1 Goppa Codes

Goppa Codes are constructed by using curves over finite fields.

We recall what a curve is:

F, is the finite field with ¢ = p" elements.

A curve over F, is a pair I' = (F//F,, 9), where F'/IF, is a function field of one

variable, i.e.

1) F/F, is a finitely generated field extension
2) tr (F/F,) =1
3) F, is algebraically closed in F'.

M = M(F) is the set of valuation rings of F'/F,, sometimes called the abstract
Riemann surface of F//F,. The elements of 9t are called points or places and
denoted by P = (Rp,mp), where Rp is the valuation ring and mp = (tp) =

tp - Rp is the maximal ideal of Rp.

Recall: A valuation ring R of F/F, is a ring with special properties. One of

them is: If € F, then z € Ror = € R.

The valuation vp, to P = (Rp,mp) is defined as follows. If z € Rp,z # 0, we

write x = t% - u, u a unit in Rp and define

vp(z) = n.



If z ¢ Rp, we have 2 € Rp and write £ = ¢}, - u, u a unit in Rp. Then we define
vp(z) = —n.

Finally we put vp(0) = oo.

The thinking is: If x € mp,z =t} - u for some n > 1. The x has a zero at P of
order n. If i € mp, the x has a pole of the described order.
A point P = (Rp,mp) has a degree, defined as follows. We consider the quo-

tient map, also called the residue map.
RP 2) Rp/mP = KP

where Kp is a field, called the residue field of P. Kp is a finite field containing
F,.

We define: deg(P) = [Kp : ;] = degree of the field extension Kp over F,.

There is an interaction between F' and 91t. The elements of F' are functions on
M. Let f € F and P = (Rp,mp) € M. Then if f ¢ Rp we say: f has a pole at
P and define

£(P) = oo.
If f € Rp, we consider the map
Yp RP — Rp/mp = Kp

and define f(P) = pp(f) € Kp as value of f at P.

Note: The values of a function f € F are not always in the same domain, as

they are in Kp and Kp is changing with P.



A point P is called an F,- rational point if deg(P) = 1. Equivalent to this is,

KP :]Fq.

Note: If F//F, is defined by the irreducible homogenous polynomial f(X,Y, 7)
which we assume to be nonsingular, then the points P € 9t with deg(P) =1
are in 1 — 1 correspondence with the points («, 8,7) € P?(F,) with coeffi-

cients in F, which are solutions of f(X,Y, Z) = 0.

The places of degree 1 of a curve I' = (F/F,, 9) are used to construct codes
over [F,.

If we use n such places, then the code will have length n.

So the number N(I') = N(F) of points of I" of degree 1 is important. We have

the Hasse-Weil inequality
IN — (¢+1)] §2gq% g = genus of I'

or

N < (g+1) + [92¢7]

Recall: If T is defined by a nonsingular homogenous equation f(X,Y, Z) =0 of

degree n, the genus of I is

Let I = (F/F,,9) be a curve of genus g and Pi,..., P, be distinct points of T’

of degree 1. D = P, + - -- 4+ P, is the corresponding divisor.



Let G be a divisor of I (or F/F,) such that supp(G) Nsupp(D) = 0, and consider
L(G)={f € F;(f) > -G}.

Keep the case in mind when G is a positive divisor, say G = r1Q1 +12Q2 + - - - +
rs@s with r; > 0.

Then £(G) = {functions in F' which have poles at most at Q1,...,Q, of order
< r; respectively. }

By Riemann-Roch we know

U(G) = dimg, L(G) =degG + 1 — g +i(G)
~~

>0

where i(G) = dim L(W — @), and W is a canonical divisor. If deg(G) > 2g — 2
then i(G) = 0.

The Goppa Code associated to D and G is defined by
C(D,G) ={(z(P),...,2(F));z € L(G)} C TFy.

What we consider is a linear map, the evaluation map at the points Py, ..., P,.

p:xr — ($(P1),---,5U(Pn))

Then C(D,G) = ¢(L(G)) = image of L(G) under ¢.
Theorem: C(D, Q) is a (linear) [n, k, d] code with parameters
k = dim£L(G) —dim L(G — D)

d > n—degG.



Proof: The kernel of the mapping ¢ is

ker(p) = {z € L(G);x has a zero at P;,..., P,}

= {z;(z) > -G+ P +---+P,}
D

= L(G-D).

Hence k£ = dim C(D, G) = dim £(G) — dim £(G — D).

Let ¢(z) € C(D,G) with wt(¢(x)) = d. Then the function z vanishes at n — d

places P;,,---,FP; ,. Hence
(0)2 =G+ P+ 4Py .
As z # 0, this implies

0 = deg(z) >deg(-G+P,+---+P, )
= —degG+ (n—d)

= d > n—degQG.
Corollary: Assume deg G < n. Then we have:

1) ¢ : L(G) — C(D, Q) is injective and C(D,G) is a [n, k, d]-Code with

d>n—degG, k=dimL(G)>degG+1—g
2) If in addition 2g — 2 < deg G < n, then

k=degG+1—g



3) If z,---,xx is a basis of £L(G), then

.’12'1(P1) s l‘l(Pn)
M = .

2(P) - 24(Py)

is a generator matrix for C(D, G).

Originally Goppa defined his Codes as follows:

For a divisor E we define

Q(E) = { w; w a differential form of F//F, with (w) > +F }

The linear code C*(D, Q) of length n associated to the pair (D, G) is the image

of the linear mapping

o QUG -D) —

y — (reSPl (y)’ T, IeSp, (y))

We get the theorem:

Theorem: C*(D,G) is an [n, k*, d*] code with parameters
k* =i(G — D) —i(G) and d* > deg G — (29 — 2).

If degG > 2g — 2, we have k* =i(G— D) >n+g—1—degG.

If 29 — 2 < deg G < n, we have
kE*=n+4+g—1—degQ.

The codes C(D,G) and C*(D, G) are dual to each other.



Examples of Goppa Codes

I' = (F,(x), M) = projective line over F, = P! (F,).

M we know: For every irreducible polynomial in F,[z] with highest coefficient 1
there exists a place of I'; in addition there is a place Py, belonging to % These
are all places of T'. T has ¢ + 1 F,-rational points (z — &), € F, and < which
corresponds to oco. We denote the place defined by the irreducible polynomial
£(@) by Py = (f).

Let Py = (z), Poo = (1)
Let G =rPy,0<r <g—1. Then L(G) = {Z;ZO a;z';a; € ]Fq}
1,z,...,2" is a basis of L(G).

Let D= (z — @) + (z — a®) +--- 4 (z — a?™"), a a generator of F;.
The corresponding code C'(D, G) has the following generator matrix:

1 1 1 .- 1
al aQ as e aqfl
o o?? a3 ... g2aD)
o o o’ ... ar(q—l)

We get a so-called Reed-Solomon-Code. It is a maximal distance separating
code. Actually all Goppa codes obtained from P! are MDS-Codes.
A variation is : Let G = sPy + rPy

For a code C (D, G) with deg G < n one has

k+d>n+(1-g)=n+1,



because k£ = dim L(G) — dim(G — D) > degG+1—g
=0

d>n—degG and g =0.

From the Singleton Bound: £ +d <n+1

we infer: ‘k+d:n+1‘

This means, the codes are MDS codes (maximal distance separating codes).

We consider the Klein quartic curve, defined by
XY +YZ+7°X =0 over Ty

It is a smooth curve in P?(Ify), of genus 3.

Over Ty, the rational points are (1,0,0), (0,1,0), (0,0, 1); over F, = Fy(a) with
a? = 1 + «, there are two more rational points (1,a,1 + @), (1,1 + «, a); over
Fy = Fy(¢) with ¢ = ¢ + 1, we have all together 24 rational points.

The Hasse—Weil bound for the Klein curve over Fg it is > 25, but the Serre
bound which states N < g+ 1+ g[2q%], gives 24 over Fg for the Klein curve.
Hence the curve is optimal with respect to the Serre bound over Fg.

Let @ = (0,0,1), and D the sum of the other 23 points, and G = 10Q.

The code C(D, G) has dimension 8 and minimum distance d > 23 — 10 = 13.



One more example

Hermitian curves

Let ¢ = p? r = p*

X 4 yrtl 4 7™ = ( defines a plane projective curve I', which is smooth.
The genus of I is g = (¢ — 1/7)/2.

The number of points over [, is 1 + ¢,/q and optimal with respect to the Hasse—
Weil bound.

Take G = m(), where @) is one of the F,-rational points and D = P, +---+ P 5
consists of the other F,-rational points.

Take ¢ — /g < m < q-,/q. Then we find a Goppa-Code C(D, G) with length
n = ¢,/q and dimension K = m — g + 1 and minimum distance d > n —m =
n—k—g+1.

This leads to some interesting codes.

2 Long Codes

Good long codes are needed because of Shannon’s theorem. For every linear

[n,k,d] Code C over F, we have the rate R = R(C) = £ and the relative
minimal distance

d

0=46(C)=—.

©="1

Let V, = {(6(C), R(C));C code over F,} C [0,1]*> and U, C [0,1]* the set of

limit points of V.
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Then there exists the so-called Manin function ¢, : [0, 1] — [0, 1] such that
U, ={(6R);0<86<1,0<R< )}

where oy has the following properties:
1) oy is continuous and decreasing
2) og(0) =1, a(0)=0 1-¢'<s<1.

For o,(0) we have bounds from above and below (see the picture below).

1—--9 5
qg—1

a6) > 1—H,(6) 0<6<1—q!

S
[S]

=
A

with Hy(6) = 0dlog,(q—1) —dlog,(8) — (1 —d)log,(1—6), 0<6<1—gq "

Problem: Construct a sequence of codes (C;) such that

lim (6(C;), R(C;)) = (0o, Ro)

1—00

is on the Gilbert—Varskomov bound or above this bound.
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It has been well known for over 30 years that there exists a sequence of codes which
are constructed using rational curves such that the Gilbert bound is reached.
For about 20 years it has been known that one can do much better and can get
above the Gilbert bound if the basis field F, is such that ¢ is a square.

The strategy for the construction is to construct a sequence of functions fields
F;/F, such that lim; , g(F;) — oo and F; has many F,-rational points.

Important in this context is the number

N(F); N(F) number of places of F//F, of degree 1,
N,(g) = max

F/F, a function field of genus g.

Then define A(g) = limg_,o “22,
Note: N,(g9) <1+4q+ 2¢q* by Hasse-Weil and A, < 23

Proposition: Suppose A(q) > 1. Then a,(6) > (1 — A(¢)™") — J in the interval

0<d<1—A(g)"

To prove the proposition we need the lemma:

Lemma Let Py, ..., P, be distinct places of F'/F, of degree 1. Then for every inte-

ger r > 0 there exists a divisor G with deg(G) = r and P; ¢ supp(G), i =1,...,n.

Proof of the Lemma
The Lemma is trivial if 3 place @Q # P; of degree 1. If Py, ..., P, are all places of
degree 1 we choose a divisor G ~ rP; such that vp,(G) =0 4 =1,...,n, which

is possible by the approximation theorem.
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By this theorem, there exists an x € F' such that

vp(x) = 0 i=2,...,n

vp () = —r

Then 7P, 4+ () = G is a divisor with this property.

Proof of the Proposition

Let 6 € (0,1 — A(q)™1).

Choose a sequence of function fields F;/F, of genus g; such that

N(F)
gi

gi — 00, — A(q) for i — oo.

Let n; = N(F;). Then n; — oc.

Choose r; > 0 such that :L—i —1—19, for i — .

Let D; = sum of all places of degree 1 of F;. Then deg D; = n;. By the lemma 3
a divisor G; of F;/F, with degree G; = r; and supp G; N supp D; = 0.

Consider the code

C; = C(D;, Gj)

which is an [n;, k;, d;] code with parameters

ki > degGi+1—-gi=ri+1—y

We get
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We may assume that lim R; = R and lim§; = § exist and get
R>1-6—-A(qQ)Y, 46>1-(1-06)=96

and therefore

a(0)>R>1-6— A(g)™".

As a,(8) > ay(0) we get

ag(8) > 16— Ag)™" (1)

Next we have the important inequality

Alg) < ¢ -1, (2)
called the Dringfeld—Vl1adut bound.

To combine (1) and (2) we need the following result

Theorem (Tsfasman, Vladut, Zink) If ¢ is a square, then

Alg) =¢> — 1

More precisely, there exists a sequence of function fields F)/F, with g(F;) — oo

such that N(F})/g(F;) — q2 — 1 for i — oc.

This theorem was first shown by Tsfasman, Vladut, Zink if ¢ = p?.

If one uses the theorem, one obtains, if ¢ is a square, a new lower bound.

aq(5)2<1— 11 )—5 for0<é6<1——

1
-1

gz —1
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This bound is called the Tsfasman-Vladut-Zink Bound.
For ¢ > 49 this bound is better the Gilbert-Varshamov Bound.

The picture is as follows

It remains to say something to the construction of sequences of field F;/F, with

the above properties.

1982 Tsfasman, Vladut, Zink proved their theorem by considering modular curves
Xo(NV).

Xo(N) is a curve which solves the moduli problem, to parameterize the pairs
(E,G) where FE is an elliptic curve and G a cyclic subgroup of E of order N.
Xo(N) is a curve defined over Z[%] For a prime number p,p / N they determined

that the number of points of degree 1 on X(N) over F,2 is

Ny = #Xo(N)(Fp2) = g(p—1)
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moreover, g(Xo(V)) goes to infinity if N goes to infinity, which means

N
SN p—1 and the Dringfeld-V1adut bound is obtained .
g

Nowadays there are simpler ways to show this result.

Gracia and Stichtenoth have shown in 1995 the existence of a tower of fields
FICFHRCFC...
such that F;/F, is a function field over F,, and such that

N;
lim — — A(¢*) =¢—1

They made the following construction

Let Fy = Fp2(z1) be the rational function field over F. For n > 1 let

Fn—l—l = Fn(zn+1)a

where z,,, satisfies the equation

. Zn
23+ 2 = :L'qn+1 with z,, = . € F, n> 2
n—1

We get:
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etc.

They are able to calculate the genus and get

) (F) q"—l—q”_l—anH—Qan_l—i—l n=1 mod 2
9n = g\U'n) =

4"t -3t =3¢ —¢> ' +1  n=0 mod?2

And they calculate
N, = number of F,2 — rational points of F, /F,

and get

No> (@ -1Dg" " +2¢ (2

By (1) and (2) one get

lim— =¢—1
9n

Various people such as Garcia, Stichtenoth, Elkik, M. Thomas, Wulftange have
studied in the past 8 years field towers which lead to good long codes.

An important paper concerning the basis theory on field towers is the paper
Garcia/Stichtenoth: On tame towers of function fields. To appear in: Journal
fiir reine und angewandte Mathematik.

The latest paper on this matter of which I know, is the thesis of Jorg Wulftange,
which he wrote in 2002 at the University of Essen under Stichtenoth. The title
is: Zahme Tiirme algebraischer Funktionenkorper.

I say a few words to its content.

Let F, be a finite field.

A field extension T /F, is called a field tower if



1) The transcedence degree of 7 /IF, is 1

2) F, is algebraic closed in 7.

3) T is not finitely generated over F,.
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4) 3 a function field F,F, C F C T with ¢g(F) > 1 and T /F separable.

A tower T /F, can be described by a sequence of subfields. We choose a function

field F/F, with FF C T and ¢g(F') > 1 and then starting from Fy = F we construct

a sequence of function fields Fy, Fi, F5, ... such that
F=FCFCFC... with 7 = J F.
i=0
Clearly, by the Hurwitz genus formula g(F;) — oo if i — oc.
We define

N
AT) = lim ~

which turns out to be an invariant of 7.
We have

0<AT) < va—1

by the Dringfield-Vladut bound.

Definition: The tower 7 /F, is called asymptotically good (resp.

optimal) if A(7) > O(resp. A(7) =0 resp.A(T) = /g — 1)

Waulftange constructs towers in a recursive way as follows.

bad, resp.
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Let f(z,y) € Fy[z,y] be a separable polynomial in = and y, absolutely irreducible

with deg, f(x,y) > 1,deg,(f(x,y)) > 1. Construct a field tower as follows:

1) Take Fy =T, (zo) the rational function field in z, over F,

2) If f(xk_1,T) is absolutely irreducible over the field F,(zo,z1,...,25-1) =

Fy_1, then take

Fy, = Fy_1(wy) with f(zg_1,21) = 0.

If this procedure does not stop, we get a tower. On must make sure that g(Fy) > 1
for on k.

Dr.Wulftange could find that the following equations lead to field towers.
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