Algebraic Curves for Coding Theory

Kazunari Sugiyama

August 3, 2003

Talk at the Summer School, Datensicherheit

Purpose of the Talk is

Give an Overview of the Theory of Algebraic Curves

(necessary for the construction of Goppa's codes)

Our Main Problem

What is a Curve over a Finite Field?

How do we investigate it?

What kind of structure does it have?

The Plan of the Talk

- I. Review of the Theory of Algebraic Curves over the Complex Number Field
- II. Algebraic Curves over an Arbitrary Field
- III. Function Fields and the Theorem of Riemann-Roch
- IV. Zeta Functions of a Curve over a Finite Field

I. Review of the Theory of Algebraic Curves over the Complex Number Field

 \mathbb{R} denotes the real number field.

 $\mathbb C$ denotes the complex number field.

Definition (affine plane curve)

 $f(x,y)\in \mathbb{C}[x,y]$ an irreducible polynomial. Then,

$$\Gamma=\Gamma_f=\{(x_0,y_0)\in\mathbb{C}^2\;;\;f(x_0,y_0)=0\}$$
 is called an affine plane curve.

Example:
$$f(x, y) = y^2 - x(x - 1)(x + 1)$$
.

The picture of Γ_f itself can not be seen. But $\{(x_0,y_0)\in\mathbb{R}^2\;;\; f(x_0,y_0)=0\}$ is as follows:

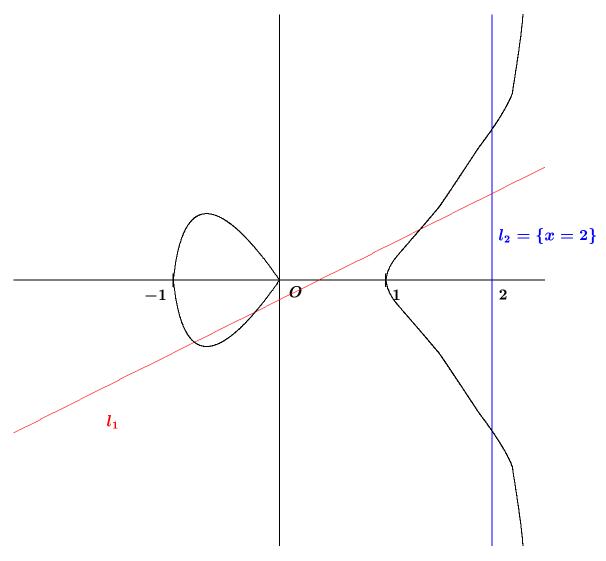


Figure 1: $y^2 = x(x-1)(x+1)$

l_2 intersects Γ at infinity!

Definition (projective plane)

Let
$$(X_0, Y_0, Z_0), (X_1, Y_1, Z_1) \in \mathbb{C}^3 \setminus \{(0, 0, 0)\}.$$

Then,
$$(X_0, Y_0, Z_0) \sim (X_1, Y_1, Z_1)$$

$$\stackrel{ ext{def}}{\Longleftrightarrow} \;\; \exists lpha \in \mathbb{C}, lpha
eq 0 \;\; ext{such that}$$

$$X_1 = \alpha X_0, Y_1 = \alpha Y_0, Z_1 = \alpha Z_0.$$

We call the set of equivalence classes

$$\mathbb{P}^2(\mathbb{C}) = \left(\mathbb{C}^3 \setminus \{(0,0,0)\}\right)/\!\!\sim$$

the projective plane over \mathbb{C} .

We write a point of $\mathbb{P}^2(\mathbb{C})$ as $(X_0:Y_0:Z_0)$.

Definition (projective plane curve)

 $F(X,Y,Z)\in \mathbb{C}[X,Y,Z]$ a homogeneous irreducible polynomial.

Then,

$$\widehat{\Gamma} = \widehat{\Gamma}_F$$

$$=\{(X_0:Y_0:Z_0)\in \mathbb{P}^2(\mathbb{C})\; ;\; F(X_0,Y_0,Z_0)=0\}$$

is called a projective plane curve.

Let k be a field.

Definition (homogeneous polynomial)

 $F(X,Y,Z) \in k[X,Y,Z]$ is homogeneous of degree d

$$\stackrel{ ext{def}}{\Longleftrightarrow} \hspace{0.3cm} F(X,Y,Z) = \sum_{i_1+i_2+i_3=d} \gamma_{i_1,i_2,i_3} X^{i_1} Y^{i_2} Z^{i_3} \ (\gamma_{i_1,i_2,i_3} \in k)$$

Homogenization

To $f(x,y) \in k[x,y]$ with degree d, we associate

$$F(X,Y,Z) = Z^d \cdot f\left(rac{X}{Z},rac{Y}{Z}
ight) \in k[X,Y,Z]$$
 .

Then,

$$ullet f(x_0,y_0)=0 \quad \Longleftrightarrow F(x_0,y_0,1)=0.$$

$$ullet$$
 For any $lpha \in k^ imes = k - \{0\},$ $F(lpha X, lpha Y, lpha Z) = lpha^d F(X, Y, Z).$

So,
$$F(X_0, Y_0, Z_0) = 0$$

$$\iff F(\alpha X_0, \alpha Y_0, \alpha Z_0) = 0 ext{ for any } \alpha \in k^{\times}.$$

Example:

$$f(x,y)=y^2-x(x-1)(x+1)$$
 leads to $F(X,Y,Z)=Y^2Z-X(X-Z)(X+Z)$.

Then, $\widehat{\Gamma}=\{F=0\}\subset \mathbb{P}^2(\mathbb{C}) \text{ contains}$ $\Gamma=\{f=0\}(\subset \mathbb{C}^2) \text{ as a subset.}$

However, some points $\widehat{\Gamma}_{\infty}$ with $Z_0=0$ are added: Here we have $\widehat{\Gamma}_{\infty}=\{(0:1:0)\}.$

Consider the affine line $l=\{x=2\}\subset \mathbb{C}^2$. l defines the projective line

$$\widehat{l}=\{X=2Z\}\subset \mathbb{P}^2(\mathbb{C}).$$

We observe that \hat{l} intersects $\hat{\Gamma}$ at $\hat{\Gamma}_{\infty}$.

(There are three points of intersection:

$$(2:\pm\sqrt{6}:1)$$
 and $(0:1:0)$.)

Definition (non-singular curve)

Let $\Gamma = \{f = 0\}$ be an affine plane curve.

• A point $(x_0, y_0) \in \Gamma$ is singular

$$\stackrel{ ext{def}}{\Longleftrightarrow} \; \left(rac{\partial f}{\partial x}
ight)(x_0,y_0) = \left(rac{\partial f}{\partial y}
ight)(x_0,y_0) = 0.$$

ullet **Is** non-singular **or** smooth

 $\stackrel{\mathrm{def}}{\Longleftrightarrow} \Gamma$ has no singular point.

Let $\widehat{\Gamma} = \{F = 0\}$ be a projective plane curve.

ullet A point $(X_0:Y_0:Z_0)\in\widehat{\Gamma}$ is singular

$$\stackrel{ ext{def}}{\Longleftrightarrow} \; \left(rac{\partial F}{\partial X}
ight) (X_0,Y_0,Z_0) = 0, \ \left(rac{\partial F}{\partial Y}
ight) (X_0,Y_0,Z_0) = 0, \ \left(rac{\partial F}{\partial Z}
ight) (X_0,Y_0,Z_0) = 0.$$

ullet $\widehat{\Gamma}$ is non-singular or smooth

 $\stackrel{\mathrm{def}}{\Longleftrightarrow} \widehat{\Gamma}$ has no singular point.

The Coordinate Ring

Idea: Consider the Totality of Polynomial Functions on the Curve Γ (or $\widehat{\Gamma}$)

Definition (congruence)

Take an irreducible $f(x,y) \in \mathbb{C}[x,y]$.

If $g(x,y), h(x,y) \in \mathbb{C}[x,y]$ satisfy

$$g(x,y) - h(x,y) = q(x,y)f(x,y)$$

for some $q(x,y) \in \mathbb{C}[x,y]$, we say that

g(x,y) and h(x,y) are congruent modulo f(x,y),

and denote it by $g(x,y) \equiv h(x,y) \pmod{f(x,y)}$.

Let

$$\mathbb{C}[x,y]/(f(x,y))$$

be the set of congruence classes of $\mathbb{C}[x,y]$ modulo f(x,y). Then it has a ring-structure and is said to be the residue class ring of $\mathbb{C}[x,y]$ modulo f(x,y).

Let $\Gamma = \{f(x,y) = 0\}$ be an affine plane curve.

Assume that $g(x,y) \equiv h(x,y) \pmod{f(x,y)}$.

Take a point $(x_0, y_0) \in \Gamma$. Then,

$$egin{aligned} g(x_0,y_0) &= h(x_0,y_0) - q(x_0,y_0) f(x_0,y_0) \ &= h(x_0,y_0). \end{aligned}$$

Namely, g(x,y) and h(x,y) define the same polynomial function on Γ iff they determine the same element in $\mathbb{C}[x,y]/(f(x,y))$.

Definition (coordinate ring)

Let $\Gamma = \{f(x,y) = 0\}$ be an affine plane curve. We call

$$R(\Gamma) = \mathbb{C}[x,y]/(f(x,y))$$

the coordinate ring of Γ .

Let \tilde{x} , \tilde{y} be the congruence classes modulo f(x, y) associated to x, y. Then

$$R(\Gamma)=\mathbb{C}[\widetilde{x},\widetilde{y}].$$

 $R(\Gamma)$ is an integral domain.

$$(\text{i.e., } g,h \in R(\Gamma),\, g \cdot h = 0 \implies g \text{ or } h = 0)$$

So we can take the quotient field of $R(\Gamma)$.

Definition (function field, affine case)

We set

$$egin{aligned} \mathbb{C}(\Gamma) &= \operatorname{Qf}\left(oldsymbol{R}(\Gamma)
ight) \ &= \left\{rac{g(\widetilde{x},\widetilde{y})}{h(\widetilde{x},\widetilde{y})} \left| egin{array}{c} g(\widetilde{x},\widetilde{y}),h(\widetilde{x},\widetilde{y}) \in oldsymbol{R}(\Gamma) \ h(\widetilde{x},\widetilde{y})
eq 0 \end{array}
ight\}. \end{aligned}$$

- $\mathbb{C}(\Gamma)$ is called the function field of Γ .
- $\mathbb{C}(\Gamma)$ can be regarded as the set of rational functions on the affine plane curve Γ .

The Projective Case

Let $\widehat{\Gamma}$ be a projective plane curve defined by a homogeneous polynomial F(X,Y,Z):

$$\widehat{\Gamma} = \{(X_0:Y_0:Z_0) \in \mathbb{P}^2(\mathbb{C}) \; ; \; F(X_0,Y_0,Z_0) = 0\}.$$

Definition (coordinate ring)

We call

$$R(\widehat{\Gamma}) = \mathbb{C}[X, Y, Z]/(F(X, Y, Z))$$

the coordinate ring of $\widehat{\Gamma}$.

However, the Definition of Function Fields for Projective Curves is a little bit involved.

Since F is homogeneous, $R(\widehat{\Gamma})$ becomes a graded ring:

$$R(\widehat{\Gamma}) = igoplus_{d=0}^{\infty} R_d,$$

where R_d is the "d-homogeneous" part.

Definition (function field, projective case)

$$\mathbb{C}(\widehat{\Gamma}) = \left\{ egin{aligned} & G(\widetilde{X},\widetilde{Y},\widetilde{Z}) \ \hline & H(\widetilde{X},\widetilde{Y},\widetilde{Z}) \end{aligned}
ight| egin{aligned} & G,H ext{ belongs to} \ \hline & ext{the same } R_d \end{aligned}
ight\}$$

Let $\varphi \in \mathbb{C}(\widehat{\Gamma})$ and $P = (X_0 : Y_0 : Z_0) \in \widehat{\Gamma}$. We say that φ is defined at P if

$$arphi = rac{G(\widetilde{X},\widetilde{Y},\widetilde{Z})}{H(\widetilde{X},\widetilde{Y},\widetilde{Z})} \ ext{ with } H(X_0,Y_0,Z_0)
eq 0$$

Then we set

$$arphi(P)=rac{G(X_0,Y_0,Z_0)}{H(X_0,Y_0,Z_0)}.$$

Note that

$$egin{aligned} rac{G(lpha X_0, lpha Y_0, lpha Z_0)}{H(lpha X_0, lpha Y_0, lpha Z_0)} &= rac{lpha^d \cdot G(X_0, Y_0, Z_0)}{lpha^d \cdot H(X_0, Y_0, Z_0)} \ &= rac{G(X_0, Y_0, Z_0)}{H(X_0, Y_0, Z_0)}. \end{aligned}$$

Valuation Rings

Let $\widehat{\Gamma}$ be a projective plane curve.

Take a point $P \in \widehat{\Gamma}$. We define

$$\mathcal{O}_P(\widehat{\Gamma}) = \{ arphi \in \mathbb{C}(\widehat{\Gamma}) \; ; \; arphi \; ext{is defined at } P \}.$$

Then, if P is non-singular,

- $(1)\quad \mathbb{C}\subsetneqq \mathcal{O}_P(\widehat{\Gamma})\subsetneqq \mathbb{C}(\widehat{\Gamma}),\quad \text{and}\quad$
- (2) If $\varphi \in \mathbb{C}(\widehat{\Gamma})$, then

$$\varphi \in \mathcal{O}_P(\widehat{\Gamma})$$
, or $\varphi^{-1} \in \mathcal{O}_P(\widehat{\Gamma})$.

Definition (valuation ring)

A subring $\mathcal{O} \subset \mathbb{C}(\widehat{\Gamma})$ with the properties (1) and (2) is called a valuation ring of the function field $\mathbb{C}(\widehat{\Gamma})$.

Main Theorem

Let $\widehat{\Gamma}$ be a non-singular projective plane curve. Then there exists a one-to-one correspondence between the points of $\widehat{\Gamma}$ and the valuation rings of $\mathbb{C}(\widehat{\Gamma})$.

$$\left\{ egin{aligned} ext{points of } \widehat{\Gamma}
ight\} & \stackrel{1-1}{\longleftrightarrow} \left\{ ext{valuation rings } \mathbb{C}(\widehat{\Gamma})
ight\} \ P & \longleftrightarrow & \mathcal{O}_P(\widehat{\Gamma}) \end{aligned}$$

II. Algebraic Curves over an Arbitrary Field

We can define an algebraic curve over an arbitrary field in the same way as in Chapter I. However, there is a big problem.

Definition (rational points)

Let k be a field, and Γ the affine plane curve defined by a polynomial $f(x,y) \in k[x,y]$. For any field K containing k, we define $\Gamma(K) = \{(x_0,y_0) \in K^2 \; ; \; f(x_0,y_0) = 0\}.$ An element of $\Gamma(K)$ is called a K-rational point of Γ .

Problem: $\Gamma(K) \neq \emptyset$?

Example:
$$f(x,y) = x^2 + y^2 + 1$$
.

Let $k = K = \mathbb{R}$ (the real number field).

Clearly $\Gamma(\mathbb{R}) = \emptyset$. We can not draw the picture of $\Gamma(\mathbb{R})$.

So how do we do?

We consider the coordinate ring as in Chap. I:

$$\mathbb{R}[x,y]/(x^2+y^2+1)$$

and its quotient field

$$F=\mathrm{Qf}\left(\mathbb{R}[x,y]/(x^2+y^2+1)
ight).$$

Now we can define the set of valuations $\mathcal{M} = \{\mathcal{O} \; ; \; \mathcal{O} \; \text{is a valuation ring of } F\}.$

Hope: $\mathcal M$ might be a substitute of the points of $\Gamma(\mathbb R)$!

Note that, if $(\alpha, \beta) \in \mathbb{C}^2$ is a solution of the equation $f(x, y) = x^2 + y^2 + 1 = 0$, then $(\bar{\alpha}, \bar{\beta}) \in \mathbb{C}^2$ is also a solution. Here $\bar{\alpha}, \bar{\beta}$ are the complex conjugates of α, β .

Fact: There exists a one-to-one correspondence between the pairs $\{(\alpha, \beta), (\bar{\alpha}, \bar{\beta})\}$ of the points of $\Gamma(\mathbb{C})$ and the valuation rings \mathcal{O} of F such that $\mathcal{O} \supset \mathbb{R}[\tilde{x}, \tilde{y}]$.

$$\left\{ egin{array}{l} ext{pair} \; \{(lpha,eta),(ar{lpha},ar{eta})\} \ ext{of the points of} \; \Gamma(\mathbb{C}) \end{array}
ight\}$$

$$\stackrel{1-1}{\longleftrightarrow} \quad \left\{ egin{array}{ll} ext{valuation ring} \;\; \mathcal{O} \; ext{of} \; F \ ext{such that} \;\; \mathcal{O} \supset \mathbb{R}[\widetilde{x},\widetilde{y}] \end{array}
ight\}$$

Remark: If we drop the condition $\mathcal{O} \supset \mathbb{R}[\widetilde{x}, \widetilde{y}]$, then the point at infinity appears.

III. Function Fields and the Theorem of Riemann-Roch

• Let F/K be a field extension. Then $x \in F$ is said to be transcendental over K if x is not algebraic over K.

Definition (function field)

A function field F/K is a field extension s.t. F is a finite algebraic extension of K(z) for some element $z \in F$ which is transcendental over K.

Definition (valuation ring)

A valuation ring \mathcal{O} of a function field F/K is a ring with the following properties:

- (1) $K \subsetneq \mathcal{O} \subsetneq F$, and
- (2) for any $z \in F$, $z \in \mathcal{O}$ or $z^{-1} \in \mathcal{O}$.

Fact: Let \mathcal{O} be a valuation ring of the function field F/K. Then, \mathcal{O} has a unique maximal ideal $P=\mathcal{O}\setminus\mathcal{O}^*,$ where $\mathcal{O}^*=\{z\in\mathcal{O}\;;\;\exists w\in\mathcal{O}\;\mathrm{with}\;zw=1\}.$

Definition (place): A place P of the function field F/K is the maximal ideal of some valuation ring \mathcal{O} of F/K.

We define $\mathbb{P}_F := \{P \; ; \; P \; \text{is a place of} \; F/K\}.$

If \mathcal{O} is a valuation ring of F/K and P its maximal ideal, then \mathcal{O} is uniquely determined by $P\colon \ \mathcal{O}=\{z\in F\ ;\ z^{-1}\not\in P\}.$ We write $\mathcal{O}_P:=\mathcal{O}.$

Idea: $(F/K, \mathbb{P}_F)$ is our "algebraic curve" and a place $P \in \mathbb{P}_F$ is a "point".

Valuations

Motivation: $\Gamma = \{x^2 + y^2 - 1 = 0\} \ (\subset \mathbb{C}^2)$.

Take a rational function $\varphi \in \mathbb{C}(\Gamma)$ defined by

$$arphi(x,y)=rac{x(x-1)^2}{(y-1)^2}.$$
 Then $P=(1,0)\in\Gamma$ is a zero of $arphi$ of order 2, and $Q=(0,1)\in\Gamma$ is a pole of order 1. We write as $u_P(arphi)=2$ and $u_Q(arphi)=-1.$

Fact: Let \mathcal{O} be a valuation ring of the function field F/K and P its maximal ideal. Then,

- (1) $\exists t \in \mathcal{O} \text{ such that } P = t\mathcal{O}.$
- (2) Any $0 \neq z \in F$ has a unique representation of the form $z = t^n u$ $(n \in \mathbb{Z}, u \in \mathcal{O}^*)$.

Definition (valuation): For any $P \in \mathbb{P}_F$, we associate a function $\nu_P : F \to \mathbb{Z} \cup \{\infty\}$ by $\nu_P(z) = n$ if $z \neq 0, \ z = t^n u$ as above, and $\nu_P(0) = \infty$.

In this case, we have

$$egin{aligned} \mathcal{O}_P &= \{z \in F \; ; \;
u_P(z) \geq 0 \}, \ \mathcal{O}_P^* &= \{z \in F \; ; \;
u_P(z) = 0 \}, \ P &= \{z \in F \; ; \;
u_P(z) > 0 \}. \end{aligned}$$

Definition (zeros, poles): Let $z \in F$ and $P \in \mathbb{P}_F$.

• P is a zero of z of order m

$$\stackrel{ ext{def}}{\Longleftrightarrow} \;
u_P(z) = m > 0.$$

• P is a pole of z of order m

$$\stackrel{ ext{def}}{\Longleftrightarrow} \;
u_P(z) = -m < 0.$$

Theorem: Any element $0 \neq z \in F$ has only finitely many zeros and poles.

Residue Class Fields and Degrees

Idea: An element z of F should be a "rational function" on the curve.

Let P be a place of F/K and \mathcal{O}_P be its valuation ring. Then $F_P := \mathcal{O}_P/P$ is a field. For $z \in \mathcal{O}_P$, we define z(P) to be the residue class of z modulo P:

$$egin{array}{ll} \mathcal{O}_P & \longrightarrow & \mathcal{O}_P/P \ z & \longmapsto & z(P) \end{array}$$

For $z \in F \setminus \mathcal{O}_P$, we define $z(P) := \infty$.

Definition (residue class field):

- (1) F_P is called the residue class field of P.
- (2) The map $x \mapsto x(P)$ from F to $F_P \cup \{\infty\}$ is called the residue class map w.r.t. P.

Since $K \cap P = \{0\}$, we can regard K as a subfield of $F_P = O_P/P$.

Let $[F_P:K]$ be the degree of F_P/K .

Definition (degree):

 $\deg P := [F_P : K]$ is called the degree of P.

Remark: If F/K is the function field of some non-singular projective plane curve $\widehat{\Gamma}$ defined over K, then the places of F/K of degree one are in one-to-one correspondence with the K-rational points $\widehat{\Gamma}(K)$ of $\widehat{\Gamma}$.

Example: Let $K = \mathbb{F}_q$ and $F = \mathbb{F}_q(x)$ where x is transcendental over \mathbb{F}_q . Then F is said to be the $rational\ function\ field\ over\ \mathbb{F}_q$. Every irreducible polynomial $p(x) \in \mathbb{F}_q[x]$ defines a valuation ring

$$\mathcal{O}_{p(x)} = \left\{ egin{aligned} f(x) & f(x), g(x) \in \mathbb{F}_q[x], \ g(x) & p(x)
extrm{ } f(x), g(x) \end{aligned}
ight.$$

of $\mathbb{F}_q(x)/\mathbb{F}_q$ with maximal ideal

$$P_{p(x)} = egin{cases} f(x) \ g(x) & f(x), g(x) \in \mathbb{F}_q[x], \ g(x) & f(x), g(x)
otin g(x) \end{cases}.$$

We have $\deg P_{p(x)} = \deg p(x)$.

In particular, if $p(x) = x - \alpha$ with $\alpha \in \mathbb{F}_q$, the degree of $P_{x-\alpha}$ is one, and the residue class map is given by

$$z(P)=z(lpha) \qquad ext{(evaluation map)}$$
 for $z\in F.$

However, you miss one place, the infinite place.

$$\mathcal{O}_{\infty} = \left\{ rac{f(x)}{g(x)} \left| egin{array}{c} f(x), g(x) \in \mathbb{F}_q[x], \ \deg f(x) \leq \deg g(x) \end{array}
ight\}$$

with maximal ideal

$$P_{\infty} = egin{cases} rac{f(x)}{g(x)} & f(x), g(x) \in \mathbb{F}_q[x], \ \deg f(x) < \deg g(x) \end{cases}.$$

Theorem: There are no places of $\mathbb{F}_q(x)/\mathbb{F}_q$ other than $P_{p(x)}$'s and P_{∞} .

Corollary: The places of $\mathbb{F}_q(x)/\mathbb{F}_q$ of degree one are in one-to-one correspondence with $\mathbb{F}_q \cup \{\infty\}$.

Divisors

Let F/K be a function field and \mathbb{P}_F the set of the places of F/K

 $egin{aligned} ext{Definition (divisor):} & A \ divisor ext{ is a formal sum} \ D = \sum_{P \in \mathbb{P}_F} n_P P \ ext{ with } n_P \in \mathbb{Z}, \ ext{ almost all } n_P = 0. \end{aligned}$ A divisor of the form $D = P \ ext{with } P \in \mathbb{P}_F \ ext{ is}$

A divisor of the form D = P with $P \in \mathbb{P}_F$ is called a *prime divisor*.

If
$$D=\sum n_P P$$
 and $D'=\sum n'_P P,$ we put $D+D'\stackrel{\mathrm{def}}{=}\sum_{P\in\mathbb{P}_F}(n_P+n'_P)P.$

The totality \mathcal{D}_F of the divisors of F/K becomes a group and is called the divisor group of F/K.

For $Q \in \mathbb{P}_F$ and a divisor $D = \sum n_P P \in \mathcal{D}_F,$ we define $u_Q(D) := n_Q.$

 $ullet \ D_1 \leq D_2 \stackrel{ ext{def}}{\Longleftrightarrow}
u_P(D_1) \leq
u_P(D_2) \ ext{for} \ orall P \in \mathbb{P}_F$

The degree of a divisor D is defined by

$$\deg D = \sum_{P \in \mathbb{P}_F}
u_P(D) \cdot \deg P.$$

Definition (principal divisor): Let $x \in F \setminus \{0\}$ and denote by Z (resp. N) the set of zeros (resp. poles) of x in \mathbb{P}_F . Then we define

$$(x):=\sum_{P\in Z}
u_P(x)P+\sum_{Q\in N}
u_Q(x)Q$$
 .

Since x has only finitely many zeros and poles, (x) defines a divisor (the *principal divisor* of x).

Theorem: Any principal divisor has degree zero. Namely, we have deg(x) = 0 for any $x \in F$. Example: Let $K = \mathbb{F}_q$ and $F = \mathbb{F}_q(x)$ For $0 \neq z \in \mathbb{F}_q(x)$, we have $z = a \cdot f(x)/g(x)$ with $a \in \mathbb{F}_q \setminus \{0\}$, and $f(x), g(x) \in \mathbb{F}_q[x]$ are monic and relatively prime. Let

$$f(x) = \prod_{i=1}^r p_i(x)^{n_i}, ~~ g(x) = \prod_{i=1}^s q_j(x)^{m_j}$$

with pairwise distinct irreducible monic polynomials $p_i(x), q_j(x) \in \mathbb{F}_q[x]$. Then the principal divisor of z is

$$p(z) = \sum_{i=1}^r n_i P_i - \sum_{j=1}^s m_j Q_j + (\deg g - \deg f) P_\infty$$

where P_i and Q_j are the places corresponding to $p_i(x)$ and $q_j(x)$. Therefore, we have

$$\deg(x) = \sum_{i=1}^r n_i \deg p_i(x) - \sum_{j=1}^s m_j \deg q_j(x)$$

$$+(\deg g - \deg f) \cdot 1 = 0.$$

Theorem of Riemann-Roch

Definition: For a divisor $A \in \mathcal{D}_F$, we set

$$\mathcal{L}(A) := \{x \in F \; ; \; (x) \geq -A\} \cup \{0\}.$$

Then $\mathcal{L}(A)$ is a vector space over K.

Meaning: If

$$A = \sum_{i=1}^r n_i P_i - \sum_{j=1}^s m_j Q_j$$

with $n_i>0,\,m_j>0,\,$ then $\mathcal{L}(A)$ consisits of all elements $x\in F$ such that

- (1) x has zeros of order $\geq m_j$ at Q_j , for $j=1,\ldots,s,$ and
- (2) x may have poles only at the places P_1, \ldots, P_r with the pole order at P_i being bounded by n_i $(i = 1, \ldots, r)$.

Let F/K be a function field.

Definition (dimension): For $A \in \mathcal{L}(A)$, we set $\dim A := \dim \mathcal{L}(A)$ and call it the dimension of A.

Theorem (Riemann-Roch):

- (1) For any $A \in \mathcal{D}_F$, dim A is finite.
- (2) For any $A \in \mathcal{D}_F$, we have $\dim A = \deg A + 1 g + l^*(A)$.

Here g is the genus of F/K and $l^*(A)$ is some correction term which is always ≥ 0 .

(3) If $A \in \mathcal{D}_F$ is of degree $\geq 2g-1$, then $\dim A = \deg A + 1 - g$.

How to calculate the genus?

If F/\mathbb{F}_q comes from a non-singular projective plane curve defined by a homogeneous irreducible polynomial f(X,Y,Z), then

$$g=\frac{(d-1)(d-2)}{2}$$

where d is the degree of f.

IV. Zeta Functions of a Curve over a Finite Field

In this chapter, we discuss the zeta function of a function field F/\mathbb{F}_q .

We are mainly interested in places $P \in \mathbb{P}_F$ of degree one. For this purpose, we consider more general divisors which are positive.

Lemma 1. For every $n \in \mathbb{Z}$, $n \geq 0$, there exist only finitely many positive divisors of degree n.

We introduce the divisor class group.

Let $\mathcal{P}_F = \{(x) ; x \in F, x \neq 0\}$ be the set of principal divisors. Clearly \mathcal{P}_F is a subgroup of \mathcal{D}_F . The quotient group $\mathcal{C}_F = \mathcal{D}_F/\mathcal{P}_F$ is called the **divisor class group** of F.

We denote by [A] the class to which A belongs. Then we have deg[A] = deg A and dim[A] = dim A.

The set

$$\mathcal{D}_F^0 = \{ A \in \mathcal{D}_F ; \deg A = 0 \}$$

is a subgroup of \mathcal{D}_F , and called **the group of divisors of degree zero**. Further, the set

$$\mathcal{C}_F^0 = \{ [A] \in \mathcal{C}_F ; \deg A = 0 \}$$

is called the group of divisor class of degree 0.

Proposition 2. The group C_F^0 is a finite group. Its order $h = h_F$ is called **the class number** of F/\mathbb{F}_q .

We consider the numbers

$$A_n = |\{A \in \mathcal{D}_F ; A \ge 0, \deg A = n\}|$$

for $n = 0, 1, 2, \ldots$ Then clearly $A_0 = 1$, $A_1 =$ the number of prime divisors of F or \mathbb{P}_F of degree 1.

Definition 3. The power series

$$Z(t)=Z_F(t)=\sum_{n=0}^{\infty}A_nt^n\in\mathbb{C}[[t]]$$

is called **the zeta function** of F/\mathbb{F}_q .

Observe that Z(t) is considered as a power series over the complex number field \mathbb{C} . The idea is that properties of the complex function Z(t) will give informations on the numbers A_n .

From the Theorem of Riemann-Roch, we can determine the form of Z(t).

Theorem 4. (a) If F/\mathbb{F}_q has genus g=0, then

$$Z(t) = \frac{1}{q-1} \left(\frac{q}{1-qt} - \frac{1}{1-t} \right).$$

(b) If $g \ge 1$, then Z(t) = F(t) + G(t) with

$$F(t) = \frac{1}{q-1} \sum_{\substack{[C] \in \mathcal{C}_F, \\ 0 \leq \deg[C] \leq 2g-2}} q^{\dim[C]} \cdot t^{\deg[C]},$$

and

$$G(t) = \frac{h}{q-1} \left(q^{1-g} (qt)^{2g-1} \frac{1}{1-qt} - \frac{1}{1-t} \right).$$

In particular, the theorem above shows that Z(t) is a rational function, more precisely, it is of the form

$$Z(t) = \frac{L_F(t)}{(1-t)(1-qt)},$$

where $L_F(t)$ is a polynomial with complex coefficients. We call $L_F(t)$ the L-polynomial of F/\mathbb{F}_q .

By definition, we have

$$L_F(t) = (1 - t)(1 - qt) \sum_{n=0}^{\infty} A_n t^n.$$
 (1)

This shows that $L_F(t)$ contains all important informations. Now the following theorem holds.

Theorem 5. (1) $L_F(t) \in \mathbb{Z}[t]$ and $\deg L_F(t) = 2g$.

- (2) $L_F(t) = q^g t \ 2gLF(1/qt)$.
- (3) $L_F(1) = h$, the class number of F/\mathbb{F}_q .
- (4) We write $L_F(t) = a_0 + a_1t + \cdots + a_{2g}t^{2g}$. Then the following holds:
 - (a) $a_0 = 1$ and $a_{2g} = q^g$.
 - (b) $a_{2g-i} = q \ g ia_i \ for \ 0 \le i \le g$.
 - (c) $a_1 = N (q + 1)$ where N is the number of prime divisors P of degree one.
- (5) $L_F(t)$ factors in $\mathbb{C}[t]$ in the form

$$L_F(t) = \prod_{i=1}^{2g} (1 - \alpha_i t). \tag{2}$$

The complex numbers $\alpha_1, \dots, \alpha_{2g}$ are algebraic integers, and they can be arranged in such a way that $\alpha_i \alpha_{g+i} = g$ holds for $i = 1, \dots, g$.

We are interested in controling the number $N=A_1=$ the number of places of F/\mathbb{F}_q of degree one. By comparing (1) with (2), we obtain

$$N = A_1 = q + 1 - \sum_{i=1}^{2g} \alpha_i$$

and thus

$$|N-(q+1)| \le \left|\sum_{i=1}^{2g} lpha_i
ight| \le \sum_{i=1}^{2g} |lpha_i|.$$

The main result is the following.

Theorem 6 (Hasse-Weil). The reciprocals of the roots of $L_F(t)$ satisfy

$$|lpha_i|=q^{1/2} \quad for \quad i=1,\ldots,2g.$$

Remark: The Hasse-Weil Theorem is often referred to as the *Riemann Hypothesis for Algebraic Function Fields*. Let us briefly explain this notation. One can regard the Zeta function $Z_F(t)$ as an analogue of the classical Riemann ζ -function

$$\zeta(s) := \sum_{n=1}^{\infty} n^{-s} \tag{3}$$

(where $s \in \mathbb{C}$ and Re(s) > 1) in the following manner. Define the absolute norm of a divisor $A \in \mathcal{D}_F$ by

$$\mathcal{N}(A) := q^{\deg A}.$$

For instance, the absolute norm $\mathcal{N}(P)$ of a prime divisor $P \in \mathcal{P}_F$ is the cardinarity of its residue field F_P . Then the function

$$\zeta_F(s) := Z_F(q^{-s})$$

can be written as

$$\zeta_F(s) = \sum_{n=0}^{\infty} A_n q^{-sn} = \sum_{\mathcal{A} \in \mathcal{D}_F, \ A \ge 0} \mathcal{N}(A)^{-s},$$

which is the appropriate analogue to (3). It is well-known for number theory for the Riemann zeta function (3) has an analytic continuation as a meromorphic function on \mathbb{C} . The classical Riemann Hypothesis (which is still unproven) states that - besides the so-called trivial zeros $s = -2, -4, -6, \ldots$, - all zeros of $\zeta(s)$ lie on the line Re(s) = 1/2.

In the function field case, the Hasse-Weil Theorem states that

$$\zeta_F(s) = 0 \Rightarrow Z_F(q^{-s}) = 0 \Rightarrow |q^{-s}| = q^{-1/2}.$$

Since $|q^{-s}| = q^{-\text{Re}(s)}$, this means that

$$\zeta_F(s) = 0 \Rightarrow \operatorname{Re}(s) = 1/2.$$

Therefore, Theorem 6 can be viewed as an analogue of the classical Riemann Hypothesis.

Theorem 7 (Hasse-Weil Bound). The number N = N(F) of places of F/\mathbb{F}_q of degree one can be estimated by

$$|N - (q+1)| \le 2gq^{1/2}.$$

The estimate above is used in the construction of Goppa's codes.

References

- [1] W. Fulton, Algebraic curves. An introduction to algebraic geometry, Benjamin, 1969.
- [2] H. Stichtenoth, Algebraic function fields and codes, Universitext, Springer-Verlag, 1993.

Fulton's book [1] is a good introduction to algebraic curves. The main theorem of Chapter I of this note is proved in [1, CHAPTER 7]. The chapters III and IV of this note is a summary of Stichtenoth [2]. Stichtenoth's book is highly recommended if you want to learn Goppa's code.