7. Juli 2006

11. Übungsblatt Höhere Mathematik I

Fragen: (je ein Punkt)

Die Antworten auf die nachfolgenden Fragen sollten nicht länger als etwa zwei Zeilen sein und lediglich eine kurze Begründung enthalten. Antworten ohne Begründung werden nicht gewertet.

- 1) Richtig oder falsch: $f: \mathbb{R}^n \to \mathbb{R}^p$ und $g: \mathbb{R}^m \to \mathbb{R}^n$ seien differenzierbare Abbildungen. Dann ist auch $f \circ g: \mathbb{R}^m \to \mathbb{R}^p$ differenzierbar und $J_{f \circ g}(x) = J_g(x) \cdot J_f(g(x))$.
- 2) Richtig oder falsch: Falls alle zweiten partiellen Ableitungen von $f: \mathbb{R}^2 \to \mathbb{R}^2$ existieren und stetig sind, ist die JACOBI-Matrix von f symmetrisch.
- 3) Finden Sie eine Funktion $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R}) \setminus \mathcal{C}^2(\mathbb{R}^2, \mathbb{R})$!
- 4) $\vec{V}: \mathbb{R}^n \to \mathbb{R}^n$ sei ein mindestens zweimal differenzierbares Vektorfeld. Was ist grad div \vec{V} ?
- 5) Wie sieht die Funktion $f(x, y, z) = \frac{x + y}{\sqrt{x^2 + y^2 + z^2}}$ in Kugelkoordinaten aus?

Aufgabe 1: (5 Punkte)

Aufgabe 1: (5 Punkte) Zeigen Sie: Für eine Funktion $f \in \mathcal{C}^2(D,\mathbb{R})$ und ein Vektorfeld $\vec{V} = \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} \in \mathcal{C}^2(D,\mathbb{R}^3)$ auf der offenen Teilmenge $D \subseteq \mathbb{R}^3$ gilt:

- a) $\operatorname{div}(f\vec{V}) = (\operatorname{grad} f) \cdot \vec{V} + f \operatorname{div} \vec{V}$
- b) $\operatorname{rot}(f\vec{V}) = (\operatorname{grad} f) \times \vec{V} + f \operatorname{rot} \vec{V}$
- c) $\operatorname{rot}(\operatorname{rot} \vec{V}) = \operatorname{grad}(\operatorname{div} \vec{V}) \begin{pmatrix} \Delta V_1 \\ \Delta V_2 \\ \Delta V_2 \end{pmatrix}$

- Aufgabe 2: (5 Punkte)
 a) Calculate the gradient of the function f_n : $\begin{cases} \mathbb{R}^3 \setminus \{(0,0,0\} \to \mathbb{R} \\ (x,y,z) \mapsto \frac{1}{(x^2+y^2+z^2)^n} \end{cases}$ where n is any positive real number!
- b) What is the Laplacian Δf_n ?
- c) Show that $\Delta f_n \equiv 0 \iff n = \frac{1}{2}$!

Aufgabe 3: (5 Punkte)

- a) Berechnen Sie für zwei Vektorfelder $\vec{V}, \vec{W} \in \mathcal{C}^1(\mathbb{R}^3, \mathbb{R}^3)$ die Divergenz von $\vec{V} \times \vec{W}$ auf möglichst kompakte Weise!
- b) Zeigen Sie: Das Spatprodukt $\vec{a} \cdot (\vec{b} \times \vec{c})$ dreier Vektoren ist gleich der Determinante der Matrix mit Spaltenvektoren $\vec{a}, \vec{b}, \vec{c}!$
- c) Das Spatprodukt dreier Vektoren ist bis auf das Vorzeichen unabhängig von der Reihenfolge der Faktoren; insbesondere ist $\vec{a} \cdot (\vec{b} \times \vec{c}) = -\vec{b} \cdot (\vec{a} \times \vec{c}) = \vec{c} \cdot (\vec{a} \times \vec{b})$. Wenden Sie diese Formel an auf die "Vektoren" $\vec{a} = \nabla, \vec{b} = \vec{V}$ und $\vec{c} = \vec{W}$, und vergleichen Sie mit a)!

Keine Abgabe - Abgegeben wird diese Woche nur die Klausur!