22. März 2007

5. Übungsblatt Höhere Mathematik I

Fragen: (je ein Punkt)

Die Antworten auf die nachfolgenden Fragen sollten nicht länger als etwa zwei Zeilen sein und lediglich eine kurze Begründung enthalten. Antworten ohne Begründung werden nicht gewertet.

- 1) \mathbb{C} werde aufgefaßt als \mathbb{R} -Vektorraum mit Basisvektoren 1, i. Welche Abbildungsmatrix hat die komplexe Konjugation $z \mapsto \overline{z}$?
- 2) Finden Sie eine komplexe Zahl z mit $z^2 = -i!$
- 3) Richtig oder falsch: Für A, B $\in \mathbb{R}^{2\times 2}$ ist $(A+B)(A-B)=A^2-B^2$.
- 4) Richtig oder falsch: Für die Matrix $A \in \mathbb{R}^{2 \times 2}$ sei A^2 die Nullmatrix. Dann ist auch A gleich der Nullmatrix.
- 5) Richtig oder falsch: Für jede Matrix $A \in \mathbb{F}_2^{2 \times 2}$ ist $A^2 = A$.

Aufgabe 1: (5 Punkte)

Sei
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
 und $B_n = \begin{pmatrix} 1 & 2n & 2n^2 + n \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{pmatrix}$ für $n \in \mathbb{Z}$. Zeigen Sie:

- a) Für alle $n, m \in \mathbb{Z}$ ist $B_n \cdot B_m = B_{n+m}$
- b) Für alle $n \in \mathbb{N}$ ist $A^n = B_n$.
- c) A ist invertierbar und $A^{-1} = B_{-1}$.
- d) Für alle $n \in \mathbb{N}$ ist $A^{-n} = (A^{-1})^n = B_{-n}$.

Problem 2: (5 points)

For a network consisting of n computers, define a matrix $A=(a_{ik})\in\mathbb{R}^{n\times n}$ such that $a_{ik}=a_{ki}=1$, if there exists a direct (bidirectional) connection between computers i and k, and $a_{ik}=a_{ki}=0$ otherwise. All diagonal entries a_{ii} are one.

- a) Show that all entries b_{ik} of $B = A^2$ are integers, and $0 \le b_{ik} \le n$.
- b) If computers i and k are not connected, they have b_{ik} possibilities to communicate via only one intermediate knot.
- c) Every computer in the network can reach any other computer, if and only if no entry of A^{n-1} vanishes.

Aufgabe 3: (5 Punkte)

V sei der Untervektorraum von $\mathcal{C}^0(\mathbb{R}, \mathbb{R})$ mit Basis $\{e^{-2t}, e^{-t}, 1, e^t, e^{2t}\}$.

a) Bestimmen Sie bezüglich dieser Basis die Abbildungsmatrix der linearen Abbildung

$$\phi: V \to V; \quad f \mapsto \frac{d^3 f}{dt^3}!$$

- b) Bestimmen Sie Basen von Kern und Bild von φ!
- c) Zeigen Sie: Jedes Element $f \in V$ läßt sich auf genau eine Weise schreiben als f = g + h mit $g \in \text{Kern } \phi$ und $h \in \text{Bild } \phi$!