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Purpose of the Talk is

Give an Overview of the Theory
of Algebraic Curves

(necessary for the construction of Goppa’s codes)

Our Main Problem

What is a Curve over a Finite Field?
How do we investigate it?

What kind of structure does it have?



The Plan of the Talk

I. Review of the Theory of Algebraic

Curves over the Complex Number
Field

II. Algebraic Curves over an Arbitrary
Field

II1. Function Fields and the Theorem
of Riemann-Roch

IV. Zeta Functions of a Curve over
a Finite Field



I. Review of the Theory of
Algebraic Curves over
the Complex Number Field

IR denotes the real number field.

C denotes the complex number field.

Definition (affine plane curve)
f(x,y) € Clx,y] an irreducible polynomial.
Then,

I' =Ty = {(x0,y0) € C*; f(x0,y0) = 0}

is called an affine plane curve.

f(x,y) =y* —z(x—1)(x+1).

The picture of I'¢ itself can not be seen. But

{(xo,yo) € R?; f(xo,yo) = 0} is as follows:



L

Figure 1: y?> = z(x — 1)(z + 1)

I, intersects I' at infinity!



Definition (projective plane)
Let (X09 Yi)a ZO)a (Xla l/19 Zl) S (C3\{(O9 09 O)}

Then, (X09 l/09 ZO) ~ (Xla Yia Zl)

&Ly 3q € C, a # 0 such that

Xl — aXO) }/1 — aYE); Zl — OCZO.
We call the set of equivalence classes
P*(C) = (C°\ {(0,0,0)}) /~

the projective plane over C.

We write a point of P?(C) as (Xp : Yy : Zj).

Definition (projective plane curve)

F(X,Y,Z) e C[X,Y,Z] ahomogeneous

irreducible polynomial.

Then,
T =Tr
= {(Xo: Yy : Zy) € P2(C) ; F(Xo, Yo, Zy) = 0}

is called a projective plane curve.



Let k be a field.

Definition (homogeneous polynomial)
F(X,Y,Z) € k[X,Y, Z] is homogeneous of degree d
= F(X,Y52)= Y Vi XY 2Z
t1+i2+i3=d
(72'1,%'2,733 € k)

Homogenization

To f(x,y) € k[x,y] with degree d, we associate

L (XY
FX,Y,.Z2)=Z*-f|—,— ) € k[X,Y, Z].
Z' Z

Then,

of(zo,y0) =0 <= F(20,y0,1) = 0.

e For any a € k* = k — {0},
F(aX,aY,aZ) = a’F(X,Y, Z).

SO, F(X09 Y_(DZO) =0

<— F(aXy,aYy,aZ;) =0 for any a € k*.



f(z,y) = y* —x(x — 1)(xz + 1) leads to
F(X,Y,Z) =Y?Z — X(X — Z)(X + Z).

Then, T' = {F = 0} C P*(C) contains

' = {f = 0}(C C?) as a subset.

However, some points foo with Zg =0

are added: Here we have I'oo = {(0: 1 : 0)}.

Consider the affine line | = {z = 2} C C2

[ defines the projective line
I={X =22} C P*(C).
We observe that 1 intersects T' at f‘oo.

(There are three points of intersection:

(2:4++6:1)and (0:1:0).)



Definition (non-singular curve)
Let ' = {f = 0} be an affine plane curve.
e A point (xg,yo) € I is singular

< (g) (%o, Yo) = (g—i) (€0, yo) = 0.

e I' is non-singular or smooth

<g> I' has no singular point.

Let T = {F = 0} be a projective plane curve.
e A point (Xp:Yp: Zy) € T is singular

def OF
e <—) (X07 1/07 ZO) — 07

0X
OF
8—Y (X07 YE)? ZO) =0,
OF
8—2 (X09 Yo, ZO) = 0.

e I' is non-singular or smooth

def = . .
<= T has no singular point.



The Coordinate Ring

Consider the Totality of Polynomial
Functions on the Curve I' (or f‘)

Definition (congruence)
Take an irreducible f(x,y) € Clz, y].
If g(z, y), h(z,y) € Clz, y] satisfy

g(z,y) — h(z,y) = q(z,y) f(z,y)
for some ¢q(x,y) € Clz, y|], we say that

g(x,y) and h(x,y) are congruent modulo f(xz,y),
and denote it by g(xz,y) = h(x,y) (mod f(x,y)).
Let

Clz, y]/(f(x,y))

be the set of congruence classes of C|x, y]
modulo f(x,y). Then it has a ring-structure
and is said to be the residue class ring of Clx, y]

modulo f(xz,y).



Let I' = {f(x,y) = 0} be an affine plane curve.
Assume that g(x,y) = h(x,y) (mod f(x,y)).
Take a point (xg,yo) € I'. Then,

9(530, yO) — h(mm yO) — Q(wm yO)f(wm yO)
— h’(:BOa yO)'
Namely, g(x,y) and h(x,y) define the same

polynomial function on I' iff they determine the

same element in Clxz, y|/(f(x,y)).

Definition (coordinate ring)
Let I' = {f(x,y) = 0} be an affine plane curve.
We call
R(T) = Clz, y]/(f(x,y))
the coordinate ring of I.
Let x, y be the congruence classes modulo f(x,y)

associated to x,y. Then

R(T') = Clz, y].



R(T') is an integral domain.
(i.e., goh € R(T'),g-h=0 —>gor h =0)
So we can take the quotient field of R(T).

Definition (function field, affine case)

We set
C(T) = Qf(R(T))
_ {g@s,g) 9(%, §), h(&, ) ER(I‘)}
h(z,y) | h(Z,y) #0 '

C(T) is called the function field of T.
C(T') can be regarded as the set of rational

functions on the affine plane curve I'.



The Projective Case

Let T be a projective plane curve defined by
a homogeneous polynomial F(X,Y, Z):
T = {(Xo:Ys: Zy) € P%(C) ; F(Xo, Yo, Zy) = 0}.

Definition (coordinate ring)

We call

R(f) — C[Xa Y, Z]/(F(Xa Y, Z))

the coordinate ring of T.

However, the Definition of Function Fields for

Projective Curves is a little bit involved.

Since F' is homogeneous, R(f‘) becomes

a graded ring:

R(T) = P R,
d=0

where R, is the “d-homogeneous” part.



Definition (function field, projective case)

() — (fff Z)
-\ H(EX,Y, Z)

G, H belongs to
the same R,

Let ¢ € C(T) and P = (Xo: Yy : Zy) € I.
We say that ¢ is defined at P if

G(X, ff Z) .
Y = H(X Z) with H(X(), }/I), Z()) # 0

Then we set

Note that

G(aXy, aYy, aZy) a? - G(Xy, Yo, Zy)
H(aXy,aYy, aZy) a® - H(Xy, Yo, Zo)
G (Xo, Yo, Zy)

H (Xo, Yo, Zo)




Valuation Rings

Let T be a projective plane curve.
Take a point P &€ [. We define
Op() = {p € C(') ; ¢ is defined at P}.
Then, if P is non-singular,
(1) CSOpM) S C(T), and
(2) If ¢ € C(T), then
¢ € Op(T), or o1 € Op(T).

Definition (valuation ring)

A subring © C C(T') with the properties
(1) and (2) is called a wvaluation ring of the
function field C(T).



Main Theorem

LetT be a non-singular projective plane curve.

Then there exists a one-to-one correspondence

between the points of T and the valuation rings

of C(T).

{points of f‘} Pt {Valuation rings (C(f‘)}

P — Op(T)



II. Algebraic Curves over
an Arbitrary Field

We can define an algebraic curve over an
arbitrary field in the same way as in Chapter I.

However, there is a big problem.

Definition (rational points)

Let k be a field, and I' the affine plane curve
defined by a polynomial f(x,y) € k[x, y].
For any field K containing k, we define
I'(K) = {(z0,y0) € K*; f(x0,y0) = 0}.

An element of T'(K) is called a K-rational
point of T'.

Problem: T'(K) # 07



flz,y) =z* +y* + 1.
Let Kk = K = R (the real number field).
Clearly T'(R) = (). We can not draw
the picture of I'(R).

So how do we do?

We consider the coordinate ring as in Chap. I:
Rlz, y]/(z* + y* + 1)

and its quotient field
F = Qf (R[z, y]/(x® + y? + 1)).

Now we can define the set of valuations

M = {O ; O is a valuation ring of F'}.

Hope: M might be a substitute of
the points of I'(R) !



Note that, if (a,3) € C? is a solution of
the equation f(xz,y) = x4+ y*+ 1 = 0, then
(&, B) € C? is also a solution. Here &, 3 are

the complex conjugates of a, 5.

Fact: There exists a one-to-one correspondence
between the pairs {(o, B), (&, 3)} of the points
of T'(C) and the valuation rings O of F such
that © D R[Z, 7).

{ pair {(a, 8), (&, B)} }
of the points of I'(C)

1—1 valuation ring O of F
such that O D R[z, y]

Remark: If we drop the condition O D R[z, y],
then the point at infinity appears.



II1. Function Fields and the Theorem
of Riemann-Roch

e Let F/K be a field extension. Then
x € F 1is said to be transcendental over K if

ax i1s not algebraic over K.

Definition (function field)

A function field F/K is a field extension s.t.
F is a finite algebraic extension of K(z) for
some element z € F' which is transcendental

over K.

Definition (valuation ring)

A wvaluation ring O of a function field F/ K
is a ring with the following properties:
(1) KOS F, and

(2) forany z € F,z€ Oor z7! € O.



Fact: Let O be a valuation ring of the function
field F/K. Then, O has a unique maximal ideal
P = 0O\ O* where

O*={z€ O; Jwe O with zw = 1}.

Definition (place): A place P of the function

field F/ K is the maximal ideal of some valuation
ring O of F/K.

We define Pp := {P ; P is a place of F/K}.

If O is a valuation ring of F/K and P its
maximal ideal, then O is uniquely determined
by P: O={z¢€F; z!¢ P}.

We write Op := O.

Idea: (F/K,Pp) is our “algebraic curve”

and a place P € Pr is a “point”.



Valuations

r={z*+y?>—1=0} (CC?).
Take a rational function ¢ € C(I') defined by

= - Then P =(1,0) €T is a zero
(y—1)
of ¢ of order 2, and Q = (0,1) € T is a pole of order 1.

We write as vp(yp) = 2 and vg(p) = —1.

Fact: Let O be a valuation ring of the function
field F/K and P its maximal ideal. Then,

(1) 3t € O such that P = tO.

(2) Any 0 # z € F has a unique representation
of the form z = t"u (n € Z, u € O%).

Definition (valuation): For any P € Pp, we
associate a function vp : F — Z U {0} by
vp(z) =n if z # 0, z = t"u as above, and

VP(O) = OC.



In this case, we have
Op ={z € F; vp(z) > 0},
Op ={z € F; vp(z) = 0},
P ={ze€ F; vp(z) >0}

Definition (zeros, poles): Let z € F and P € Pp.

e P is a zero of z of order m

PN vp(z) = m > 0.

e P is a pole of z of order m

N vp(z) = —m < 0.

Theorem: Any element 0 # z € F has only

finitely many zeros and poles.



Residue Class Fields and Degrees

Idea: An element z of F should be a

“rational function” on the curve.

Let P be a place of F//K and Op be its
valuation ring. Then Fp := Op/P is a field.
For z € Op, we define z(P) to be the residue

class of z modulo P:
Op — Op/P
z — z(P)
For z € F \ Op, we define z(P) := oo.

Definition (residue class field):
(1) Fp is called the residue class field of P.
(2) The map = — x(P) from F to Fp U {oo}

is called the residue class map w.r.t. P.



Since K N P = {0}, we can regard K as a
subfield of Fp = Op/P.
Let [Fp : K| be the degree of Fp/K.

Definition (degree):
deg P := [Fp : K] is called the degree of P.

Remark: If F/K is the function field of

some non-singular projective plane curve T
defined over K, then the places of F'/K of

degree one are in one-to-one correspondence

with the K-rational points f‘(K) of T.



Let K =F, and F = F,(x)
where x is transcendental over F,. Then
F' is said to be the rational function field over F,.
Every irreducible polynomial p(x) € F,[x]
defines a valuation ring
0,0 { @) | @),9() € Fyel, }
g(z) | p(x)1g(x)

of F,(x)/F, with maximal ideal

:{L«’L‘) f(z),g9(x) € Fylz], }
@7V g@) | p@)f(@), p(z)tg(x) [

We have deg P,,) = deg p(x).

Py

In particular, if p(z) = ¢ — a with o € F,,
the degree of P,_, is one, and the residue class
map is given by

z(P) = z(a) (evaluation map)

for z € F.



However, you miss one place, the infinite place.
o - 1 @) | f(=@),g(z) € Fylz],

| g(z) | deg f(z) < degg(x)
with maximal ideal

p _ ) @) | f(®),g9(x) € Folz],
> g(z) | deg f(x) < degg(x) |

Theorem: There are no places of Fy(x) /Fy other
than Pp(g)’s and Py.

Corollary: The places of Fy(x)/F, of degree one

are in one-to-one correspondence with Fqg U {oo}.



Divisors

Let F/K be a function field and Pr the set
of the places of F/K

Definition (divisor): A divisor is a formal sum

D = Z npP with np € Z, almost all np = 0.
PcPp
A divisor of the form D = P with P € Pr is

called a prime divisor.
If D=) npP and D' =) n,P, we put
/ def

D+D' = ) (np+njp)P.

PE]P)F

The totality Dr of the divisors of F//K becomes
a group and is called the divisor group of F/K.



For Q € Pr and a divisor D = ) npP € Dy,
we define vg(D) := ng.

e D; < Dy, <% vp(Dy) < vp(Ds) for VP € Py

The degree of a divisor D is defined by

deg D = Z vp(D) - deg P.
PEPF
Definition (principal divisor): Let € F \ {0}
and denote by Z (resp. N) the set of

zeros (resp. poles) of x in Pr. Then we define

() := ) vp(@)P+ ) vo(=)Q.

pPeZ QeN

Since x has only finitely many zeros and poles,

(x) defines a divisor (the principal divisor of x).

Theorem: Any principal divisor has degree zero.

Namely, we have deg(x) = 0 for any x € F.



Let K =F, and F = F,(x)
For 0 # z € F,(x), we have z = a - f(x)/g(x)
with a € F; \ {0}, and f(x), g(x) € F,[x]

are monic and relatively prime. Let
r S
f@)=]]pi(@)™, gx)=]]qi=)™
i=1 i=1

with pairwise distinct irreducible monic
polynomials p;(x), q;(x) € Fy[xz]. Then

the principal divisor of z is
(2) =) niPi— ) m;Q;+ (degg — deg f) P
i=1 j=1

where P; and (@Q; are the places corresponding

to pi(x) and gj(x). Therefore, we have

deg(x) = Z n; deg p;(x) — Z m; deg q;(x)
1=1 j=1

+(degg — deg f) -1 = 0.



Theorem of Riemann-Roch

Definition: For a divisor A € Dp, we set

L(A):={x e F; (x)>—A}U{0}.
Then L(A) is a vector space over K.

Meaning: If

A= Z’an — ijQj
=1 J=1

with n; > 0, m; > 0, then L(A) consisits of

all elements € F such that

(1)  has zeros of order > m; at Q;, for
7=1,...,s, and

(2)  may have poles only at the places

P,,..., P, with the pole order at P; being

bounded by n; (¢ =1,...,7).



Let F/K be a function field.

Definition (dimension): For A € L(A), we set
dim A := dim £L(A) and call it the dimension of A.

Theorem (Riemann-Roch):
(1) For any A € Dp, dim A is finite.

(2) For any A € Dp, we have
dimA =degA+1—g+1"(A).

Here g is the genus of F/K and l*(A) is some
correction term which is always > 0.
(3) If A € Dy is of degree > 2g — 1, then

dimA =deg A+ 1 —g.



How to calculate the genus 7
If F/F, comes from a non-singular projective

plane curve defined by a homogeneous

irreducible polynomial f(X,Y, Z), then

_(d—=1)(d—2)
I~ 2

where d is the degree of f.



IV. Zeta Functions of a Curve
over a Finite Field

In this chapter, we discuss the zeta function of a function field F/F,.
We are mainly interested in places P € Pp of degree one. For this
purpose, we consider more general divisors which are positive.

Lemma 1. For every n € Z, n > 0, there exist only finitely many positive
divisors of degree n.

We introduce the divisor class group.

Let Pr = {(z) ; x € F,z # 0} be the set of principal divisors. Clearly
Pr is a subgroup of Dr. The quotient group Cr = Dp/Pr is called the
divisor class group of F.

We denote by [A] the class to which A belongs. Then we have deg[A] =
deg A and dim[A] = dim A.

The set

D% = {A € Dp; deg A =0}

is a subgroup of D, and called the group of divisors of degree zero.
Further, the set
CY ={[A] €Cp; deg A =0}

is called the group of divisor class of degree 0.

Proposition 2. The group C% is a finite group. Its order h = hp is called
the class number of F/F,.

We consider the numbers
A, ={A€Dr; A>0,degA=n}

forn=20,1,2,.... Then clearly Aj =1, A; = the number of prime divisors
of F' or Py of degree 1.



Definition 3. The power series
Z(t) = Zp(t) = )  Ant" € C[[t]]
n=0

is called the zeta function of F/F,.

Observe that Z(t) is considered as a power series over the complex num-
ber field C. The idea is that properties of the complex function Z(t) will
give informations on the numbers A,.

From the Theorem of Riemann-Roch, we can determine the form of Z(¢).

Theorem 4. (o) If F/F, has genus g = 0, then

1 q 1
Z(t) = — .
t) q—l(l—qt 1—t>

(b) If g > 1, then Z(t) = F(t) + G(t) with

1 .

[C]ECF,
0<deg[C]<2g—2

and

h 1 1
G(t) = —— [ ¢"9(qt)*! E :
(0= (a2
In particular, the theorem above shows that Z(t) is a rational function,
more precisely, it is of the form

Lp(t)
(1—-1)(1—qt)’
where Lp(t) is a polynomial with complex coefficients. We call Lgp(t) the
L-polynomial of F/F,.
By definition, we have

Z(t) =

Le(t)=(1-t)(1—qt) y_ Ant". (1)

n=0



This shows that Lr(t) contains all important informations. Now the follow-
ing theorem holds.

Theorem 5. (1) Lp(t) € Z[t] and deg Lr(t) = 2g.
(2) Lp(t) = ¢t 2gLF(1/qt).
(3) Lp(1) = h, the class number of F/IF,.
(4) We write Lp(t) = ag + ait + - - - + ag,t*. Then the following holds:
(a) ap =1 and azy = ¢9.
(b) azg—i = q g —1a; for 0 <i<g.

(c) az = N — (g + 1) where N is the number of prime divisors P of
degree one.

(5) Lr(t) factors in C[t] in the form

29
Lp(t) =] J(1 — ait). (2)
i=1
The complex numbers aq,- -+ , 0y are algebraic integers, and they can
be arranged in such a way that cyogy; = g holds fort=1,...,g.

We are interested in controling the number N = A; = the number of
places of F//F, of degree one. By comparing (1) with (2), we obtain

29

N:A1:q+1—2ai
i—1

and thus
IN —(¢g+1)] <

2g 2g
Dol < ol
1=1 1=1

The main result is the following.



Theorem 6 (Hasse-Weil). The reciprocals of the roots of Lr(t) satisfy

| = ¢*? for i=1,...,2g.

Remark: The Hasse-Weil Theorem is often referred to as the Riemann
Hypothesis for Algebraic Function Fields. Let us briefly explain this nota-
tion. One can regard the Zeta function Zp(t) as an analogue of the classical
Riemann (-function

((s):=> n* (3)

(where s € C and Re(s) > 1) in the following manner. Define the absolute
norm of a divisor A € Dr by

N(A) = qies 4,

For instance, the absolute norm N (P) of a prime divisor P € Pp is the
cardinarity of its residue field Fp. Then the function

Cr(s) = Zr(q™)

can be written as

Cr(s) =D A= > N4

AeDp, A>0

which is the appropriate analogue to (3). It is well-known for number theory
for the Riemann zeta function (3) has an analytic continuation as a mero-
morphic function on C. The classical Riemann Hypothesis (which is still un-
proven) states that - besides the so-called trivial zeros s = —2, -4, —6, .. .,
- all zeros of ((s) lie on the line Re(s) = 1/2.

In the function field case, the Hasse-Weil Theorem states that

Cr(s) =0=Zp(q¢”°)=0=|¢"°| = q_l/z.



—Re(s) this means that

Since |¢~%| = ¢
Cr(s) = 0= Re(s) = 1/2.

Therefore, Theorem 6 can be viewed as an analogue of the classical Riemann
Hypothesis.

Theorem 7 (Hasse-Weil Bound). The number N = N(F') of places of
F/F, of degree one can be estimated by

[N —(g+1)| < 294"/

The estimate above is used in the construction of Goppa’s codes.
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