9. Juni 2006

7. Übungsblatt Höhere Mathematik I

Fragen: (je ein Punkt)

Die Antworten auf die nachfolgenden Fragen sollten nicht länger als etwa zwei Zeilen sein und lediglich eine kurze Begründung enthalten. Antworten ohne Begründung werden nicht gewertet.

- 1) Schreiben Sie die Permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}$ als Produkt von Transpositionen!
- 2) Richtig oder falsch: Für die Matrix $A \in k^{n \times n}$ sei $A^3 = A$. Dann ist det A = 0 oder $\det A = \pm 1$.
- 3) Richtig oder falsch: Für $A \in k^{n \times n}$ und $\lambda \in k$ ist $det(\lambda A) = \lambda det A$.
- 4) Richtig oder falsch: Die Matrix $A \in k^{n \times n}$ habe die Eigenwerte $\lambda_1, \ldots, \lambda_n \in k$. Dann hat 2A die Eigenwerte $2\lambda_1, \ldots, 2\lambda_n$.
- 5) Berechnen Sie die Determinante der vom letzten Ubungsblatt her bekannten Matrix

$$A = \begin{pmatrix} a-1 & 2 & 3 & 4 \\ 2-2a & a-6 & -3 & -4 \\ a-1 & 6-2a & a-6 & 0 \\ 0 & (a+1)(a-2) & 9+4a-a^2 & a-8 \end{pmatrix}.$$

(Sie können das Ergebnis der dortigen Aufgabe 1 als bekannt voraussetzen.)

- Aufgabe 1: (6 Punkte)
 a) Berechnen Sie die Determinante der Matrix $A = \begin{pmatrix} 4 & 6 & 8 & 9 \\ 5 & 7 & 9 & 8 \\ 4 & 3 & 2 & 1 \\ 3 & 6 & 8 & 9 \end{pmatrix}$!
 b) Bestimmen Sie alle $a \in \mathbb{R}$, für die die Vektoren Aufgabe 1: (6 Punkte)

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, \begin{pmatrix} 6 \\ 7 \\ 0 \\ 8 \\ 0 \end{pmatrix}, \begin{pmatrix} 10 \\ 0 \\ a \\ 0 \\ 10 \end{pmatrix}, \begin{pmatrix} 9 \\ 8 \\ 0 \\ 7 \\ 0 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} 4 \\ 3 \\ 2 \\ a \\ 0 \end{pmatrix}$$

linear abhängig sind!

Aufgabe 3: (5 Punkte)

- Aurgane 3: (5 Punkte)

 a) Find the eigenvalues and eigenvectors of the matrix $A = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 2 & -3 \\ 4 & -4 & 11 \end{pmatrix}$!

 b) Show that \mathbb{R}^3 has a basis consisting of eigenvectors of A!
- c) Write down A with respect to this basis!