20. November 2006

10. Übungsblatt Höhere Mathematik II

Fragen: (je ein Punkt)

Die Antworten auf die nachfolgenden Fragen sollten nicht länger als etwa zwei Zeilen sein und lediglich eine kurze Begründung enthalten. Antworten ohne Begründung werden nicht gewertet.

- 1) Richtig oder falsch: Die Differentialgleichung $\ddot{x}(t) + p\dot{x}(t) + qx(t) = 0$ hat genau dann periodische Lösungen, wenn $p^2 < 4q$ ist.
- 2) Wann hat die Differentialgleichung $x^{(3)}(t) + a\ddot{x}(t) + b\dot{x}(t) + cx(t) = 0$ nur periodische Lösungen?
- 3) Richtig oder falsch: Die Differenzengleichung $x_n = a_1 x_{n-1} + \cdots + a_r x_{n-r}$ hat genau dann periodische Lösungen, wenn das Polynom $\lambda^n a_1 \lambda^{n-1} \cdots a_r \lambda^{n-r}$ mindestens eine Nullstelle λ hat mit $\lambda^m = 1$ für ein $m \in \mathbb{N}$.
- 4) Richtig oder falsch: Das Anfangswertproblem $\dot{y}(t) = y(t)^2$ mit y(0) = 0 hat genau eine Lösung in [0, 1].
- 5) Richtig oder falsch: Das Anfangswertproblem $\dot{y}(t) = y(t)^{2/3}$ mit y(0) = 0 hat genau eine reelle Lösung.
- 6) Richtig oder falsch: Das Anfangswertproblem $\dot{y}(t) = \tan y(t)$ mit y(0) = 0 hat in [0, 1] nur die Nullösung.
- 7) Für welche Werte von t_0 ist das Anfangswertproblem $\dot{y}(t)=-t/y$ mit $y(t_0)=y_0$ eindeutig lösbar?

Aufgabe 1: (5 Punkte)

a) Bestimmen Sie die sämtlichen Lösungen der inhomogenen linearen Differentialgleichung

$$y^{(4)}(t) + 2y^{(3)}(t) - 2\dot{y}(t) - y(t) = 4 \sin t!$$

b) Bestimmen Sie die sämtlichen Lösungen der inhomogenen linearen Differentialgleichung

$$y^{(4)}(t) + 8y^{(2)}(t) + 16y(t) = 25\cos 3t + 25\sin 3t!$$

c) Welche Möglichkeiten gibt es jeweils für das Langzeitverhalten einer Lösungsfunktion?

Aufgabe 2: (5 Punkte)

- a) Lösen Sie die Differenzengleichung $x_n = 2x_{n-1} x_{n-2}$ mit $x_0 = 2$ und $x_1 = 1$!
- b) Lösen Sie die Differenzengleichung $x_n = 3x_{n-1} 3x_{n-2} + x_{n-3}$ mit $x_0 = 1, x_1 = 3$ und $x_2 = 7!$

Aufgabe 3: (3 Punkte)

- a) Formulieren Sie das Anfangswertproblem $\dot{y}(t) = (3 3y(t)) \cdot t^2$ mit y(0) = 2 um in eine Fixpunktgleichung und berechnen Sie, ausgehend von $y_0(t) = 2$, mindestens die ersten drei Iterationen zur Bestimmung des Fixpunkts!
- b) Erraten Sie auf Grund dieser Näherungslösungen den Fixpunkt und weisen Sie nach, daß Sie richtig geraten haben!