Algebraic and Semi-algebraic varieties
1. Affine and projective varieties
Letk be a field (k = R, C or computable subfield thereof)
Letfi,...,f; be polynomials in Xy, ..., X,.
V(fi,..-fr) ={(x1,...,x0) €K" | filx1,...,x,) =0 Vi=1...r}

is the affine variety definined by f1, ..., f;.

What about points with homogeneous coordinates?
(x :y:z:u)and (Ax : Ay : Az : Au) are the same point for any A # 0.
A polynomial F is called homogeneous of degree d, if

E(Ax, Ay, Az, Au) = )\dF(x,y,z,u) VA ek

Then, for A #0 we have F(x,y,z,u) #0 <= F(A\x, Ay, Az, A\u) #0

Let P" (k) denote the set of all points with (n + 1) homogeneous coor-

dinates ink, i.e. a point of P" can be written as

(X1 :...%Xn41)
with at least one x; # 0.
For hogeneous polynomials Fy, ... ,F, in Xy,..., X1, we call
V(EFq,...F)={(x1:...:%,) € P"(k) | Fi(x1,...,x041) =0 Vi=1...r}

the projective variety definined by Fq, ..., F,.



Example: Circle {(x,y) € R* | x* +y> =1}
As a projective variety:

{(x:y:2) € P2(R) | x? +y2 :zz}

Hyperbola: {(x,y) € R* | x> —y> =1}
As a projective variety:

{(x:y:2) eP*(R) | x* —y* =2} = {(x :y : 2) € P*R) | y* +2* =x*}

Projectively, Hyperbola = Circle !

{x:y:2) eP’(R) | x> —y* =2}
={(x:y :1)€IP’2(R) |x2—y2=12}u{(x:y :O)EIP’z(R) |x2—y2=02}
={x:y:1)eP*R) |x¥* —y*=1*}u{1:1:0),(1:-1:0)}

The two points at infinity close the hyperbola.

Applications in Modelling and Visualization
e Implicit surfaces are algebraic varieties

e Patches of such surfaces can be use to modell or approximate

arbitrarily complicated surfaces (A-patches, BAJAJ)
e Boundaries of algebraic halfspaces are varieties



Semialgebraic varieties
Only definied over the real numbers (or a formally real field)

A semialgebraic variety is a finite union of sets of the form
{(x1,---,%n) € R" | fi(x1,...,%x) RiO0O Vi=1...7}

wherefy, .. .,f, are real polynomials in Xy, ...,X,

Rl)"'aRY € {277'{,<7>7§72}

Example: Every algebraic half space {(x,y,z) € B | f(x,y,z) <0}isa

semialgebraic variety.

Intersections of semialgebraic varieties are semialgebraic:

Combine the relations
Unions of semialgebraic varieties are semialgebraic by definition

Complements of semialgebraic varieties are semialgebraic:
If there is only one relation, take its negation.
If there are more, take the union of the complements of the semialge-

braic varieties defined by the individual relations.

The closure of a semialgebraic variety is semialgebraic:

Replace all < and > by < and >, discard all #relations.

The interior of a semialgebraic variety is semialgebraic:

Replace all < and > by < and >, discard all equations.

Every CSG-object built from algebraic half spaces is semialgebraic.



Cylindrical decomposition

Theorem of TARSKI and SEIDENBERG (special form)

If Z C R" is semialgebraic, so is its image under any projection from
R" to R*~1,

NB: This is not true for algebraic varieties: The projection of a circle

from R? to R! is an intervall, which is not an algebraic variety!

Idea (COLLINS): Describe a semialgebraic variety in R" recursively in

terms of its projection to R"~! under the obvious projection

(X1ye e ey Xn) = (X1, .00y Xn_1)

Starting points: Semialgebraic varieties in R
{x e R|f(x) =0} is a (possibly empty) finite set of points.
{x e R|f(x) =0} is R minus a (possibly empty) finite set of points.

{x € R |f(x) < 0} is a union of finitely many (possibly infinity) open

intervalls.

{x € R |f(x) > 0} is a union of finitely many (possibly infinity) open

intervalls.
{xeR|f(x) <0}={xeR|f(x) <0}U{x e R|f(x)=0}
{xeR|f(x) >0}={xeR|f(x) >0} U{x e R|f(x)=0}

Any semialgebraic variety in R is a union of finitely many (possibly

infinity) open intervalls and points.



Structure theorem

If Z C R" is semialgebraic and m:R" — R"~! the usual projection,

there exists an effectively computable decomposition
m(Z)=W1UW,U---UW,

into disjoint semialgebraic varieties W; C R" —1 such that for each W;,
the cylinder W; x R can be decomposed into (computable) semialge-
braic sets Wj;, each of which can be written in one of the following

forms:

a) Sets of band type:

h(x1,...,x,-1) € W; and }

W{Z{X,...,xn ERH
] (a ) o1, xn—1) <xp <QX1, -, %n-1)

b) Sets of graph type:

Wi = {(x1,...,%0) € R | (x1,...,%-1) € Wi AXyy = f(x1,...,%0-1)}
f and g are continous functions.
Applications: See where the points of Z are located

Piano mover’s problem,

Motion planning for robots,



Invariants and classification
When are two polygones geometrically the same?

1t answer: If there is a EUCLIDIAN transformation moving one onto
the other.
2" answer: It all corresponding angles and all lenghts of correspond-

ing edges are the same.

Why are both answers equivalent?

EUCLIDIAN transformation:
X X a
y|—Aly|+|b]),
Z p c

where A is an orthogonal matrix.

Look for functions depending on n points P; = (xi,vi,zi) invariant

under all those transformations.

Invariance under translation implies: The function should only de-

pend on difference Vectors Pl—P§

Orthogonal matrices are characterized by the fact that they respect
scalar products between vecors or, equivalently, lengths of vectors

and angles between vectors.



FELIX KLEIN, Erlangener Programm (1872):
Every geometry studies the invariants of a group:

EUCLIDian geometry — group of EUCLIDian motions
Affine geometry — group of affine maps
Projective geometry — group of projective maps, i.e. maps described

by 4 x 4-matrices acting on homogeneous coordinates

Application: How to decide whether two objects in space are really
the same?

Compute their invariants!

When are two algebraic varieties really the same?

V C P*"(k) and W C P™(k) are called isomorphic, if there is a bijective
map ¢:V — W such that both ¢ and ¢~ can be defined by polyno-

mials.

To check if V and W are isomorphic, embedd them suitably into a

common projective space and compute their invariants.

To understand all projective varieties with given properties (like di-
mension, number of connected components, ... ),
first embed them all into a common projective space,

then look for invariants.



Curves and function fields
Let V C k" be an affine variety and let

I(V) = {f e k[Xq,...,X.] [ f(V) =0}.

Two polynomials ¢,h € k[Xj,...,X,] coincide as functions restricted
toV,iff g —h € I(V). The set

O(V) =k[Xy, ..., X]/L(V)
of all functions on V is called the coordinate ring of V.
If it is a domain, i.e.
gxh=0=¢g=0Vh=0,
we can take the quotient field
kv)={% |geow), neom)\ {01} /.,

Where
g— ~ — =

V is then called irreducible, and k(V) is the function field of V.

V is called a curve, if there exists at € k(V), such that every f € k(V)
depends algebraically on t.

Theorem: Isomorphic curves have isomorphic function fields, and a
nonsingular curve is determined uniquely upto isomorphism by its

function field.

The second part is no longer true in higher dimensions!



3D reconstruction of algebraic curves

Let C be a curve in 3-space and consider to projections C;,C, of C into

planes with centers O; and O,.

Usually, the projections C — C; will be at least generically one-to-one;

only for special positions of the center worse things will happen.

If the projections are one-to-one, k(C) = k(Cq) = k(Cy); hence C is
determined upto isomorphism (i.e. as an abstract curve) by C; and
by C2 .

In fact, generically a sufficently complicated curve C is even deter-

mined upto a projective transformation of P°(k), i.e. as a space curve.

Idea of proof: An embedding C — P3(k) is given by a threedimen-

sional sub vector space W of k(C).

The two embeddings C; < P2(k) are given by two dimensional sub

vector spaces W; < W.

Only special curves have many automorphism; most general curves
have none. Then the intersection W; N W, can be found both in Wy

and in W5, and thus W can be constructed.



