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Why use ECC?

There are two main reasons:

Security: We need a fallback system which we can use in case factoring becomes too easy.

Efficiency: RSA key sizes are increasing rapidly. Efficient implementations on devices with limited

resources are becoming more difficult.

⇒ EC Cryptosystems seem to exactly fit the requirements of state-of-the-art cryptographic

applications at the moment:

• key size: is much smaller than for IFP-based cryptosystems since the best known algorithm

for solving the ECDLP is exponential in the number of key bits.

• signature length: due to short keys and pre-defined sets of good EC, the signature sizes are

considerably shorter compared to systems based on IFP or DLP.

• implementation constraints: due to the short keys special purpose hardware is not necessarily

needed.
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The probably most important ECC: the ECDSA – 1

Suppose Alice wants to send a digitally signed message to Bob. They first choose a finite field

Fq, an elliptic curve E, defined over that field and a base point G with order n. Alice’s key pair

is (d, Q), where d is her private and Q is her public key. To sign a message M Alice does the

following:

1. Choose a random number k with k : 1 ≤ k ≤ n− 1.

2. Compute kG = (x1, y1) and r = x1 mod n. If r = 0 then go to step 1.

3. Compute k−1 mod n.

4. Compute e = SHA-1(M).

5. Compute s = k−1(e + dr) mod n. If s = 0 then go to step 1.

6. Alice signature for the message M is (r, s).

Figure 1: ECDSA Signature Generation
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The probably most important ECC: the ECDSA – 2

To verify Alice’s signature (r, s) on the message m, Bob obtains an authentic copy of Alice’s

parameters and public key. Bob should validate the obtained parameters! Bob then does the

following:

1. Verify that r, s are integers in the interval [1, n− 1].

2. Compute e = SHA-1(M).

3. Compute w = s−1 mod n.

4. Compute u1 = ew mod n and u2 = rw mod n.

5. Compute X = u1G + u2Q. If X = O then reject the signature.

Otherwise compute v = x1 mod n where X = (x1, y1).

6. Accept the signature if and only if v = r.

Figure 2: ECDSA Signature Verification
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Implementation Issues

Apparently, we have to implement

• Arithmetic in Fn: reduction, addition/subtraction, multiplication/division

• Arithmetic on the elliptic curve E

• a hash function.

In this talk we do not consider implementations of hash functions, but focus on implementing the

arithmetic.

Thus, we can make choices regarding the curve itself, the finite field and the representation of its

elements and the representation of the curve points, etc. What we actually choose depends on

our needs (application).
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Implementation Options – 1

Choice of the underlying field: depending on hard- or software implementations

Representation of the elements of this field: influences mostly the speed

Implementing the arithmetic in the field: the same

Selecting an appropriate curve: influences speed and security

Implementing the EC operations: influences speed and security

The first three points are concerned with the finite field arithmetic while the last two points

are concerned with the elliptic curve arithmetic.

Often a choice can lead to weak cryptosystems. Fortunately, there exists a set of (named) curves

(published by the NIST) which have been checked.
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Implementation Options – 2

Figure 3: Implementation options – an overview

There are more possibilities to parameterise curves; often these other parameterisations have

advantages with respect to side-channel attacks.
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(Intermediate) Conclusion

• There exist a plenty of choices regarding implementations

• The most important characteristics of an implementation are typically:

– Speed

– Versatility

– Size (circuit, code)

– Power Consumption (contactless smart cards)

– Interoperability, Standards, Patents

– Security (side-channel attacks, fault attacks)

• It might be dangerous to choose your own curve, thus if you want to play safe, use the NIST

curves.
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Finite Field Arithmetic

• Finite Fields (Galois Fields) with q = pm elements: Fq (aka GF(q)).

• Mostly interesting nowadays are only these two:

• GF(p) (prime finite fields), operations are all done modulo a prime number p.

• GF (2m) (binary extension fields), operations are all done modulo an irreducible polynomial

p(t).

The choice of the modulus (and irreducible polynomial, resp.) influences both the security and

the efficiency of the whole system. In order to have high security, long moduli have to be used.

The problem is then: Implement arithmetic operations with long numbers (on processors with

short word length).
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Hardware vs. Software Implementations

• Dedicated Hardware:

– Typically one uses a co-processor for the arithmetic operations.

– It has an n-bit datapath and n-bit registers.

– Bit-serial or digit-serial multiplier architectures are used.

• Software Implementations:

– Efficient algorithms for multi-precision arithmetic are used.

– Implementations use word level instructions of the processor.

– Montgomery Multiplication is popular

RSA implementations on smart cards make typically use of a co-processor while ECC

implementations do not.

Any implementation that is not targeted towards a specific type of curve will be potentially

big and slow. Any implementation that is specifically adapted for one implementation option

is not versatile. Hence, it depends on your application what you can do!
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GF(p) – Basic Operations

Remember: n = dlog2(p)e

Reduction: Naive reduction requires either division or subtraction.

Addition/Subtraction: Result can be at most 2(p-1). Subtracting the modulus once is sufficient

to get a reduced result.

Division/Inversion: Either use the extended Euclidian Algorithm (painful in hardware, also slow

in software) or exponentiation, probably with interleaved reductions.

Multiplication: Montgomery architecture is one of the well studied ones but also Sedlak’s

algorithm is used (in Infineon’s SLE66X ICs).

The general problem with standard modular reduction is that you never know how often you have

to subtract the modulus! Also, comparisons are rather inefficient in hardware.
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GF(p) – Multiplication in Hardware

Input:Integers N = (nl−1 · · ·n1n0)2, x = (xl · · · x1x0)2, y = (yl · · · y1y0)2

with x < 2N, y < 2N , R = 2l+2, gcd(N, 2) = 1 and N ′ = −N−1 mod 2

Output:xyR−1 mod 2N

T ← 0

For i from 0 to l + 1

mi ← (t0 + xiy0) N ′ mod 2 (with T = (tltl−1...t0))

T ← (T + xiy + miN)/2

Table 1: Montgomery modular multiplication without final subtraction

You need approximately l steps (clock cycles) to calculate the result (for the Radix 2 version).

Using systolic arrays or clever (redundant) number representations can avoid too long carry chains.
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GF(p) – Multiplication in Software
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Comba Multiplication

a0 · b0
a1 · b0

a2 · b0
a3 · b0

p0 computed

p1 computed

p2 computed

p3 computed
p4 computed
p5 computed
p6, p7 comp.

p0 computed

p1 computed

p2 computed

p3 computed

p4 computed

p5 computed
p6, p7 comp.

a0 · b1
a1 · b1

a2 · b1
a3 · b1

a0 · b2
a1 · b2

a2 · b2
a3 · b2

a0 · b3
a1 · b3

a2 · b3
a3 · b3

a0 · b0

a1 · b0

a2 · b0

a3 · b0

a0 · b1

a1 · b1

a2 · b1

a3 · b1

a0 · b2

a1 · b2

a2 · b2

a3 · b2

a0 · b3

a1 · b3

a2 · b3

a3 · b3

b0b1b2b3

a0a1a2a3

p0p1p2p3p4p5p6p7

b0b1b2b3

a0a1a2a3

p0p1p2p3p4p5p6p7

Pencil-and-paper method Comba's method

Time

The result has to be reduced as well ⇒ Montgomery reduction is also well suited for software

implementations.
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GF(p) – Mersenne Numbers

• A Mersenne number is of the form: m = 2k − 1

• Integers mod m are represented k-bit integers

• If n < m2 is the integer that is to be reduced mod m

• Let n = 2kT + U with T and U being k-bit integers

• Then n ≡ T + U mod m

• Thus, the integer division can be replaced by a modular addition!

• This is very useful when k is a multiple of the word size of a processor.

• Since the wordsize is typically a power of 2, one must choose k which are highly composite

• Mersenne numbers arising from this construction are almost never primes

• Salinas generalized this approach
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GF(p) – Generalized Mersenne Numbers

• p = 2nlw ± 2nl−1w ± · · · ± 2n1w ± 1

• → coefficients can be reduced recursively:

• 2nlw ≡ ±2nl−1w ± · · · ± 2n1w ± 1.

• The paper of Solinas gives a couple of conditions for such numbers:

• An integral polynomial is suitable for Mersenne reduction if it is

– reduced, proper, irreducible, of low weight and has an odd constant term.

• A couple of examples are given.

• The following generalized Mersenne primes appear in the document Recommended Elliptic
Curves for Federal Government use which is provided by the NIST:

– p = 2192 − 264 − 1,

– p = 2224 − 296 + 1,

– p = 2256 − 2244 + 2196 + 296 − 1,

– p = 2384 − 2128 − 296 − 1.
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GF(p) – Example

• We look at generalised Mersenne primes of the form p = 23k − 2k − 1

• The polynomial f(t) = t3 − t− 1 generates such numbers (set t = 2k).

• The integers mod p can be represented as 3k-bit integers and each integer n < p2 as a

6k-bit expression n =
∑5

j=0 Aj2
jk, with 0 ≤ Aj < 2k.

• We’d like to find B′js such that n ≡
∑2

j=0 Bj2
jk (mod p).

• We know that

– t3 ≡ t + 1 (mod f(t))

– t4 ≡ t2 + t (mod f(t))

– t5 ≡ t2 + t + 1 (mod f(t))

• It follows that
∑5

j=0 Ajt
j = (A0A1A2)

1

t

t2

 + (A3A4A5)

t3

t4

t5

, and

• (B0B1B2) =

(A0A1A2) + (A3A4A5)

1 1 0

0 1 1

1 1 1

 1

t

t2

 mod f(t)
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GF(p) – Example (cont.)
• Rewriting the equation from the last slide we obtain:

B0 = A0 + A3 + A5

B1 = A1 + A3 + A4 + A5

B2 = A2 + A4 + A5

• By rearranging this nicely we get: B = T + S1 + S2 + S3 mod p with

T =
(

A2 ‖ A1 ‖ A0

)
S1 =

(
0 ‖ A3 ‖ A3

)
S2 =

(
A4 ‖ A4 ‖ 0

)
S3 =

(
A5 ‖ A5 ‖ A5

)

⇒ modular reduction corresponds to 3 modular additions.
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GF(2m) – Basics

• Elements are represented as binary polynomials: A = am−1x
m−1 + · · · + a1x + a0 with

ai ∈ {0, 1}.
• Calculations are done modulo an irreducible polynomial p(x).

• Arithmetic in this field is well studied since 1960s due to applications in coding.

• Arithmetic is heavily influenced by choice of basis

• Bases which have been proposed for applications:

1. polynomial basis (standard basis)

2. normal basis

3. dual basis, triangular basis, etc.. . .

• Most applications represent elements by a polynomial basis
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GF(2m) – Basis Representations

• Polynomial Basis: Best use a trinomial basis. This is a representation in which the irreducible

polynomial has the form xm+xk+1. Such representations have the advantage that reduction

modulo p(x) can be performed efficiently, both in software and in hardware.

• Normal Basis: A normal basis of GF (2m) over GF (2) is a basis of the form

{β, β2, β22, . . . , β2m−1
}. Squaring is a linear operation in GF (2m), so, A2 =∑m−1

i=0 aiβ
2i+1

=
∑m−1

i=0 ai−1β
2i

= (am−1, a0, . . . , am−2). Thus, squaring is just a

simple rotation in this basis representation. This is especially nice in hardware. Multiplication

is more complicated.

• Optimal Normal Basis: They are special types of normal basis representations which allow

also efficient multiplication.

Another advantage of normal basis is that square roots of elements in GF (2m) can be computed

efficient. For some point compression techniques, recovering the points need that operation.
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GF(2m) – Basic Operations

Addition: simple XOR operation, no carry

Multiplication: use (variants) of shift-and-xor

Squaring: is a linear operation! A = (
∑m−1

m=0 aix
i)2 =

∑m−1
m=0(ai)

2xi

Inversion: use EEA or exponentiation (⇒ try to avoid this operation)

Reduction: is very fast when special irreducibles are used (trinomials or pentanomials)
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GF(2m) – Bit-serial architecture

Input:binary polynomials A(x), B(x) of degree n− 1

Output:C(x) = A(x) ∗ B(x)

FOR i = n− 1 DOWNTO 0

C(x) = x*C(x) . . . 1-bit shift

IF bi == 1 THEN C(x)=C(x) XOR A(x)

Table 2: Shift and XOR

Nice to implement in hardware but not so nice for software! Also, various improvements are

possible⇒ windowing methods!
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Performance Comparisons

“Performance comparisons of elliptic curve systems in soft-
ware” by K. Fong, D. Hankerson, J. López, A. Menezes, and
M. Tucker. Presented at the 5th ECC Workshop, Oct. 2001.

– Timings in µs (1000 MHz Pentium III), C and Assembler.
– Multiplication in GF(2m): Shift-and-XOR, window-size: 4.

|p|=192 |p|=224 |p|=256 m=163 m=233 m=283

Addition 0.055 0.062 0.071 0.032 0.039 0.041

Fast Reduction 0.097 0.122 0.256 0.081 0.094 0.145

Multiplication 0.350 0.456 0.681 1.058 1.923 2.403

Squaring 0.300 0.394 0.600 0.185 0.238 0.312

Inversion  21.1  28.4  36.8  10.0  17.4  24.5 

Binary fields GF(2^m)Prime fields GF(p)
Operation
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(Intermediate) Conclusion

• Prime fields for software implementations:

– Fast when machine has a hardware multiplier

– Very flexible (various optimisations are possible)

• Binary Extension fields for hardware implementations:

– Simple to design (no carry propagation)

– Require less HW than multiplier

– Low power consumption (important for smart cards)
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Elliptic Curve Arithmetic

An elliptic curve E over the field F is a smooth curve in the so called ”long Weierstrassform”

y
2
+ a1xy + a3y = x

3
+ a2x

2
+ a4x + a6, ai ∈ F. (1)

We let E(F) denote the set of points (x, y) ∈ F2 that satisfy this equation, along with a

”point at infinity” denoted O.

An elliptic curve E over the finite field Fp is given through an equation of the form

y
2
= x

3
+ ax + b, a, b ∈ Fp, and − (4a

3
+ 27b

2
) 6= 0 (2)

A (nonsupersingular) elliptic curve E over the finite field F2m is given through an equation of the

form

y
2
+ xy = x

3
+ ax

2
+ b, a, b ∈ F2m. (3)
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Addition Law – Affine Coordinates

Fp F2m

P+Q x3 = (
y2−y1
x2−x1

)2 − x1 − x2 x3 = (
y1+y2
x1+x2

)2 +
y1+y2
x1+x2

+ x1 + x2 + a

y3 = (
y2−y1
x2−x1

)(x1 − x3)− y1 y3 = (
y1+y2
x1+x2

)(x1 + x3) + x3 + y1

2P x3 = ((3x2
1 + a)/2y1)

2 − 2x1 x3 = x2
1 + b

x2
1

y3 = −y1 + ((3x2
1 + a)/2y1)(x1 − x3) y3 = x2

1 + (x1 +
y1
x1

)x3 + x3

-P (x,−y) (x, x + y)

Table 3: Addition formulas in affine coordinates

Note the many inversions that need to be calculated!
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Projective Space

Definition 1. The projective space is the set of equivalence classes of tuples
(X0, X1, . . . , Xn) (not all components zero) where two tuples are said to be equivalent
if they are scalar multiples of one another, i.e.

Pn
(k) = {(X0, X1, . . . , Xn)−(0, 0, . . . , 0)|(tX0, tX1, . . . , tXn) ∼ (X0, X1, . . . , Xn), t ∈ Z\{0}.}

[(X,Y)]

(X’,Y’)

(X,Y)

[(X,Y)]

Figure 4: Projective Line
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Addition Law – Projective Coordinates
The equation for an EC over Fq, char > 3 in projective coordinates, corresponding to the

change x = X/Z and y = Y/Z is Y 2Z = X3 + aXZ2 + bZ3. If P1 = (X1, Y1, Z1) and

P2 = (X2, Y2, Z2) are points on the EC then:

Several Optimizations for Elliptic Curves Implementation on Smart Card 4

where

λ =

{
(y2 − y1)/(x2 − x1) if P1 6= P2

(3x2
1 + a)/(2y1) else

• The equation in projective coordinates, corresponding to the change
x = X/Z and y = Y/Z, is:

Y 2Z = X3 + aXZ2 + bZ3

If P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) are two non equal points on
the curve, then for P3 := P1 + P2 = (X3, Y3, Z3) we have that:

X3 = P1(−Q2 + T )
2Y3 = R(−2T + 3Q2)− P3(S2 + S1)
Z3 = WP3

where
U1 = X1Z2

U2 = X2Z1

S1 = Y1Z2

S2 = Y2Z1

W = Z1Z2

P1 = U2 − U1

and

P2 = P 2
1

P3 = P1P2

Q1 = U1 + U2

Q2 = P2Q1

R = S2 − S1

T = WR2

For a point P1 over the curve, we obtain the double P3 := 2P1 =
(X3, Y3, Z3) with:

X3 = λ1(λ4 − 4λ5)
Y3 = −2Y 2

1 λ6 + λ2(6λ5 − λ4)
Z3 = λ1λ6

where
λ1 = 2Z1Y1

λ2 = 3X2
1 + aZ2

1

λ3 = X1Y1

and
λ4 = λ2

2

λ5 = λ1λ3

λ6 = λ2
1

• With the change of variables x = X/Z2 and y = Y/Z3, the equation of
the curve becomes

Y 2 = X3 + aXZ4 + bZ6

This representation is the representation chosen for the norm IEEE-
P1363, see [1]. The addition formulae for two non equal points

CG–2001/1

Figure 5: Point Addition
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where

λ =

{
(y2 − y1)/(x2 − x1) if P1 6= P2

(3x2
1 + a)/(2y1) else

• The equation in projective coordinates, corresponding to the change
x = X/Z and y = Y/Z, is:

Y 2Z = X3 + aXZ2 + bZ3

If P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) are two non equal points on
the curve, then for P3 := P1 + P2 = (X3, Y3, Z3) we have that:

X3 = P1(−Q2 + T )
2Y3 = R(−2T + 3Q2)− P3(S2 + S1)
Z3 = WP3

where
U1 = X1Z2

U2 = X2Z1

S1 = Y1Z2

S2 = Y2Z1

W = Z1Z2

P1 = U2 − U1

and

P2 = P 2
1

P3 = P1P2

Q1 = U1 + U2

Q2 = P2Q1

R = S2 − S1

T = WR2

For a point P1 over the curve, we obtain the double P3 := 2P1 =
(X3, Y3, Z3) with:

X3 = λ1(λ4 − 4λ5)
Y3 = −2Y 2

1 λ6 + λ2(6λ5 − λ4)
Z3 = λ1λ6

where
λ1 = 2Z1Y1

λ2 = 3X2
1 + aZ2

1

λ3 = X1Y1

and
λ4 = λ2

2

λ5 = λ1λ3

λ6 = λ2
1

• With the change of variables x = X/Z2 and y = Y/Z3, the equation of
the curve becomes

Y 2 = X3 + aXZ4 + bZ6

This representation is the representation chosen for the norm IEEE-
P1363, see [1]. The addition formulae for two non equal points

CG–2001/1

Figure 6: Point Doubling
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Addition Law – Projective Coordinates

Operation Coordinates

(Basis Field Fp) affine projective weighted projective

x = X/Z x = X/Z2

y = Y/Z y = Y/Z3

Addition 1I+3M 14M 16M

Doubling 1I+4M 13M 10M

Weighted projective coordinates (or Jacobian coordinates) are used in the Annex A of the IEEE

1363 standard. However, several other coordinate systems do exist.
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Jacobi Parametrisation – 1

For elliptic curves over a field with characteristic > 3, the so called Jacobi Form can be defined:

The curve can be seen as intersection of two quadrics (S2 + D2 = T 2, k2S2 + T 2). A point is

then a four-tuple (S, C, D, T ).

Let E : y2 = x3 + ax + b an elliptic curve that has three points of order two. By applying a

transform that moves the three points of order two to (0, 0), (−1, 0), (−λ, 0), we obtain an

isomorphic curve E′ : y2 = x(x + 1)(x + λ).

Let λ = 1− k2 and let (X, Y, Z) be a point on E′′ : Y 2Z = X(X + Z)(X + λZ). Then

a point is given by:

S = −2(X + Z)Y

T = λ(X
2
+ Z

2
+ 2XZ) + Y

2

C = λ(−X
2 − Z

2 − 2XZ) + Y
2

D = λZ
2
+ Y

2
+ 2XZ + (2− λ)X

2
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Jacobi Parametrisation – 2

Take two points P1 = (S1, C1, D1, T1) and P2 = (S2, C2, D2, T2), the sum P3 =

(S3, C3, D3, T3) is defined as:

Several Optimizations for Elliptic Curves Implementation on Smart Card 6

3.2 Jacobi Model

It is another parameterization of elliptic curves in characteristic > 3.

• At first we can see an elliptic curve as an intersection of two quadrics in
P3 Q {S2 + C2 = T 2, k2S2 +D2 = T 2} where a point P is represented
with four coordinates (S,C,D, T ). Let E : y2 = x3+ax+ b an elliptic
curve such that 4 divide #E(Fp)

†, by applying a standard Mobius
transformation, we can move the three points of order two to (0, 0),
(−1, 0) and (−λ, 0), we obtain an isomorphic curve E ′ : y2 = x(x +
1)(x+ λ).
Let λ = 1−k2, let (X,Y, Z) be a point of E” : Y 2Z = X(X+Z)(X+
λZ), equation of the curve E ′ in projective coordinates, the equivalent
point (S,C,D, T ) on Q of (X,Y, Z) is obtained by:

S = −2(X + Z)Y
C = λ(−X2 − Z2 − 2XZ) + Y 2 and

T = λ(X2 + Z2 + 2XZ) + Y 2

D = λZ2 + Y 2 + 2XZ+
(2− λ)X2

The reverse operation is given by:

X = (D − T )λ
Y = Sλk2

Z = Ck2 −D + Tλ

Let us consider two points P1 = (S1, C1, D1, T1) and P2 = (S2, C2, D2, T2),
the point P3 = (S3, C3, D3, T3) defined as the sum of P1 and P2 is given
by

S3 = A1B1 + A2B2

C3 = A1A2 −B1B2
and

D3 = T1D1T2D2 − k2S1C1S2C2

T3 = (A1)
2 + (B2)

2

where
A1 = T1C2

A2 = T2C1
and

B1 = S1D2

B2 = S2D1

These formulae are true for all points P1 and P2, equal or not. So, this
model seems to be interesting to preserve elliptic curve cryptosystems
against SPA and DPA. In fact, it is impossible to determine if a sum
or duplication are computed, as explained in [7].

†So we have three points of order two

CG–2001/1

Figure 7: Point Doubling

Apparently, there is no difference between double and add!

Summer School on Data Security and Data Safety, Mannheim 2003 30



Elisabeth Oswald

TUG 

IAIK 

Hesse Parametrisation

We only have a look at this parametrisation in projective coordinates. An important feature of

this parametrisation is that it only depends on one parameter:

X3+Y 3+Z3 = dXY Z. For two non-equal points P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2)

on the curve, the sum P3 = (X3, Y3, Z3) is given by:
Hessian Elliptic Curves and Side-Channel Attacks 7

Input:
�

= (U1 : V1 : W1) and � = (U2 : V2 : W2) with
�
6= �

Output:
�

+ � = (U3 : V3 : W3)

T1 ← U1; T2 ← V1; T3 ←W1 T4 ← U2; T5 ← V2; T6 ←W2

T7 ← T1 · T6 (= U1W2)

T1 ← T1 · T5 (= U1V2)

T5 ← T3 · T5 (= W1V2)

T3 ← T3 · T4 (= W1U2)

T4 ← T2 · T4 (= V1U2)

T2 ← T2 · T6 (= V1W2)

T6 ← T2 · T7 (= U1V1W
2

2 )

T2 ← T2 · T4 (= V 2

1 U2W2)

T4 ← T3 · T4 (= V1W1U
2

2 )

T3 ← T3 · T5 (= W 2

1 U2V2)

T5 ← T1 · T5 (= U1W1V
2

2 )

T1 ← T1 · T7 (= U2

1 V2W2)

T1 ← T1 − T4; T2 ← T2 − T5; T3 ← T3 − T6

U3 ← T2; V3 ← T1; W3 ← T3

Fig. 1. AddHesse(
�

, � ): Addition algorithm on an Hessian curve.

The second part of the proposition follows by contradiction. Suppose that
(W1 : U1 : V1) = (V1 : W1 : U1), i.e., that there exists some t ∈ K

∗ s.t. W1 = tV1,
U1 = tW1 and V1 = tU1. This implies W1 6= 0 and t3 = 1. Moreover, since
(U1 : V1 : W1) ∈ ED(K), U1

3 + V1
3 +W1

3 = 3DU1V1W1, which in turn implies
(t3 + t6 + 1)W1

3 = 3Dt3W1
3 and thus D = 1, a contradiction by Lemma 1. ut

In [13], Liardet and Smart suggest to represent elliptic curves as the inter-
section of two quadrics in P

3 as a means to protect against side-channel attacks.
Considering the special case of an elliptic curve whose order is divisible by 4
(i.e., the Jacobi form), they observe that the same algorithm can be used for
adding and doubling points with 16 multiplications (see also [3] for the for-
mulæ). Using the proposed Hessian parameterization, only 12 multiplications

are necessary for adding or doubling points. The Hessian parameterization gives
thus a 33% improvement over the Jacobi parameterization. Another advan-
tage of the Hessian parameterization is that points are represented with fewer
coordinates, which results in substantial memory savings.

Finally, contrary to other parameterizations, there is no (field) subtraction to
compute the inverse of a point (see Eq. (8)). Hence, our addition algorithm can be
used as is for subtracting two points P = (U1 : V1 : W1) and Q = (U2 : V2 : W2)
on an Hessian elliptic curve:

(U1 : V1 : W1)− (U2 : V2 : W2) = (U1 : V1 : W1) + (V2 : U2 : W2) . (14)

To sum up, by adapting the order of the inputs accordingly to Eq. (13) or
(14), the addition algorithm presented in Fig. 1 can be used indifferently for

– adding two (different) points;

Figure 8: Point Addition

6 Marc Joye and Jean-Jacques Quisquater

4 Side-Channel Attacks

At crypto ’96 and subsequently at crypto ’99, Kocher et al. introduced a
new class of attacks, the so-called side-channel attacks. By measuring some side-
channel information (e.g., timing [11], power consumption [12]), they were able
to find the secret keys from tamper-resistant devices.

When only a single measurement is performed the attack is referred to as
simple side-channel attack, and when there are several correlated measurements
sometimes it is referred to as a differential side-channel attack. The main con-
cern at the moment for public-key cryptography are the simple side-channel
attacks [12]. Efficient countermeasures are known for exponentiation-based cryp-
tosystems (e.g., [4]), but they require the atomic operations to be indistinguish-
able. For elliptic curve cryptography, the atomic operations are addition, sub-
traction and doubling of points. Within the Weierstraß model, as suggested
in [1], these operations appear to be different and some secret information may
therefore leak through side-channel analysis.

The next section shows that the Hessian parameterization allows one to im-
plement the same algorithm for the addition (or subtraction) of two points or
for the doubling of a point.

5 Implementing the Hessian Curves

Figure 1 gives a detailed implementation to add two (different) points on an
Hessian curve. The algorithm requires 12 multiplications (or 10 multiplications
if one point has its last coordinate equal to 1) and 7 temporary variables.

We note that there are variants for this implementation. For instance, we
are able to describe similar implementations with only 4 auxiliary variables and
18 multiplications, 5 auxiliary variables and 16 multiplications, and 6 auxiliary
variables and 14 multiplications.

More remarkably, owing to the high symmetry of the Hessian parameteriza-
tion, the same algorithm can be used for doubling a point. We have:

Proposition 2. Let P = (U1 : V1 : W1) be a point on an Hessian elliptic curve
ED(K). Then

2(U1 : V1 : W1) = (W1 : U1 : V1) + (V1 : W1 : U1) . (13)

Furthermore, we have (W1 : U1 : V1) 6= (V1 : W1 : U1).

Proof. Addition formula (10) yields (W1 : U1 : V1)+(V1 : W1 : U1) = (U1
2V1U1−

W1
2W1V1 : W1

2W1U1 − V1
2U1V1 : V1

2V1W1 − U1
2W1U1) = (V1(U1

3 −W1
3) :

U1(W1
3 − V1

3) : W1(V1
3 − U1

3)) = 2(U1 : V1 : W1) by Eq. (9).

Figure 9: Point Doubling
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Montgomery Parametrisation

The equation of the curve in projective coordinates is given by E : bY 2Z = X3+aX2Z+XZ2.

For two points P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) the sum P3 = (X3, Y3, Z3) is

defined as:

Several Optimizations for Elliptic Curves Implementation on Smart Card 10

We suppose (ð) that 3α2+a is a quadratic residue in Fp. Then, let s such that
s−2 = 3α2+a. if we map each point (x, y) of E to (s(x−α), sy)) the mapped
point verify an equation of Montgomery model: sy2 = x3 + 3αsx2 + x.
With the Montgomery model, the point (0, 0) is a point of order two, so the
curve defined with the Weierstrass equation had to admit a point of order
two†, thus 2 had to divide #E(Fp). The point (0, 0) ofM(3αs, s) corresponds

to (α, 0). For an elliptic curveM(ã, b̃) with Montgomery representation, we
can always find an isomorphic elliptic curve in Weierstrass representation.
If we use the notation s = b̃ and α = ã/3b̃, then M(ã, b̃) in isomorphic to
E(a := s−2 − 3α2, b := −α3 − aα).

• In classical non projective coordinates representation, the addition of
two points P1 = (x1, y1) and P2 = (x2, y2) over the curve, is given by
P3 = P1 + P2 := (x3, y3) with

x3 = bλ2 − a− x1 − x2

y3 = −y1 + λ(x1 − x3)

where

λ =

{
(y2 − y1)/(x2 − x1) if P1 6= P2

(3x2
1 + 2ax1 + 1)/2by1 if P1 = P2

• The first change of variables we study is x = X/Z, y = Y/Z. The
equation of the curve is bY 2Z = X3 + aX2Z + XZ2. For two non
equal points P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2),the coordinates
(X3, Y3, Z3) of the point P3 = P1 + P2 are given by

X3 = PQ(W2 −W1)
Y3 = Q(RW1 + U2T1 − U1T2)
Z3 = P 2(T1 + T2)

where
U1 = X1Z2

U2 = X2Z1

P = U2 − U1

S1 = Y1Z2

S2 = Y2Z1

R = S2 − S1

and

T1 = Y1X2

T2 = Y2X1

Q = T2 − T1

W1 = Z1Z2

W2 = X2X1

†This is ensured by conditions (f) and (ð), which are necessary and sufficient into
transform a Wierstrass model to a Montgomery model and reciprocally

CG–2001/1

Figure 10: Point Addition

Several Optimizations for Elliptic Curves Implementation on Smart Card 11

The doubling point of P1, P3 = (X3, Y3, Z3) is given by

X3 = H(2K(X1 −Q) + P̃ )

Y3 = 2K(PQ−K)− P P̃
Z3 = H2W

where
N = aZ1

P = 2NX1 + Z2
1 + 3X2

1

P̃ = P 2

W = 2Y1Z1

and
H = bW
Q = N + 3X1

K = HY1

• The second change of variables we study is: x = X/Z2, y = Y/Z3. The
equation of the curve is now: bY 2 = X3 + aX2Z2 + XZ4. For two
points P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) of the curve, the point
P3 = (X3, Y3, Z3) sum of the two points P1 and P2 is defined as follow

T1 = X1Z2

T2 = X2Z1

S1 = Y2Z1

S2 = Y1Z2

U1 = T1Z2

U2 = T2Z1

V1 = X1S1

V2 = X2S2

and

P = X1X2

Q = Z1Z2

W = V1 + V2

Z3 = W (U1 − U2)
R = Z3(V2 − V1)
X3 = R(P −Q2)
Y3 = RW (T1Y2X1 − T2X2Y1 +Q(S2Z

2
2 − S1Z

2
1 ))

The doubling point of P1 is

X3 = b(−2J + I2)
Y3 = I(−X3 +X1A2)−BA2

Z3 = A1Z1

where
A1 = 2bY1

A2 = A2
1

B = A1Y1

C = Z2
1

D = aC
E = D + 2X1

and

F = C2

G = 2DX1

H = X2
1

I = 3H +G+ F
J = BE

CG–2001/1

Figure 11: Point Doubling
For all curves in Montgomery representation we can find an isomorphic elliptic curve in

Weierstrassform. The opposite is not true! Especially for the NIST curves, no Montgomery

form does exist.
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Koblitz Curves

• Defined over GF (2n), E : y2 + xy = x3 + ax2 + 1 with a ∈ {0, 1}.
• Due to the special choice of the parameters, if (x, y) is a point on the curve, so is (x2, y2).

• Even more, one can show that τ(x, y) = (x2, y2) with τ2 − (−1)1−ατ + 2 = 0.

• An important feature of this relationship is as follows. If the scalar k (of kP ) is represented

with radix τ , then in the computation of kP , the operation Q = 2Q is replaced by Q = τQ.

• The latter corresponds to two squaring operations over GF (2n).

• Scalar multiplication algorithms can make use of this property.
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Scalar Point Multiplication

• Oldest and simplest method is the binary algorithm. It can be performed bottom-up or

top-down.

• A direct extension is the m-ary method.

• Window methods process windows up to a specific size.

• Due to the fact that subtractions on an elliptic curve are not more expensive than additions,

signed digit representations can be used as well.

• The most efficient signed digit representations (i.e. the sparse ones) are called NAF (non-

adjacent form).

• Of course, window or m-ary methods can be used together with the signed digit representations.
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(Intermediate) Conclusion

• Affine Coordinates lead to nice mathematical descriptions for the addition and the doubling

operation, but projective coordinates do not require to compute field inversions. Hence, they

are better suited for implementations.

• Elliptic curves in Weierstrass form are the ”standard” curves. There are shorter formulas for

EC which are defined over GF (p) and GF (2m). Besides the Weierstrass curves also Koblitz

curves are included in the set of curves which have been recommended by the NIST.

• There are many other forms (parametrisations) of EC. All have their own advantages and

disadvantages (especially with respect to secure implementations).

• There exist many different types of point multiplication algorithms. They differ mainly in

speed and in resistance against implementation attacks. Due to the fact that the subtraction

of a point is not costly, signed digit representations can be used to achieve further speedup.
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Security Issues – Implementation Attacks

• Conventional cryptanalysis treats cryptographic algorithms as purely mathematical objects.

• Side-channel cryptanalysis also takes the implementations of the algorithms into account.

• Peter Wright (MI5) reports several occasions when MI5 performed side-channel analysis to

break ciphers (ENGULF, STOCKADE)

• So far, several types of side-channels have been used:

– Sound

– Execution Time

– Power Consumption

– Electromagnetic Emanations

– Error Messages

• Combinations of two or more side-channels are possible, but have not been intensively

investigated.

• Fault Attacks are active implementation attacks.
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Simple Side-Channel Attacks

• Side-channel output is mainly depending on the performed operations.

• Typically, a single trace is used in the analysis.

• Mostly, the secret key can be directly read from the side-channel trace.

• A simple example: Unconcealed double and add operations in ECC directly reveal the ephemeral

keys.

• Of course, exceptions to these assumptions do exist . . .
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Differential Side-Channel Attacks

• Side-channel output is mainly depending on the performed data.

• Typically, many traces are used in the analysis.

Statistical Analysis

Key
hypotheticalData

Influences

Unknown/Data
Uncontrolled 

Model of the 

Physical Side−Channel Output Hypothetical Side−Channel Output

Decision

Physical Device

Physical DeviceKey

Figure 12: DSCA
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Types of Countermeasures

Hardware Countermeasures: such as the use of special types of logic or masking methods.

The amount of information leakage can be reduced. Unfortunately these approaches result in

expensive implementations.

Software Countermeasures: such as blinding (masking) or randomisation methods. The

statistical correlation between the executed data and the side-channel can be reduced.

Protocol Countermeasures: such as frequently changing of the key material. In this way, an

attacker can never obtain recent key material.

Generic Countermeasures: such as inserting random delays between consecutive operations.

They can be implemented in hardware or software, regardless of the cryptographic algorithm.

Decent implementations never rely on a single countermeasure!
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Analysing an EC Hardware Implementation

Xilinx Virtex 800

Current Probe

VCCInt

Trigger

VCCO

GND

Figure 13: The setup
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Figure 14: EC Double and Add
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SCA on Public-Key Cryptosystems

There are three target operations for SCA in PKCs:

• Multiplications,

• Exponentiations, and

• Scalar Point-Multiplications.

The problems in all of the three operations mentioned above are because of the use of some

variant of the binary algorithm.

ECCs offer a particularly wide range of implementation options that can be used to secure their

implementations against SCAs. One of them is based on fiddling around with point-multiplication

algorithm:

• If one uses a double-add-and-subtract algorithm, and an attacker is unable to distinguish adds

and subtracts, then an SSCA is not directly possible.
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Countermeasures for Implementations of ECC

• SSCA Countermeasures:

– (Re) Order the field operations in such a way that double and add/subtract look the same.

Use a curve where the two operations are identical.

– Use a multiplication algorithm with an always double and always add structure.

– Randomize the sequence of the operations in the point multiplication algorithm (take care,

probably none of the proposed algorithms provide sufficient security)

• DSCA Countermeasures:

– Randomize the base point (use projective coordinates)

– Randomize the scalar

– Randomize the algorithm

– Introduce random process interrupts (dummy cycles) to desynchronize the measurements.
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Fault Attacks – Introduction

When an attacker has physical access to a cryptographic device, he may try to force it to

malfunction.

A fault attack is an attack in which information about the message or the secret key is leaked

from the output of erroneous computations.

There are several ways to introduce an error during the computation performed by the

cryptographic device. Though the description of these practical means is beyond the scope

of this introduction, we cite some non-invasive methods:

• spike attacks work by deviating the external power supply more than can be tolerated by the

device. This will surely lead to a wrong computation.

• glitch attacks are similar to spike attacks, but target the clock contact of the integrated

circuit.

• optical attacks work by focusing flash-light on the device in order to set or reset bits.
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Fault Attacks – Attack Models

There are a lot of different fault attacks. Most of the time, they differ by the assumptions made

about the attacker’s capabilities: the way he can access and modify the memory, the power he

has upon the fault occurrence time, etc. One can characterize fault attacks according to different

criteria:

• control on the fault location;

• control on the fault occurrence time;

• control on the number of faulty bits induced;

• the fault model.

On the three first items, an attacker can have either no control, loose control or precise control.

Fault models include: the random fault model, the bit flip model, and the bit set or reset model.
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Fault Attacks – Application to ECC

The main idea behind fault attacks on implementations of ECC is:

By disturbing the representation of a point we enforce a device to apply its point multiplication

algorithm to a value which is not a point on the given but on some different curve. It

is a crucial observation that the result of this computation is a point on the new probably

cryptographically less strong curve which can be exploited to compute the secret key d.

Consider an EC given by E : y2+a1xy+a3y = x3+a2x
2+a4x+a6. The parameter a6 is not

involved in the addition formula. Hence, if you input P̃ = (x̃, ỹ) with P̃ /∈ E, then the scalar

multiplication dP̃ will take place over the curve Ẽ with ã6 = ỹ2+a1x̃ỹ+a3ỹ−x̃3−a2x̃
2−a4x̃.

Assume that the point P̃ has been chosen so that Ẽ is a curve with an order that has a small (or

smooth) factor r and that the order of P̃ is equal to r. Then, the value of d (mod r) can be

recovered.

Hence, by repeating the attack with sufficiently many chosen points P̃ , the value of d can be

recovered by Chinese remaindering.
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Fault Attacks – Attack Scenarios

How can we induce faults such that the attack described before becomes practical?

• Software implementations: In case that a device/programm does not explicitly check whether

an input point P nor the result of the computation is a point on the cryptographically strong

curve, this attack is directly applicable.

• Assume that we can produce one register fault inside the device right after the point has been

received as input. Then the device computes internally with a point P̃ which differs in exactly

one bit from the input point P . By taking the output point we can determine ã6 such that

P̃ is on a weak curve. Finding the (unknown) input point P̃ is simple since it differs only in

one bit from the original point. Then we compute the order of the point, and if it has a small

divisor r, we try to solve the DL problem.

Attacks under more general assumptions do exist . . .
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(Intermediate) Conclusions

• Side-channel attacks are passive implementation attacks. Several side-channels such as timing,

power, em, error messages have been exploited so far.

• Many of the implementation options which we discussed can be used to prevent those passive

attacks. Mostly, this results in some penalty with respect to speed, size or interoperability.

• Fault attacks are active implementation attacks. Depending on the assumed attack model,

an attacker can supply wrong parameters or even change/flip bits inside registers. There exist

attacks for ECC. Countermeasures include checking the results of the computation for faults

and hardware-countermeasures.
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THE END

Thank you for your Attention!

Questions?

Elisabeth.Oswald@{iaik.at,esat.kuleuven.ac.be}
http://www.iaik.at

http://www.esat.kuleuven.ac.be/cosic

http://www.a-sit.at
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