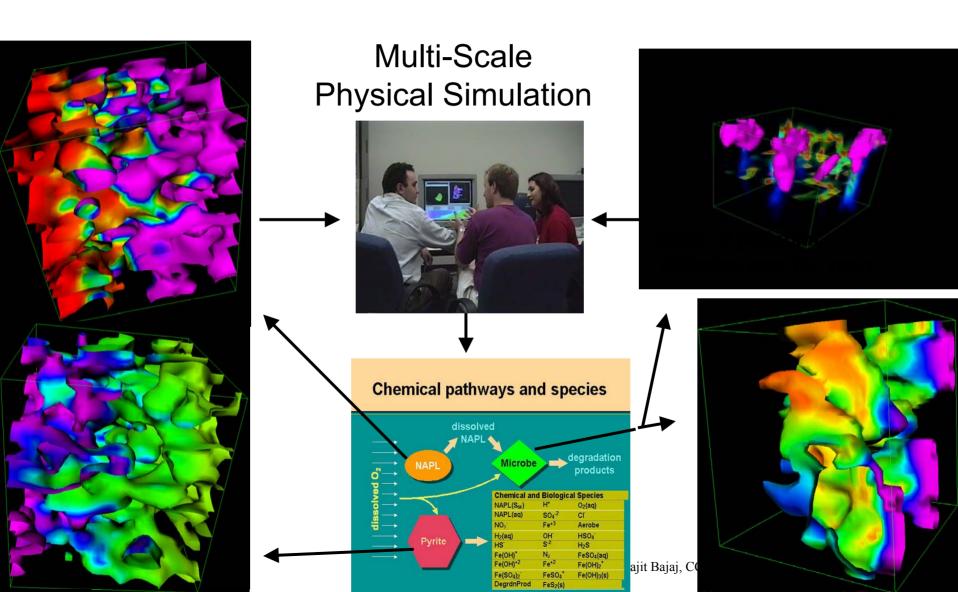


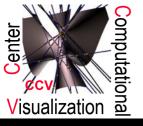
Global Climate Modeling



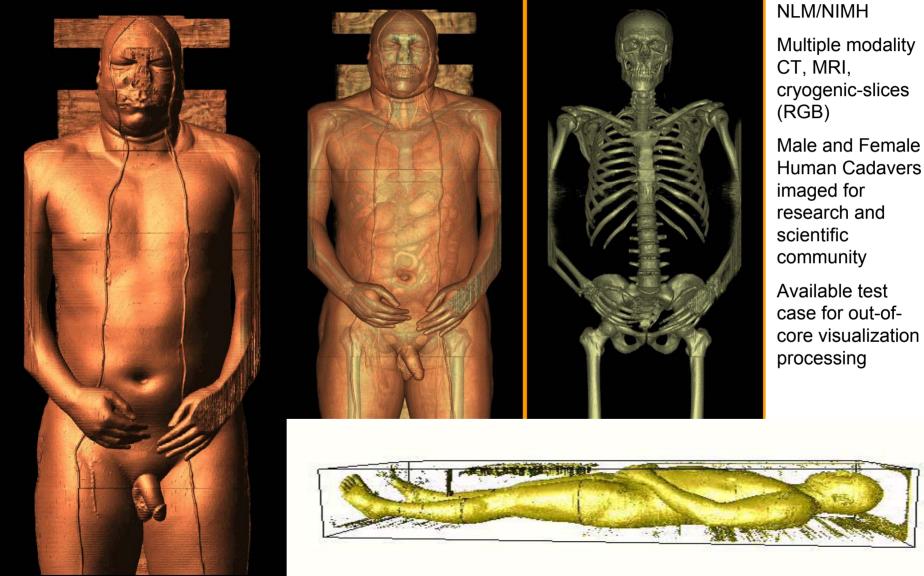


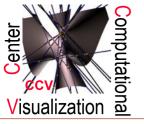
Bio-Remediation





The Visible Human Project





Molecular Modeling and Interactions

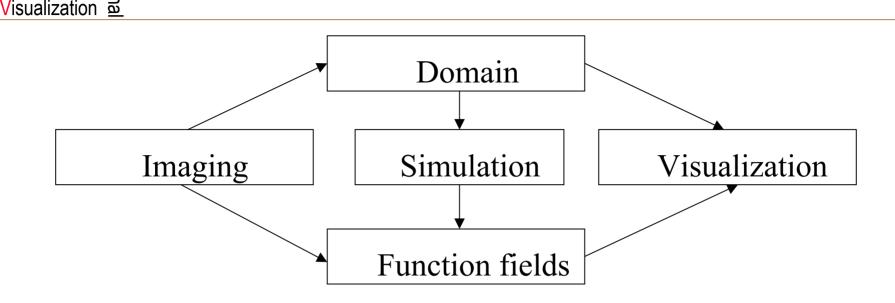
CPK Model

Molecular

Interaction

Copyright. Cha

Computational Visualization

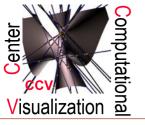


Computationa

enter

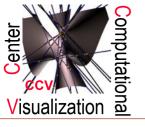
•To identify and display *information* for model calibration or scientific discovery

•Support *interrogation* with quantitative queries (metric, combinatorial, topological)



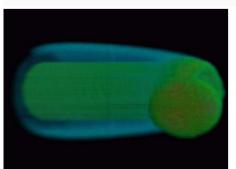
Imaging Scanners

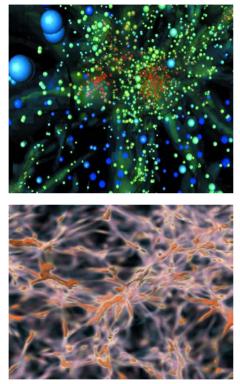
- Scanners can yield both domains and functions on domains
 - Scanners yielding domains
 - Point Cloud Scanners: 300μ - 800μ
 - CT, MRI: 10μ-200μ
 - Light microscopy: 5µ-10µ
 - Electron microscopy: < 1μ
 - Ultra microscopy like Cyro EM 50Å-100Å
 - Scanners yielding functions
 - Doppler velocimetry

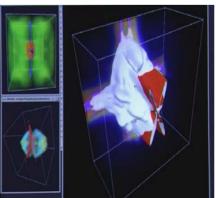


Data characteristics

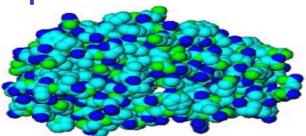
- Static
- Scalar
- Meshed
- Dense

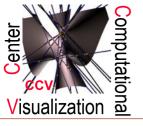






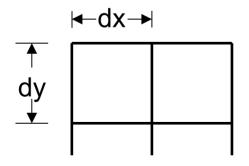
- Time varying data
- Vector, Tensor
- Meshless
- Sparse



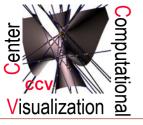


Mesh Types

- Mesh taxonomy
 - Regular static meshes:
 - There is an indexing scheme, say i,j,k, with the actual positions being determined as i*dx, j*dy, k*dz.
 - If dx=dy=dz, then,
 - In 2-D, we get a pixel, and in 3-D, a voxel.



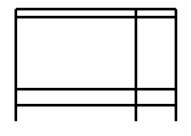
A 2-D regular rectilinear cartesian grid



Mesh Types (contd)

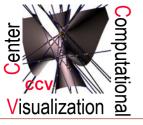
– Irregular static meshes:

- Rectilinear:
 - Individual cells are not identical but are rectangular, and connectivity is related to a rectangular grid



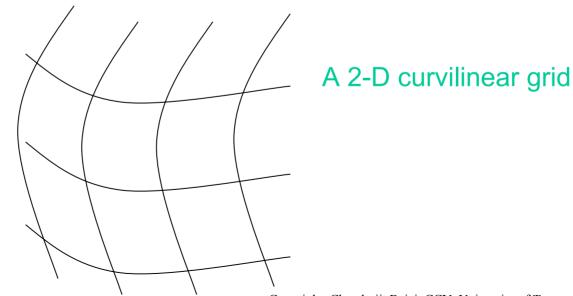
dx, dy are not constant in grid,but connectivity is similar in topologyto regular grids.

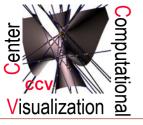
A 2-D regular rectilinear grid



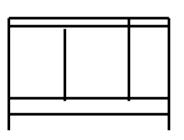
• Curvilinear:

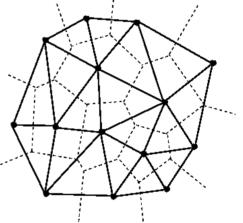
 Sometimes called structured grids as the cells are irregular cubes – a regular grid subjected to a nonlinear transformation so as to fill a volume or surround an object.





- Unstructured:
 - Cells are of any shape (tetrahedral) hexahedra, etc with no implicit connectivity – e.g. Finite element analysis

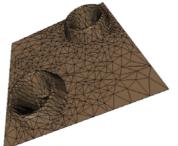


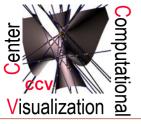


• Hybrid:

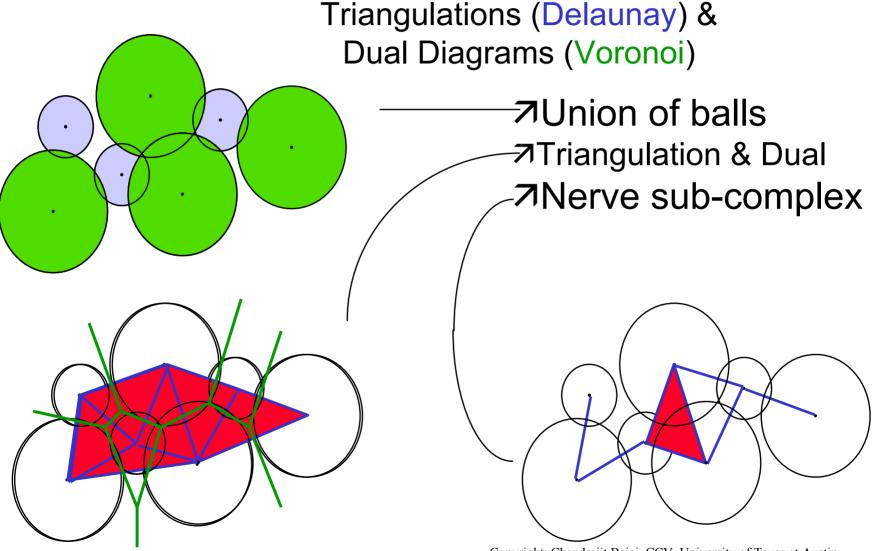
- Combination of curvilinear and unstructured grids.

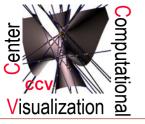
- Dynamic (Time-varying) meshes





Meshless Data \rightarrow Meshed Data

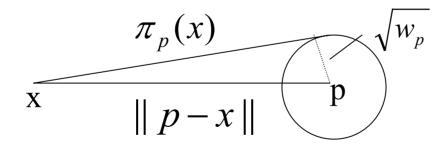




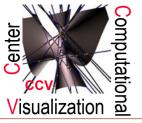
Particle Data to Meshes

$$\bigwedge \sqrt{w_p}$$

Weighted point P = (p, w_p) where $p \in \Re^d$, $w_p \in \Re$

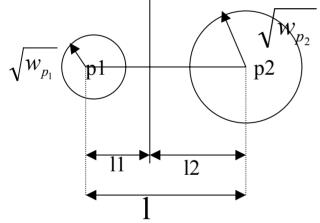


Power distance from $x \in \Re^d$ to $p \quad \pi_p(x) = ||p - x||^2 - w_p$ with $||p - x||^2$ is the Euclidean distance



Power Diagram (PD) of a weighted point set

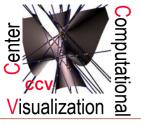
Tiling of space into convex regions where i^{th} region (tile) are the set of points in \Re^d nearest to p_i in the power distance metric.



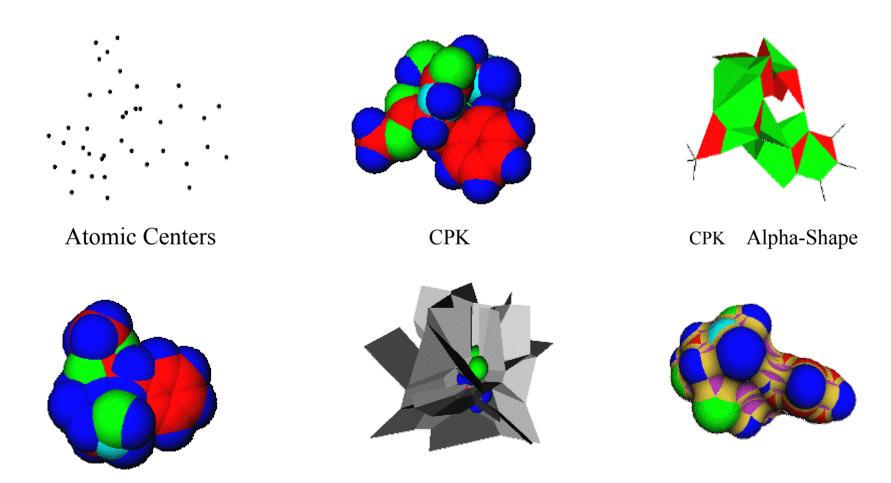
$$\pi_{p_1} = {l_1}^2 - w_{p_1} = {l_2}^2 - w_{p_2} = \pi_{p_2}$$

Bisector Plane which matches power distance.

Regular Triangulation (RT) Dual of Power Diagram (PD) with an edge of RT for each Bisector Plane of PD



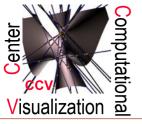
Particle Data to Meshes



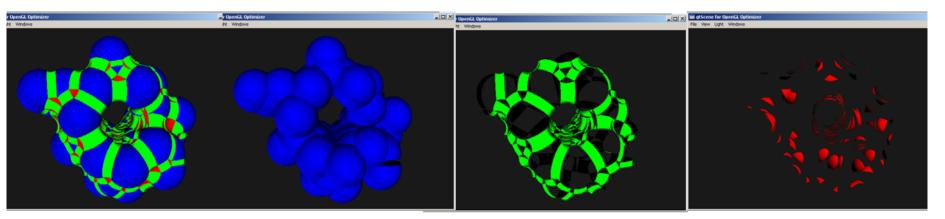
Solvent Accessible Surface (SAS)

Power Diagram of SAS

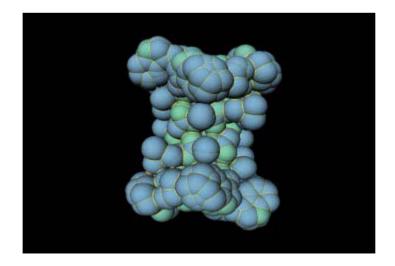
Solvent Excluded Surface (SES)

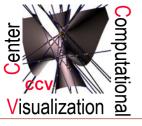


Molecular Surfaces (Solvent Excluded Surface)



SES = spherical patches + toroidal patches + concave patches





Field Data

Scalar

temperature, pressure, density, energy, change, resistance, capacitance, refractive index, wavelength, frequency & fluid content.

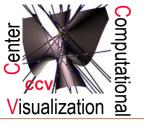
Vector

velocity, acceleration, angular velocity, force, momentum, magnetic field, electric field, gravitational field, current, surface normal

Tensor

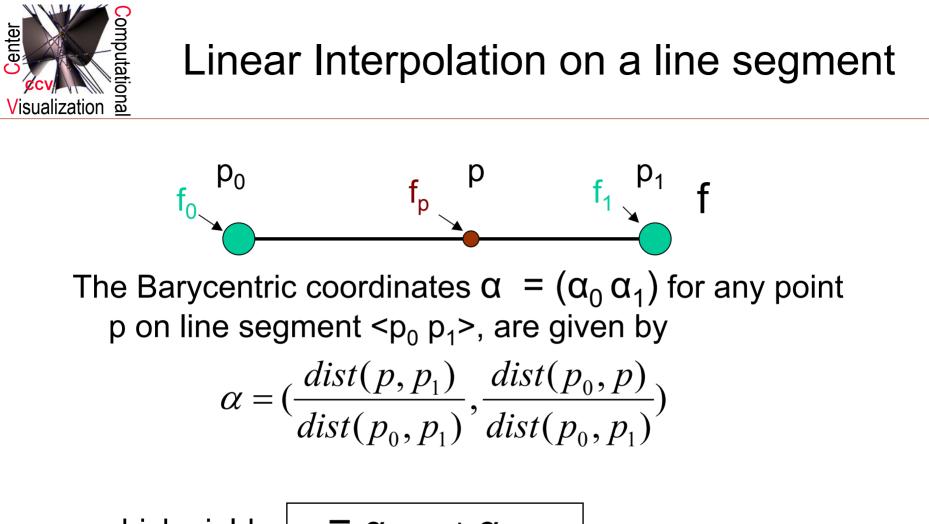
stress, strain, conductivity, moment of inertia and electromagnetic field

Multivariate Time Series



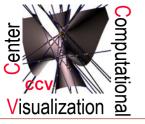
- Finite elements commonly used
 - Linear finite elements
 - Non-linear finite elements
- Interpolants/Approximants

used to approximate the data on the domain (Lagrange, Hermite, ...)

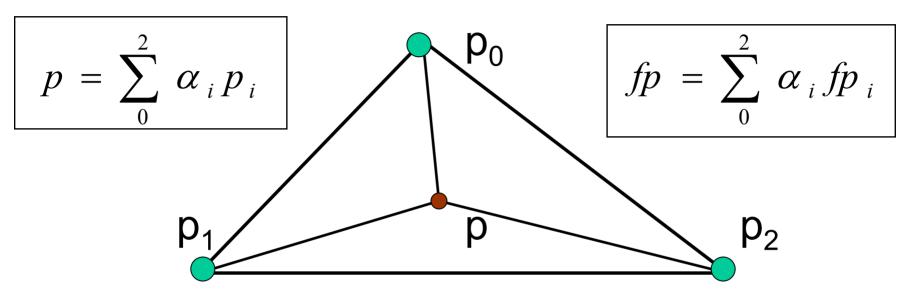


which yields
$$p = \alpha_0 p_0 + \alpha_1 p_1$$

and $f_p = \alpha_0 f_0 + \alpha_1 f_1$

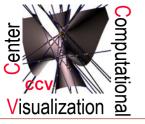


Linear interpolation over a triangle



For a triangle p_0, p_1, p_2 , the Barycentric coordinates $\alpha = (\alpha_0 \alpha_1 \alpha_2)$ for point p,

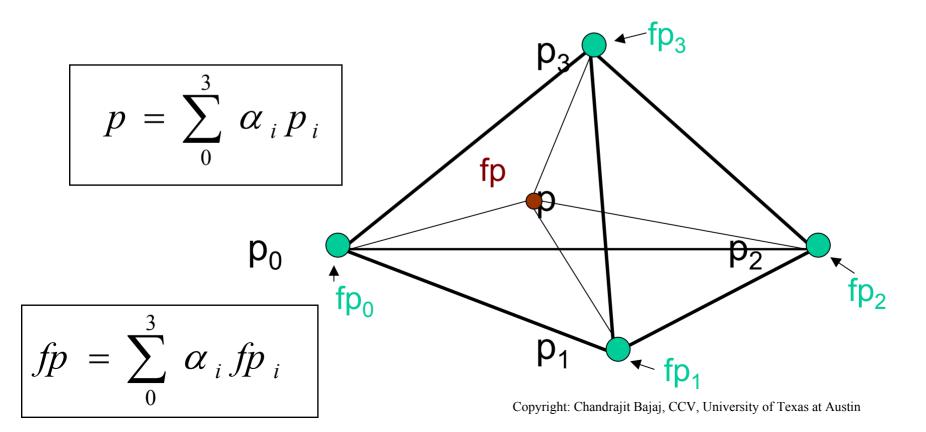
$$\alpha = (\frac{area(p, p_1, p_2)}{area(p_0, p_1, p_2)}, \frac{area(p_0, p, p_2)}{area(p_0, p_1, p_2)}, \frac{area(p_0, p_1, p)}{area(p_0, p_1, p_2)})$$

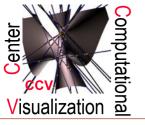


Linear Interpolation within a

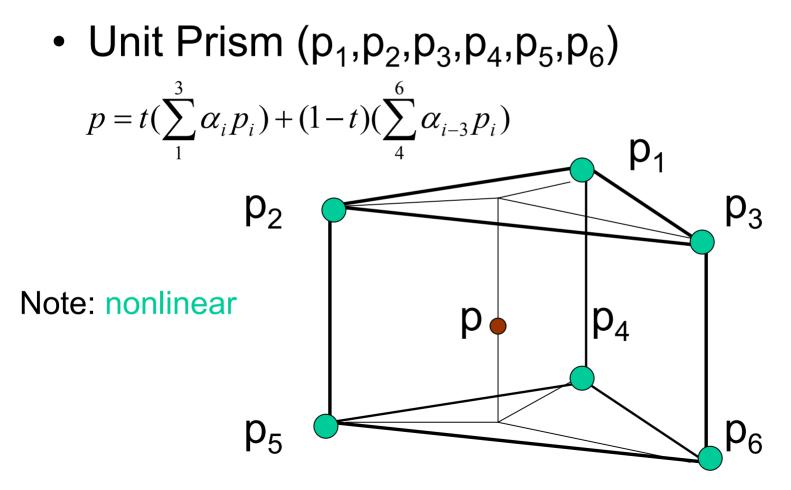
• Tetrahedron (p_0, p_1, p_2, p_3)

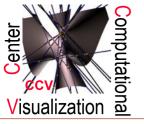
 $\alpha = \alpha_i$ are the barycentric coordinates of p



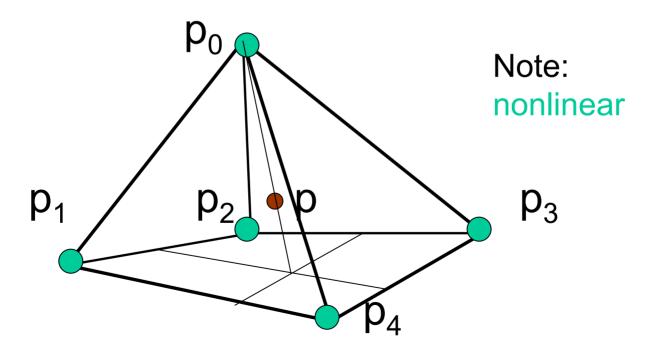


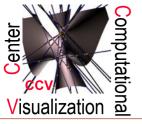
Other 3D Finite Elements (contd)





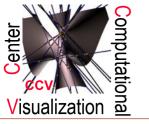
• Unit Pyramid $(p_0, p_1, p_2, p_3, p_4)$ $p = up_0 + (1-u)(t(sp_1 + (1-s)p_2) + (1-t)(sp_3 + (1-s)p_4))$



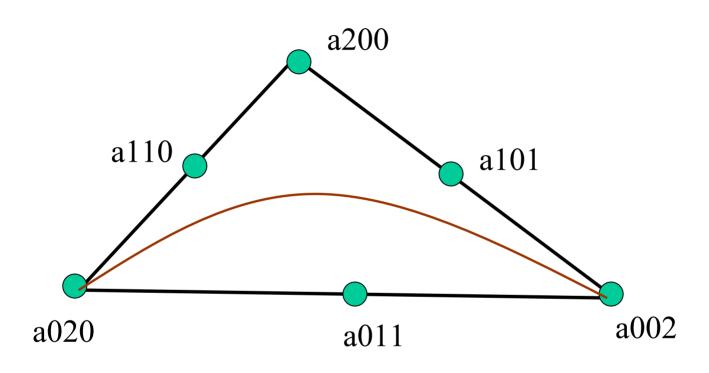


Other 3D Finite Elements

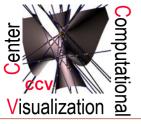
• Unit Cube $(p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8)$ Tensor in all 3 dimensions Trilinear $p = u(t(sp_1 + (1-s)p_2) + (1-t)(sp_3 + (1-s)p_4)) + (1-t)(sp_3 + (1-s)p_4)) + (1-t)(sp_3 + (1-s)p_4) + (1-s)p_4) + (1-s)p_4 + (1$ interpolant $(1-u)(t(sp_5+(1-s)p_6)+(1-t)(sp_7+(1-s)p_8))$ p_3 p_6 **p**₅ p_7 <u>8</u>4



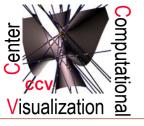
Can we construct Good Non-Linear Curve and Surface Finite Elements ?



The conic curve interpolant is the zero of the bivariate quadratic polynomial interpolant over the triangle

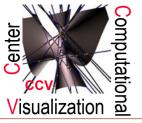


Every good answer needs coffee! Or Mineralwasser !!

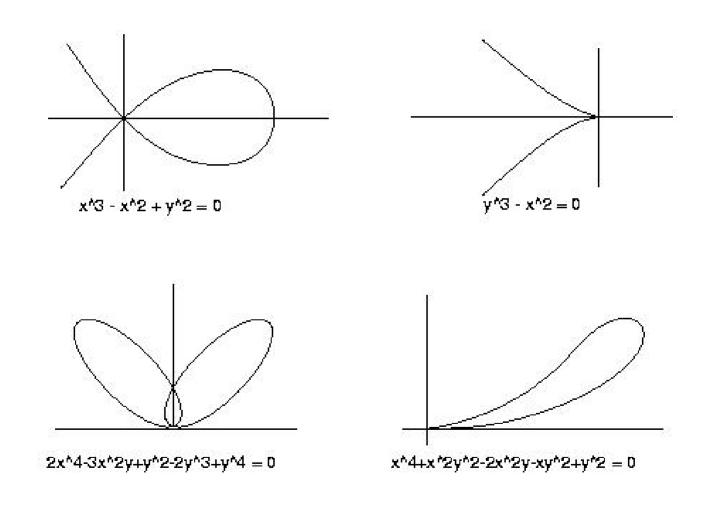


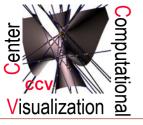
Non-Linear Representations

- Explicit
 - Curve: y = f(x)
 - Surface: z = f(x,y)
 - Volume: w = f(x,y,z)
- Implicit
 - Curve: f(x,y) = 0 in 2D, $\langle f_1(x,y,z) = f_2(x,y,z) = 0 \rangle$ in 3D
 - Surface: f(x,y,z) = 0
 - Interval Volume: $c_1 < f(x,y,z) < c_2$
- Parametric
 - Curve: $x = f_1(t), y = f_2(t)$
 - Surface: $x = f_1(s,t), y = f_2(s,t), z = f_3(s,t)$



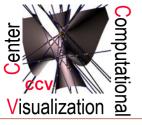
Algebraic Curves



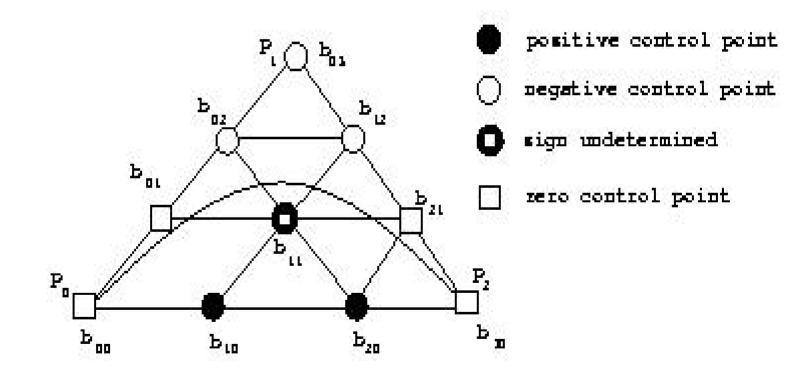


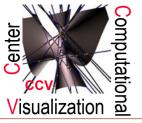
Implict vs Parametric

- Curves
- Surfaces
- Volumes



A-spline segment over BB basis



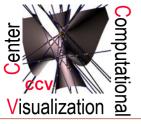


Discriminating Curve Family

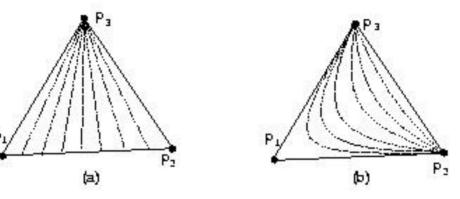
For a given triangle or quadrilateral R, let R_1 and R_2 be two closed boundaries of R and let $D = \{A_s(x,y) = \gamma(x,y) - s \ \delta(x,y) = 0 : s \in [0,1]\}$ be an algebraic curve family with s as a parameter and $\delta(x,y) > 0$ on $R \setminus \{R_1, R_2\}$ such that

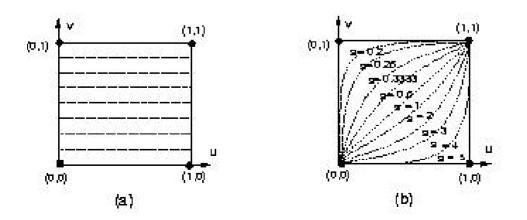
- 1. $R_1 \cap R_2 = \emptyset$.
- 2. Each curve in D passes through R_1 and R_2 .
- 3. Each curve in D is regular in the interior of R.
- 4. For $\forall p \in R \setminus \{ R_1, R_2 \}$, there exists one and only one
 - $s \in [0, 1]$ such that $A_s(p) = 0$.

Then we say D is a discriminating family on R, denoted by $D(R, R_1, R_2)$.

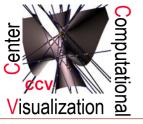


Examples of Discriminating Curve Families

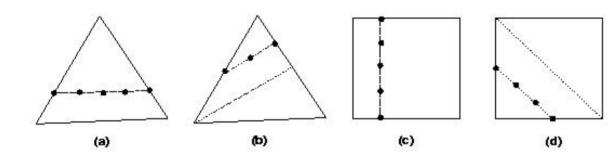




Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin



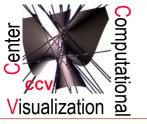
A-spline Segment

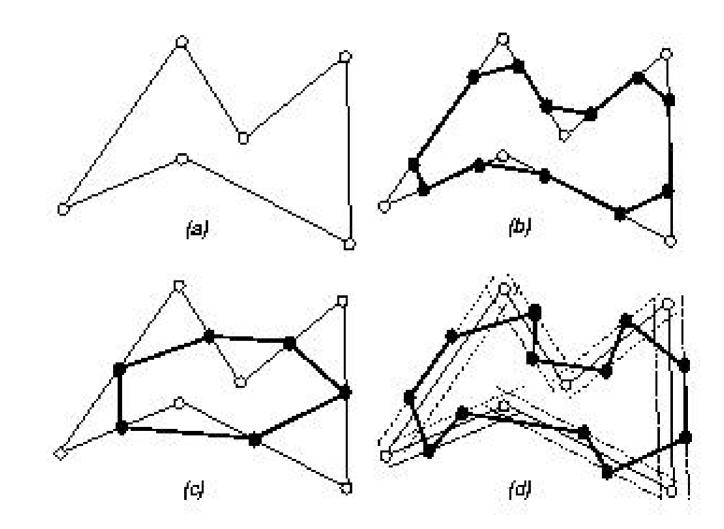


For a given discriminating family D(R, R₁, R₂), let f(x, y) be a bivariate polynomial . If the curve f(x, y) = 0 intersects with each curve in D(R, R₁, R₂) only once in the interior of R, we say the curve f = 0 is regular(or A-spline segment) with respect to D(R, R₁, R₂). If $B_0(s)$, $B_1(s)$, ... have one sign change, then the curve is

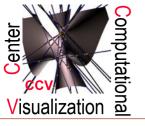
- (a) D_1 regular curve.
- (b) D_2 regular curve.
- (c) D_3 regular curve.
- (d) D_4 regular curve.

Constructing Scaffolds

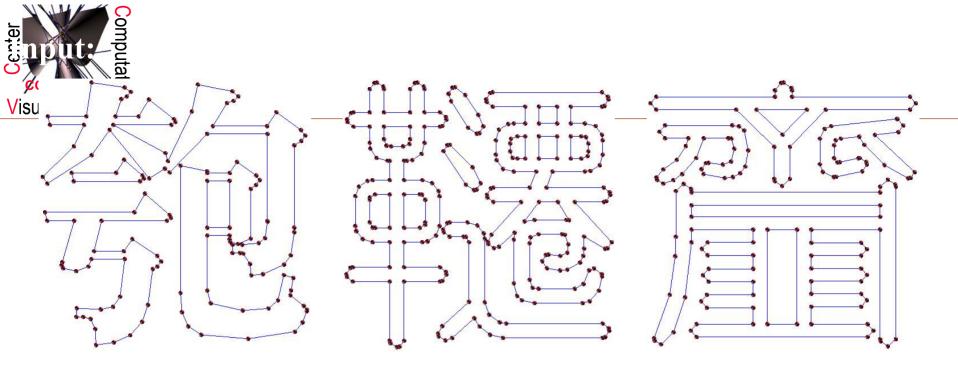


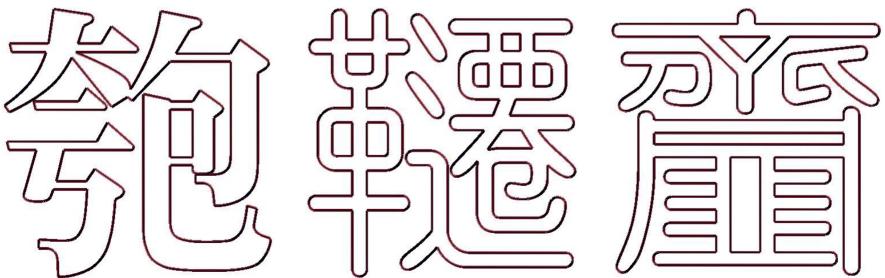


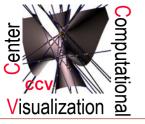
Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin



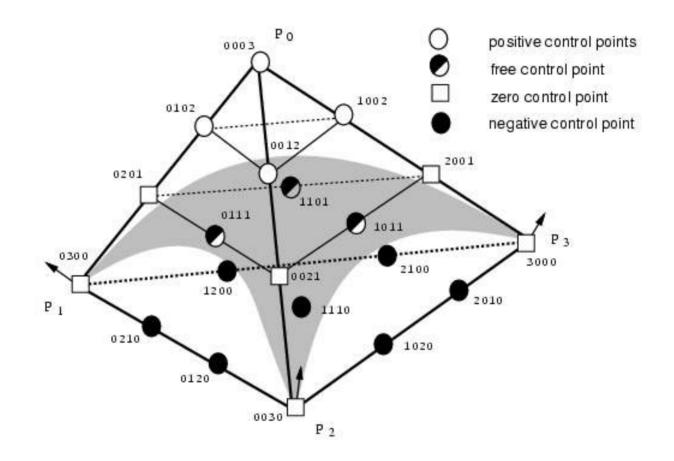
C^1 A-spline Reconstructions



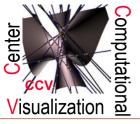




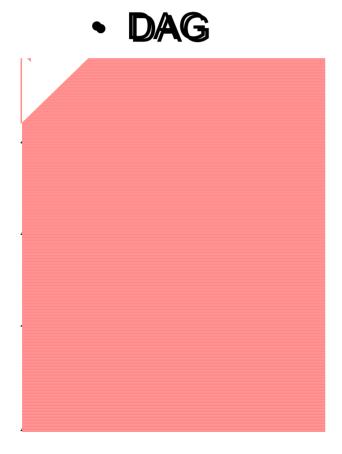
A-patch Surface (C^1) Interpolant

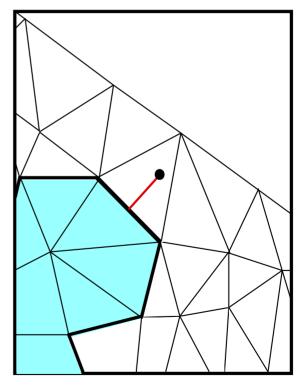


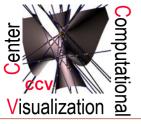
An implicit single-sheeted interpolant over a tetrahedron



Incremental Scaffolding and Function Construction

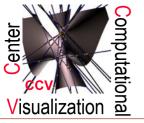






Incremental refinement

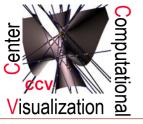
Bivariate Case



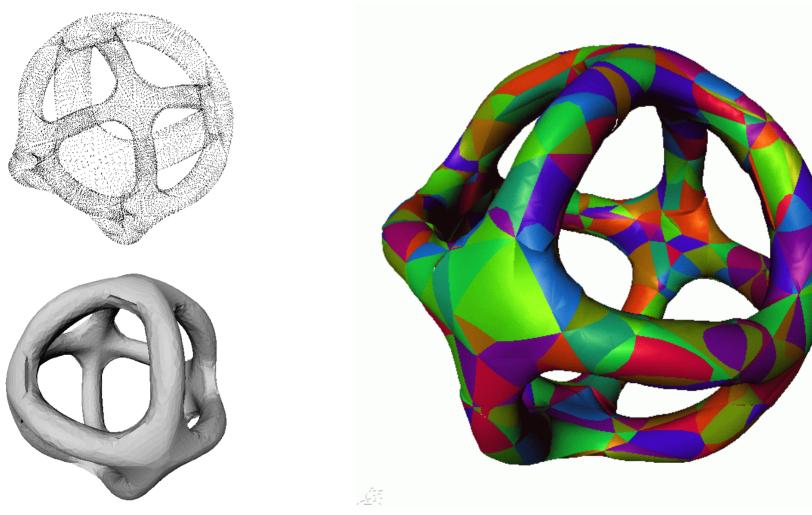
A-patch surface models

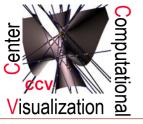
~9200 points, 406 patches (degree 3), 1% error





High Genus Example

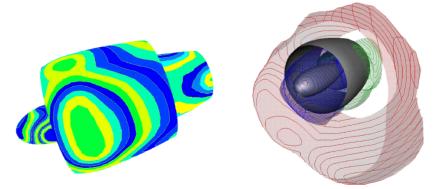


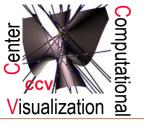


Results

~10⁴ points,
460 patches
(degree 3),
1% error

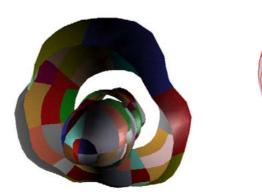


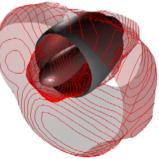


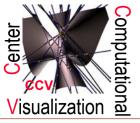


Results

~10⁴ points,
180 patches
(degree 3),
1% error



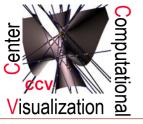




Tensor-product patches Manifold and Function Data

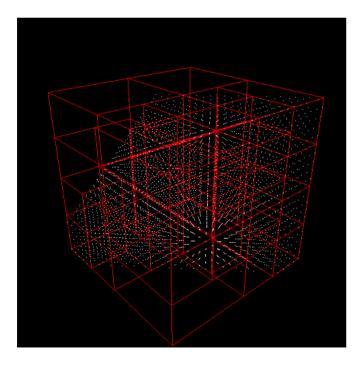


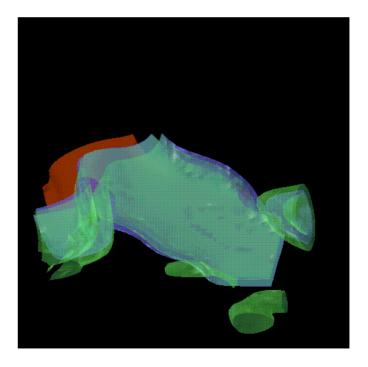
Implicit patches



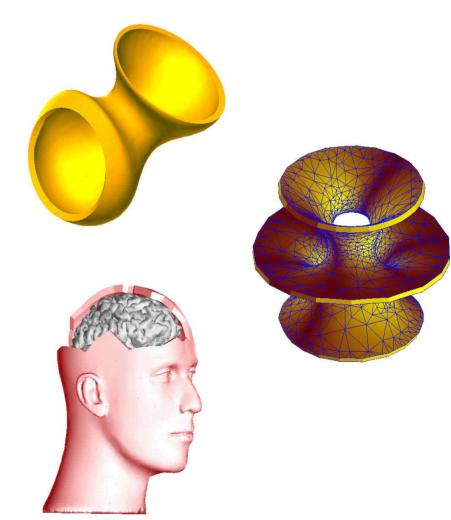
Tensor-product A-patches Volumetric Data

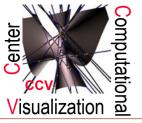
~10⁴ points, 220 patches (degree 3), 1% error





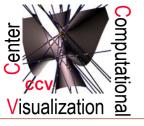
- Airfoils
- Tin cans
- Shell canisters
- Sea shells
- Earth's outer crust
- Human skin
- Skeletal
- Structures



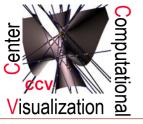


Hermite interpolation

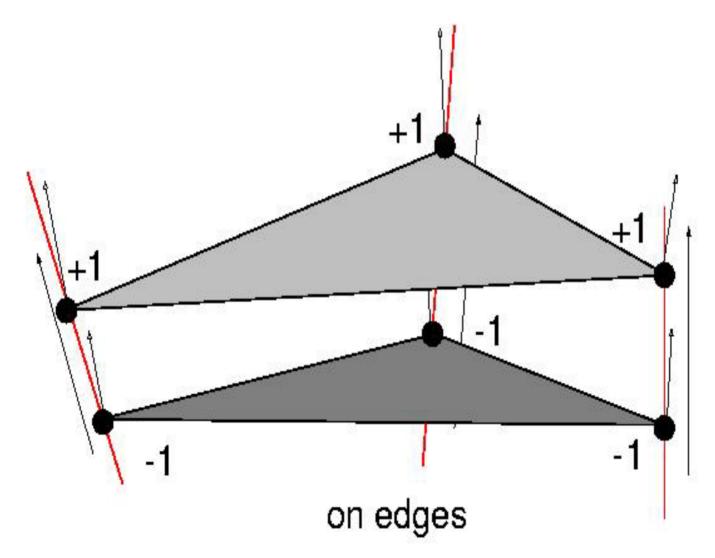
$f(t) = f_0 H_0^3(t) + f_0' H_1^3(t) + f_1 H_2^3(t) + f_1' H_3^3(t)$

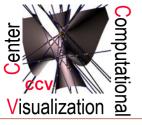


- Define functions and gradients on the edges of a prism
- Define functions and gradients on the faces of a prism
- Define functions on a volume
- Blending

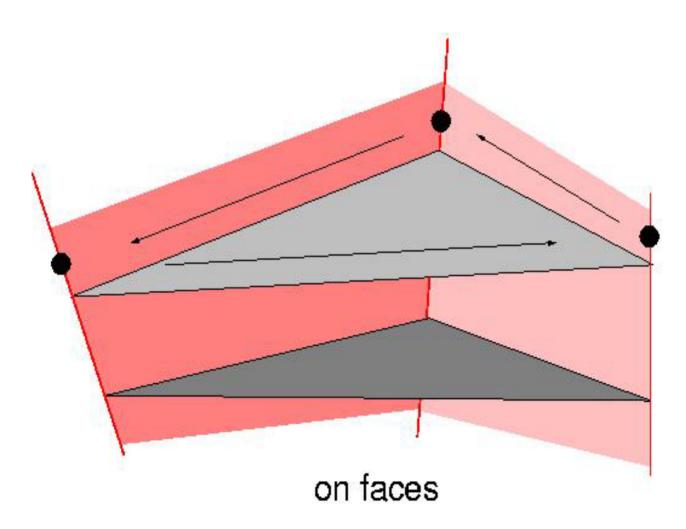


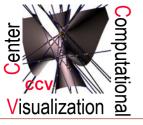
Hermite Interpolant on Prism Edges



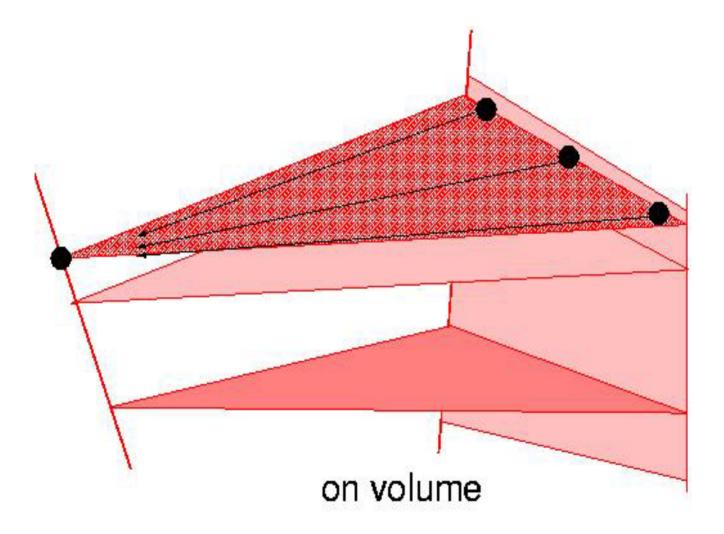


Hermite Interpolation on Prism Faces





Side Vertex Interpolation

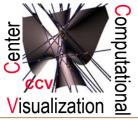


• Blending

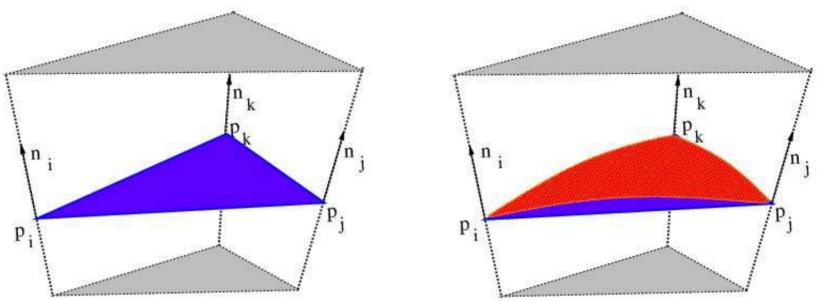
 $\sum W_i D_i(b_1, b_2, b_3, \lambda) + (b_1 b_2 b_3)^2 E(b_1, b_2, b_3, \lambda)$

where

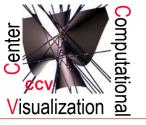
$$W_i(b_1, b_2, b_3) = \frac{(b_j b_k)^{\beta}}{(b_2 b_3)^{\beta} + (b_1 b_3)^{\beta} + (b_1 b_2)^{\beta}}, \beta > 1$$



Shell Elements (contd)



- The function F is C^1 over Σ and interpolates C^1 (Hermite) data
- The interpolant has quadratic precision

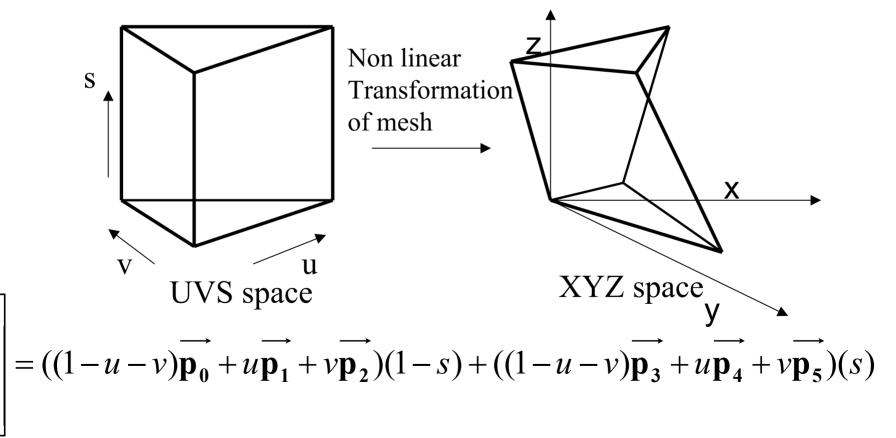


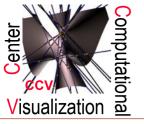
|x|

 \mathcal{V}

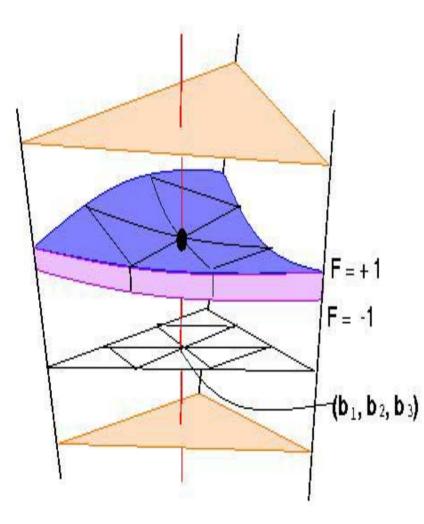
•Irregular prism

-Irregular prisms have been used to represent data.

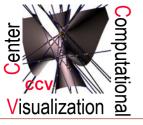




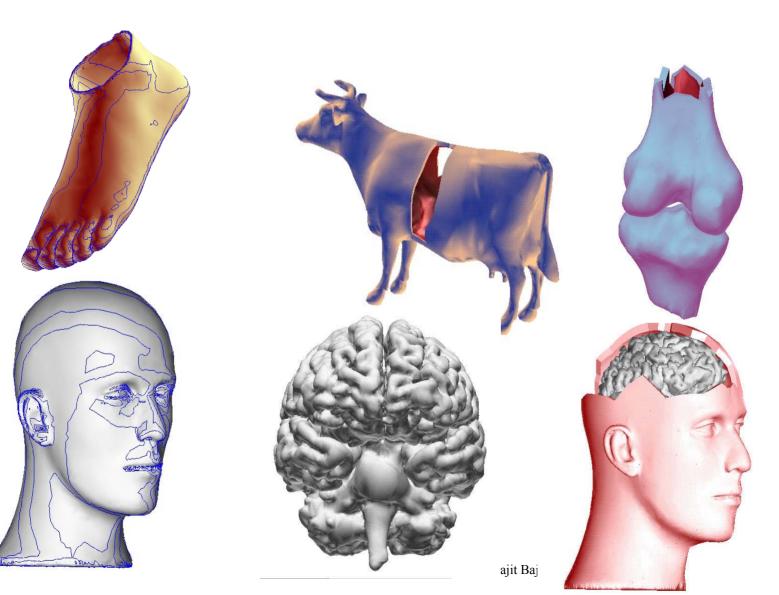
Evaluation

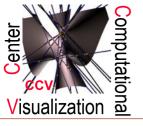


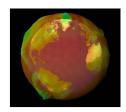
- For each (b_1, b_1, b_3) ,
- $b_i \ge 0, \sum b_i = 1$, Find the intersection of $F=\alpha$ and the line $b_1v_i(\lambda) + b_2v_j(\lambda) + b_3v_k(\lambda)$ That is find the zero $\phi(\lambda) = F(b_1, b_2, b_3, \lambda) = \alpha$



Examples with Shell Finite Elements





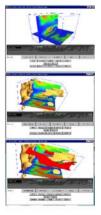


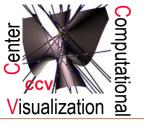
Computational Visualization

1. Sources, characteristics, representation

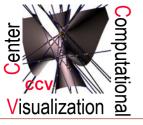
- 2. Mesh Processing
- 3. Contouring

- 4. Volume Rendering
- 5. Flow, Vector, Tensor Field Visualization
- 6. Application Case Studies, right: Chandrajit Bajaj, CCV, University of Texas at Austin





- Data Visualization Techniques, Bajaj, Wiley, 1997
- Volume probe: Interactive Data Exploration on Arbitrary grids, Spray & Kennon, Computer Graphics, 24, 5, 5-12, 1990
- A-Splines: Local Interpolation and Approximation using G^k-Continuous Piecewise Real Algebraic Curves, Computer Aided Geometric Design 16 (1999) pages 557-578
- Energy Formulations for A-Splines, Computer Aided Geometric Design vol.16 (1999) 39-59
- C¹ Modeling with Cubic A-patches, C. Bajaj, J Chen, G. Xu, ACM Transactions on Graphics (TOG), 14, 2, April,(1995), 103-133
- C¹ Modeling with A-patches from Rational Trivariate Functions, Computer Aided Geometric Design, 18:3(2001), 221-243



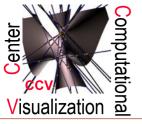
Further Reading (contd)

- A Practical Guide to Splines, C. de Boor (1978), Springer-Verlag, New York.
- Smooth Shell Construction with Mixed Prism Fat Surfaces, C.Bajaj, G. Xu, Geometric Modeling, Springer Verlag, Computing Supplementum 14, 2001, pg 19 - 36
- Implicit Surface Patches, C. Bajaj, Introduction to Implicit Surfaces, edited by J. Bloomenthal, Morgan Kaufman Publishers, (1997), 98 – 125
- Automatic Reconstruction of Surfaces and Scalar Fields from 3D Scans

Proceedings: *Computer Graphics* (1995), Annual Conference Series, *SIGGRAPH* 95, ACM SIGGRAPH, 109-118

 Modeling Physical Fields for Interrogative Data Visualization,

7th IMA Conference on the Mathematics of Surfaces, *The Mathematics of Surfaces VII*, edited by T.N.T. Goodman and R. Martin, Oxford University Press, (1997).



C^1 Quad Shell Surfaces can be built in a similar way, by defining functions over a cube

