Themenvorschläge für die kleinen Übungen am 24./25. Juni 2002

a) Berechnen Sie die JACOBI-Matrix des Vektorfelds

$$ec{\mathrm{V}}:\mathbb{R}^3 o \mathbb{R}^3; \quad (\mathrm{x},\mathrm{y},z) \mapsto \left(egin{matrix} \mathrm{x}+\mathrm{y}+z \ \mathrm{y}z+\mathrm{x}z+\mathrm{x}\mathrm{y} \ \mathrm{x}\mathrm{y}z \end{matrix}
ight) \,!$$

- b) Bestimmen Sie Divergenz und Rotation von \vec{V} !
- c) Berechnen Sie die JACOBI-Matrix des Vektorfelds

$$\vec{W}: \mathbb{R}^3 \setminus \{(0,0,0)\} \to \mathbb{R}^3; \quad (x,y,z) \mapsto \frac{1}{x^2 + y^2 + z^2} \begin{pmatrix} x \\ y \\ z \end{pmatrix} !$$

- d) Bestimmen Sie Divergenz und Rotation von \vec{W} !
- e) Was sind die Divergenz und die Rotation der linearen Funktion

$$L: \mathbb{R}^3 \to \mathbb{R}^3; \quad (x, y, z) \mapsto \begin{pmatrix} a_0 + a_1 x + a_2 y + a_3 z \\ b_0 + b_1 x + b_2 y + b_3 z \\ c_0 + c_1 x + c_2 y + c_3 z \end{pmatrix} ?$$

f) Berechnen Sie

div grad
$$e^{-(x^2+y^2+z^2)}$$
!

g) Berechnen Sie die Rotation des Vektorfelds

$$V: \mathbb{R}^3 \to \mathbb{R}^3; \quad (x, y, z) \mapsto \begin{pmatrix} -y^2 - z^2 \\ -x^2 - z^2 \\ -x^2 - y^2 \end{pmatrix} !$$

h) Berechnen Sie die Rotation des Vektorfelds

$$\vec{W}: \mathbb{R}^3 \to \mathbb{R}^3; \quad (x, y, z) \mapsto \begin{pmatrix} yz^2 \\ x^2z \\ xy^2 \end{pmatrix} !$$

- i) Was ist Δf für die Funktion $f(x,y,z) = z\sqrt{x^2 + y^2} + \frac{z}{\sqrt{x^2 + y^2}}$?
- j) Die Funktion $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$ hänge, in Polarkoordinaten (r,ϕ) geschrieben, nur ab von ϕ . Wie sehen die Niveaulinien von f aus?
- k) Die Funktion $f: \mathbb{R}^3 \setminus \{(0,0)\} \to \mathbb{R}^3$ hänge, in Kugelkoordinaten (r,ϕ,ϑ) geschrieben, nur ab von ϑ . Wie sehen die Niveauflächen von f aus?
- l) Das Vektorfeld \vec{V} auf $\mathbb{R}^2 \setminus \{(0,0)\}$ ordne dem Punkt mit Polarkoordinaten (r,ϕ) den Vektor $\binom{-\sin\phi}{\cos\phi}$ aus \mathbb{R}^2 zu. Zeigen Sie, daß dieser Vektor in jedem Punkt (x,y) senkrecht auf dem Ortsvektor $\binom{x}{y}$ steht!
- m) Bestimmen Sie durch Übergang zu Polarkoordinaten alle relativen Extrema der Funktion $f(x,y) = \cos(x^2 + y^2) + \sin(x^2 + y^2)!$