Themenvorschläge für die kleinen Übungen am 22. November 2007

a) Welche der folgenden Matrizen ist positiv definit?

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 5 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 3 & 7 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{pmatrix}$$

- b) Berechnen Sie alle Extrema und Sattelpunkte der Funktion $f(x,y) = x^8 y^4$ auf \mathbb{R}^2 !
- c) Berechnen Sie alle Extrema der Funktion $g(x,y) = x^3 x^2y + y^2x y^3$ auf \mathbb{R}^2 !
- d) Bestimmen Sie alle Extrema der Funktion $h(x,y) = \sin x \cos y$ auf \mathbb{R}^2 !
- e) Bestimmen Sie die Maxima und Minima von f(x, y) = xy auf der Kreislinie $x^2 + y^2 = 1$!
- f) Bestimmen Sie die Maxima und Minima von f(x, y, z) = xyz auf der Kugeloberfläche $x^2 + y^2 + z^2 = 1!$
- g) Bestimmen Sie den Maximalwert der Funktion $f(x,y) = \cos^2 x + \cos^2 y$ unter der Nebenbedingung $x^2 + y^2 \le 1$!
- h) Bestimmen Sie alle Punkte in der offenen Kreisscheibe $x^2 + y^2 < 1$, in denen die Funktion $f(x,y) = \sin^2(x+y) + \cos^2(x-y)$ ihr absolutes Maximum annimmt!
- i) Gibt es auch Punkte auf der Kreis $linie x^2 + y^2 = 1$, in denen der in a) bestimmte Maximalwert angenommen wird?
- j) Bestimmen Sie den Maximalwert der Funktion $f(x,y) = x^2 + 6xy y^2$ unter der Nebenbedingung $x^2 + 4y^2 \le 36$!
- k) Beschreiben Sie die Menge $M = \left\{ (x,y) \in \mathbb{R}^2 \mid \frac{x^2}{4} + \frac{y^2}{9} \le 1 \right\}$ geometrisch!
- 1) Bestimmen Sie die Maxima und Minima von $f(x, y) = x^2 + y^2 2y$ in M!
- m) Bestimmen Sie den größten Quader mit achsenparallelen Kanten, der ganz im Ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text{ liegt!}$
- n) Die Fläche $Q \subset \mathbb{R}^2$ sei gegeben durch die Gleichung $(x,y)A \binom{x}{y} = 1$, wobei die Determinante der symmetrischen 2×2 -Matrix A von Null verschieden sei. Bestimmen Sie jene Punkte von Q, in denen der Abstand zum Punkt (0,0) ein relatives Minimum annimmt!
- o) Lassen sich diese Punkte auch geometrisch interpretieren?
- p) Ein Produkt werde aus drei Resourcen hergestellt, die jeweils 80 Euro, 12 Euro bzw. 10 Euro pro Einheit kosten. Aus x Einheiten der ersten, y Einheiten der zweiten und z Einheiten der dritten lassen sich $50x^{2/5}y^{1/5}z^{1/5}$ Einheiten des Produkts fertigen. Wie viele Einheiten können für 24 000 Euro maximal gefertigt werden?
- q) Ab welchem Preis, der für eine produzierte Einheit erzielt werden kann, lohnt es sich, den Kapitaleinsatz von 24000 Euro zu erhöhen?