Themenvorschläge für die kleinen Übungen am 22. Januar 2003

- a) Bestimmen Sie Eigenwerte und Eigenvektoren der Matrix $C = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}!$
- b) Was ist e^{C} bzw. e^{Ct} ?
- c) Berechnen Sie $e^{\begin{pmatrix} 0 & -t \\ t & 0 \end{pmatrix}}$!
- d) Für Mutige: Berechnen Sie $e^{\begin{pmatrix} 1 & t \\ 1 & 1 \end{pmatrix}}$! (Warnung: Das Ergebnis ist recht grausam!)
- e) Zeigen Sie: Für jede Matrix $A \in \mathbb{R}^{n \times n}$ ist ${}^t\!AA$ symmetrisch.
- f) Mit welchen komplexen Zahlen a,b,c wird $\begin{pmatrix} 1 & 1+i & a \\ b & 2 & 3-i \\ 1-2i & c & 3 \end{pmatrix}$ eine Hermitesche Matrix?
- g) Welche der folgenden Matrizen A_n sind symmetrisch, welche HERMITESCh? Von welchen wissen Sie, daß \mathbb{R}^4 eine Basis aus Eigenvektoren von A_n hat?

h) Bestimmen Sie Eigenwerte, Eigenvektoren und Hauptvektoren der Matrix

$$A = \begin{pmatrix} -2 & -3 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 1 \end{pmatrix} !$$

- i) n sei eine natürliche Zahl. Was ist An?
- j) Was ist e^{At} ?
- k) Bestimmen Sie die Lösungsmenge des Differentialgleichungssystems

$$\dot{x}(t) = -2x(t) - 3x(t) - z(t)
\dot{y}(t) = x(t) + 2y(t) + z(t)
\dot{z}(t) = 2x(t) + 2y(t) + z(t)!$$

- 1) Bestimmen Sie die spezielle Lösung mit x(0) = z(0) = 1 und y(0) = 0!
- m) Bestimmen Sie die spezielle Lösung mit x(3) = z(3) = 1 und y(3) = 0!
- n) Welche Lösungen des Differentialgleichungssystems bleiben beschränkt für $t \to \infty$?