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Computational Visualization

1. Sources, characteristics, representation g
2. Mesh Processing

5. Flow, Vector, Tensor Field Visualization
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Data Sources: Meshless and Meshed
Mesh and Field Data Characteristics
Mesh Representations

Mesh Finite Elements
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B Global Climate Modeling

Visualization

Regional Simulation

_ Combined Analy§is/

Community Climate Model
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Multi-Scale
Physical Simulation
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The Visible Human Project

NLM/NIMH

Zcv
Visualization
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Multiple modality
CT, MR,
cryogenic-slices
(RGB)

Male and Female
Human Cadavers
imaged for
research and
scientific
community
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Available test
case for out-of-
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Molecular Modeling and
salzaion & Interactions
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/ Doinain \

Imaging Simulation Visualization

l -

Function fields

*To identify and display information for model
calibration or scientific discovery

*Support interrogation with quantitative
queries (metric, combinatorial, topological)
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Imaging Scanners

Vlsuallzatlon

* Scanners can yield both domains and
functions on domains

— Scanners yielding domains
 Point Cloud Scanners: 300u-800pu
« CT, MRI: 10u-200u
* Light microscopy: 5u-10p
 Electron microscopy: < 1u AL 0 e
» Ultra microscopy like Cyro EM SOA 1OOA

— Scanners yielding functions
* Doppler velocimetry

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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* Time varying data
 VVector, Tensor
e Meshless

o Static
e Scalar
 Meshed
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VRN
A S
Mg LIRS
v, =
kA 1 s
Sib‘.,
“5“‘ A
il

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin



@)
o o
SEIR = Mesh Types
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* Mesh taxonomy

— Regular static meshes:

* There 1s an indexing scheme, say 1,j,k, with the
actual positions being determined as 1*dx, j*dy,

k*dz.
 If dx=dy=dz, then,

— In 2-D, we get a pixel, and in 3-D, a voxel.

le—dX—>]

A 2-D regular rectilinear cartesian grid
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Visuaiization ag_z

— Irregular static meshes:

* Rectilinear:

— Individual cells are not identical but are rectangular,
and connectivity is related to a rectangular grid

dx, dy are not constant in grid,
but connectivity is similar in topology
to regular grids.

A 2-D regular rectilinear grid

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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Visualization

Curvilinear:

— Sometimes called structured grids as the cells are
irregular cubes — a regular grid subjected to a non-
linear transformation so as to fill a volume or
surround an object.

A 2-D curvilinear grid

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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Visualization %

 Unstructured:

— Cells are of any shape (tetrahedral) hexahedra, etc
with no implicit connectivity — e.g. Finite element
analysis Y e |

* Hybrid: P
— Combination of curvilinear and unstructured grids.

— Dynamic (Time-varying) meshes

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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Meshless Data 2> Meshed Data

Vlsuahzatlon

Triangulations (Delaunay) &
Dual Diagrams (\VVoronoi)

ZAUnion of balls
ATriangulation & Dual

7WNerve sub-complex

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin



o
ko =
SEINE Particle Data to Meshes
Visualization @

C

Weighted point P = (p, w, ) where p e R, w, e R

7, (X)

Power distance from x & ERd to p T, (x) :|| p—X ||2 -w,

with || »—x1I is the Euclidean distance
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Visualization

Power Diagram ( PD ) of a weighted point set

Tiling of space into convex regions where i region ( tile )
are the set of points in R’ nearest to p; in the power distance metric.

WP1 81/ \ p2

< bl > < D >

< 1 >

2

r o=1"—w =1"—w =g
p 1 r1 2 P2 U

Bisector Plane which matches power distance.

Regular Triangulation ( RT )

Dual of Power Diagram ( PD ) with an edge of
RT for each BlSCCtOI’ Plane Of PD Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin



Particle Data to Meshes
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Atomic Centers CPK CPK Alpha-Shape

Solvent Accessible Surface (SAS) Power Diagram of SAS  Solvent Excluded Surface (SES)

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin



Molecular Surfaces
(Solvent Excluded Surface)
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e Scalar

temperature, pressure, density, energy, change, resistance,
capacitance, refractive index, wavelength, frequency & fluid

content.

 Vector

velocity, acceleration, angular velocity, force,
momentum, magnetic field, electric field, gravitational field,

current, surface normal

e Tensor

stress, strain, conductivity, moment of inertia and
electromagnetic field

 Multivariate Time Series

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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v Field Data on Meshes

* Finite elements commonly used
— Linear finite elements
— Non-linear finite elements

* Interpolants/Approximants

used to approximate the data on the domain
(Lagrange, Hermite, ...)

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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\po f \p f \p1 f
O ° O
The Barycentric coordinates a = (0, 04) for any point
p on line segment <p, p,>, are given by

o= dist(p, p,) diSt(poap))
dist(p,, p,) dist(p,, p,)

which yields | p = dy p, + O4 P;

and o 0

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin



54\ & Linear interpolation over a triangle
Visuaiization %

p:

M.
R
=

fpzzaiﬁ?i

i

Po

For a triangle p,,p4,pP,, the Barycentric coordinates
a = (ay0a40,) for point p,
(area(p,pppz) area(py, p, P;) area(po,ppp))

o = 5 ”
area(poapppz) area(poaplapz) area(pmpl’pZ)

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin



s¥IR.z Linear interpolant over a tetrahedron
Visualization 2

Linear Interpolation within a
« Tetrahedron (py,p+,P2:P3)
a = q; are the barycentric coordinates of p

O Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin




54\ Other 3D Finite Elements (contd)
Visualization ®

* Unlt Prism (p1=p25p3ap4=p55p6)
P = t(zaipi)+(1_t)(zai—3pi)

oF
P2 .4‘& Ps

Note: nonlinear
Pe P4

D, O—_ o)

Copyright: Chandrajit Bajaj, CCV, University of Texas
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54\ Other 3D Finite elements
Visualization %

* Unit Pyramid (py,P1,P2:P3,P4)
p=up,+(1—u)(@(sp, +(1=s)p,)+A-1)(sp; +(1-5)p,))

Note:
nonlinear

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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e Unit Cube (p1,p,,P3,P4,Ps,Ps:P7,Ps)

— Tensor in all 3 dimensions )
p=u((sp,+(-s)p,)+{A-1)(sp;+(1-5)p,))+ i-lr_]rtlgrpej;nt
(I=u)(t(sps +(1—5) ps)+ (1 —1)(sp, +(1—5) pg))

N '/p‘w. /pz
/po/

Ps Ps
P ‘/. O3
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s - Can we construct Good Non-Linear Curve and
AN Surface Finite Elements ?

Visualization ®

a200

alOl

O
a020 2011 a002

The conic curve interpolant is the zero of the bivariate quadratic
polynomial interpolant over the triangle

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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Every good answer
needs coffee! Or
Mineralwasser !!
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— Explicit
« Curve: y = f(X)
» Surface: z = f(x,y)
* Volume: w = f(x,y,z)
— Implicit
* Curve: f(x,y) =0in 2D, <f,(x,y,z) = f,(x,y,z) = 0>in 3D
» Surface: f(x,y,z) =0
* Interval Volume: c, <f(x,y,z) < c,
— Parametric
« Curve: X =f,(t), y = (1)
» Surface: X =f(s,t), y =f,(s,1), z = f5(s,t)

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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Algebraic Curves

3 -x*"2y*2=1D

2xd-3x "Byt 22yt 3aytd = D

¥'3-z"2=0

ahdx MRyt R-Ex MR y-xy 2yt = 0

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin



Implict vs Parametric

e Curves
e Surfaces
 VVolumes

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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positive cootrol point
negative contral poiot

Eign wmdetermined

rero control point
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“#i¥.. Discriminating Curve Family

For a given triangle or quadrilateral R, let R, and R, be two closed
boundaries of R and let D = {A (X,y) = y(X,y) -s 0(x,y) =0 :s € [0,1]} be an
algebraic curve family with s as a parameter and d(x,y) >0 on R\ { R;, R,}
such that

1.R,NR,=3.
2. Each curve in D passes through R, and R,
3. Each curve in D is regular in the interior of R.
4. For Vp € R\ { R;, R,}, there exists one and only one
s € [0, 1] such that A, (p) = 0.
Then we say D i1s a discriminating family on R, denoted by

D(Ra Rla R2)

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin



Examples of Discriminating
Curve Families
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A-spline Segment

._‘-.
._‘..
“m

) (d)

—-——r—""

(a)

For a given discriminating family D(R, R,, 1 By(s), B,(S), ... have one sign

R,), let f(x, y) be a bivariate polynomial . change, then the curve is
If the curve (X, y) = 0 intersects with each
curve in D(R, R,, R,) only once in the (a) D, - regular curve.

interior of R, we say the curve f=01s
regular(or A-spline segment) with respect (b) D, - regular curve.

to D(R, R,, R)). (¢) D; - regular curve.

(d) D, - regular curve.

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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Constructing Scaffolds

fay Lot

fcd
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C*1 A-spline Reconstructions

F
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A-patch Surface (C?1) Interpolant
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Visualization

0003 positive control points

zero control point

O
ﬁ free control point
L]
®

negative control point

=

......
......

_______

oozo

* An implicit single-sheeted interpolant over a
tetrahedron
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Slyned disiance
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Bivariate Case
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A-patch surface models

Visualization

> ~9200 points, 406 patches (degree 3), 1% efror

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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High Genus Example
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Visualization

Results

» ~10* points,
460 patiches
(degree 3),
1% exror

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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NN Results

» ~10* points,
180 paitches
(degree 3),
1% exror
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Tensor-product patches
Manifold and Function Data
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Visualization

Data.points;  RinalMesh, Implicit:patches;  Runetion,

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin



Tensor-product A-patches
Volumetric Data
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Visualization

~10* poiints, 220 paiches (degree 3), 1% eiror

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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Shell Finite Elements

CV,
Visualization 8

 Airfoils

* Tin cans

* Shell canisters

« Sea shells

e Earth’s outer crust
« Human skin

e Skeletal
Structures

o O ©o Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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C1 Interpolant

Visualization

Hermite interpolation

fO/ fli
f 0 f 1
0 1
O o

f(t) = foH(t) + foH () + fiHy(t) + fH5()

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin



Center

Incremental Basis Construction

Zevp\®
Visualization

leuoneindwon

* Define functions and gradients on the
edges of a prism

* Define functions and gradients on the
faces of a prism

e Define functions on a volume

* Blending

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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+1

+1/l

1 -1
on edges
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Hermite Interpolation on Prism Faces

Visualization

leuoneindwon

on faces
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on volume
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C1 function construction (cont.)

Visualization

* Blending
> WiD;(by, bg, bg, \) + (515253)2]5(51, ba, b3, M)

where

bibi)”
Wi(bl’ bz’ bS) ~ (b2b3)5+éb153;5+(b152)5’ 6 > 1

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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Shell Elements (contd)

* The function F is C! over >, and
interpolates C! (Hermite) data

*The interpolant has quadratic precision

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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Visuaiization %

eIrregular prism

—Irregular prisms have been used to represent data.

A
\/ Non linear
S Transformation
of mesh
>
\/ X >
Nt
- UVS space XYZ spacey

yi=((1-u—-v)p, +up, +vp,)1—s)+((1-u—v)p; +up, +vps)(s)

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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Evaluation

F=#1

F

_F(bl: bz: b3)

e For each (b1,b1,b3),

e« b, >0,> bj=1, Find
the intersection of
F=o and the line

bl?}i()\) -+ bg?}j()\) + bg’l)k()\)

That is find the zero
P(A) = Flby, by, b3, ) = o

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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Examples with Shell Finite Elements
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Data Visualization Techniques, Bajaj , Wiley, 1997
Volume probe: Interactive Data Exploration on Arbitrary
grids, Spray & Kennon, Computer Graphics, 24, 5, 5-12, 1990

A-Splines: Local Interpolation and Approximation using Gk-
Continuous Piecewise Real Algebraic Curves,Computer
Aided Geometric Design 16 (1999) pages 557-578

Energy Formulations for A-Splines,
Computer Aided Geometric Design vol.16 (1999) 39-59

C1 Modeling with Cubic A-patches, C. Bajaj, J Chen, G. Xu,
ACM Transactions on Graphics (TOG), 14, 2, April,(1995), 103-133

C' Modeling with A-patches from Rational Trivariate
Functions, Computer Aided Geometric Design, 18:3(2001), 221-243
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A Practical Guide to Splines, C. de Boor (1978), Springer-
Verlag, New York.

Smooth Shell Construction with Mixed Prism Fat Surfaces,
C.Bajaj, G. Xu, Geometric Modeling, Springer Verlag,
Computing Supplementum 14, 2001, pg 19 - 36

Implicit Surface Patches, C. Bajaj, Introduction to Implicit
Surfaces, edited by J. Bloomenthal, Morgan Kaufman
Publishers, (1997), 98 — 125

Automatic Reconstruction of Surfaces and Scalar Fields
from 3D Scans

Proceedings: Computer Graphics (1995), Annual Conference
Series, SIGGRAPH 95, ACM SIGGRAPH, 109-118

Modeling Physical Fields for Interrogative Data
Visualization,

7th IMA Conference on the Mathematics of Surfaces, The
Mathematics of Surfaces VI, edited by T.N.T. Goodman and R.
Martin, Oxford University Press, (1997).

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin



Center

Zevp\®
Visualization

W=  C™ Shell Elements within a Cube

C™M Quad Shell Surfaces can be built in a
similar way, by defining functions over a
cube

Copyright: Chandrajit Bajaj, CCV, University of Texas at Austin
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