Kapitel 1

Galois Operation

1.1 Point counting

1.1.1 Find a Curve!

The tasks are:

Find a finite field &, a curve C defined over k and a prime number p dividing
| Pic(O¢) |, a point Py € Pic(O¢) such that we get a secure DL-system.
The determination of P, is not difficult if C' is known.

To find (k, C') one uses the following strategy:

e Prove (e.g. by analytic number theory techniques) that good pairs occur
with a reasonable large probability.

e Choose random (k,C) and count the elements in Pic(O¢).

The second task is solved by determining the characteristic polynomial of the
Frobenius automorphism II acting on vector spaces related to the geometry
of C and J¢:

Computation of the L-series of C/;.

Examples for representation spaces are spaces of holomorphic differentials or
more generally of differentials with prescribed poles and cohomology groups.
De Rham cohomology, étale cohomology and crystalline cohomology are espe-
cially interesting.
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There are most important theorems (Hasse, Deligne-Weil, Lefschetz) saying:

e Let I operate on the étale or crystalline cohomology groups above.
Then its characteristic polynomial is independent of the choice of the
cohomology and is a monic polynomial with coefficients in Z.

o If we choose the first cohomology groups then this polynomial is of
degree 2 - dim(A) and its zeroes are algebraic integers with absolute
value p™/2. It is called the L-series of A.

e The value of the L-series at the place 1 is equal to the order of A(Fyn).

We shall assume that p is a prime and that ng is a divisor of n.

1.1.2 Methods of counting on abelian varieties

Given:

An abelian variety A (elliptic curve, Jacobian of a hyperelliptic curve,...) over
a finite field F,» with Frobenius automorphism Problem:

Count the number of points (and determine the group structure) of the Fyn-
rational points on it.

Use:

The Galois operation by II induces an endomorphism on A denoted by the
same symbol.

Methods:

1. Brute force,
(possible if pm4mA < 10'2),

2. index-calculus or Pollard-p
type algorithms,

3. compute the L-series of the Frobenius endomorphism II

The methods 1 and 2 can only be used for auxiliary constructions since if
they succeed the DL-problem can be solved by the same methods.
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So we concentrate on the third method.

A variant of 1. and 2. is
Let A be defined over Fyno. Then IT (as endomorphism of A) is equal to 7/,

Now take A over [y and count points on A(F,n ) by one of the methods
mentioned above. Then we can compute A(IF,») rather easily (method of
constant field extensions).

To realize these representations mentioned above one uses the result that
the étale cohomology is isomorphic to the Tate modules of A w.r.t. primes [
different from p, and the crystalline cohomology is isomorphic to the Dieu-
donné module of A.

By definition Tate-modules T} A mod [ are the [—torsion points of A, and on
this fact the strategy of Schoof’s algorithm relies:

compute the Frobenius action modulo small primes (and their powers if pos-
sible) and then use the Chinese remainder theorem to determine the L-series.
This algorithm is in general in principle polynomial (in 7 - logp) but in prac-
tise not working fast enough without further tricks (Atkin-Elkies for elliptic
curves) so that nowadays we can use it only to count the points on random-
ly chosen elliptic curves in cryptographic relevant regions. The reason for
the higher efficiency in the elliptic curve case is that we can “easily” deci-
de whether elliptic curves have isogenies of a given degree (and they have
many!).

1.2 Lifting strategies

We could use more machinery (e.g. analytic ones) if we could lift the whole
situation to characteristic 0 and determine the Frobenius explicitly.

Note: II acts in two manners: As Galois automorphism and as endomor-
phism! It is not difficult to lift IT as Galois group element, but very difficult
to do this as endomorphism.

For general liftings of A this is not possible. We need canonical liftings, and
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they exist for abelian varieties with special properties (“ordinary varieties”)
due to deep theorems from arithmetic geometry. Take A = FE an elliptic
curve. If E is supersingular we cannot lift II such that we get non trivial
information. (Fortunately it is very easy to determine the L-series of E forb
supersingular elliptic curves.)

But assume that F is not supersingular and so End(FE) is an order O in
an imaginary quadratic field. Then (Deuring) there is an elliptic curve F
defined over a number field with End(E) = O. In practice this does not help
for randomly chosen elliptic curves.

Reason:

The order O will have a discriminant of a size ~ 10%° and so FE is defined
over a number field of degree ~ 103!

But the situation changes if we replace the global number fields by their
p—adic completion! This idea works (surprisingly good) for small p (and so
for large n).

1.2.1 Elliptic Curves: Work of Satoh

(Very) short sketch:

Take p small, let E be an elliptic curve over ..

We can assume that F is not supersingular. A consequence of class field theo-
ry is that the minimal polynomial of the j-invariant of the canonical lifting
€ has (all) zeroes in the minimal extension W (F,n) =: K, of Q, which is
unramified with residue field Fpn.

First step: Determine the invariant of £ (in a sufficiently good approximati-
on) and so £.

Then we know that II has a lifting to Endg, ().

Now comes the trick:

We have to compute how IT operates on torsion points (or another nice repre-
sentation space). And so we can use the p-power torsion points which had
vanished during the reduction process i.e. which are in the formal group of £.
And then we can use p-adic power series to do this (Newton-type iteration).
The only problem is that the Frobenius automorphisms is not acting in a
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non-trivial way on this group. But there is the dual map called Verschie-
bung which acts nicely (separably) and which has the same trace (all what
we need).

Practical remarks:

e By the theorem of Hasse we know the order of E(F,») up to an error
term of size 2 - ¢"™? and so it is enough to compute everything with
(easy to estimate) p-adic precision.

e In fact one does not use II but the action of 7 (or the corresponding
Verschiebung) on the Weil restriction , and since p is small one use
explicit formulas for isogenies.

e The complexity of this algorithm is polynomial in p (bad) but also in n
both in space (O(n?) by a new result of Vercauteren) and time (O(n°"¢).

Generalization:

For p = 2 a very efficient version and a generalization to hyperelliptic
curves of genus 2 (and 3) was given by Mestre and is called the AGM-
method.

1.2.2 Counting on Curves: Work of Kedlaya

There is a theoretically more involved method which is surprisingly easy to
be implemented.

It avoids to lift abelian varieties canonically but uses a p—adic version of de
Rham cohomology to find a representation space for II. The background is
the work of Monsky-Washnitzer on Lefschetz fixed points formulas on these
spaces, the paper is written by Kedlaya. Till now we have only discussed the
case that we want to count points on abelian varieties. Now we shall count
on an affine curve, from this it is easy to get the number of points of corre-
sponding projective curves and then by using properties of Zeta-functions of
curves and their relations to class group numbers on gets the result for the
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Jacobian of the projective curve.

Note: To do this for curves of genus g one has to count the points on the
curve over [Fon.

De Rham cohomology

We assume now for the moment that C' is an affine curve defined over a field
K of characteristic 0 with ring of coordinate ring A (e.g. A = K[X,Y]). If
we remove finitely many points from C' we get again an affine curve C; with
coordinate ring A;.

Let €2y be the the A;—module of holomorphic differentials on C. Inside of
Q1 there is the module of exact differentials, i.e. the image of A; under “dif-
ferentiation” denoted by B;.

Hl(Cl) = Ql /Bl

is the first de Rham cohomology of C; which is a finite dimensionalb K —vectorspace.

The relevant example

Let C' be a projective hyperelliptic curve of genus g with a rational Weier-
stral point which we choose as point at infinity. Let C' be given as the affine
part, an equation is

Y? = f(X)

where f is a polynomial of degree 2g + 1.
Let C be the sub curve obtained by removing the zeroes of Y.
Then

A= K[X,Y,Y7)/(Y? - f(X))

and we can give an explicit base of H!(C}):

HY(C)) =< X'dX/Y;i=0,---,2g — 1>
®< XdX/Y?*i=0,---,29—1>

(we get a decomposition under the action of the hyperelliptic involution) and
we can compare this cohomology with the étale cohomology (on which we
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have a Galois action (Tate-modules!) of the absolute Galois group of K and
the action of endomorphims of the Jacobian). Now assume that K = K,
(for simplicity p odd), change notation C — C and assume that C is the
reduction modulo p of C. Then:
If II would act on H'(C;) as endomorphism we could compute the L-series
and so we could compute the number of points on Ci(IFy ).
This will be not possible in general but we always have an obvious action if
we replace A; by its formal p-adic completion A,.
Reason: The map

X = X"

extends to
Y —

YL+ (FOOT = F(XP")/F(X)P)Y2

as series converging in the p-adic topology very rapidly.
This induces an action (explicitly given) on the de Rham cohomology of A.

Check (Kedlaya): This formal cohomology is finitely generated with the same
set of generators as H'(C).

Then by the Theorem of Monsky-Washnitzer we get:

the fixed point theorem for IT holds on this formal cohomology group, and
we are done.

In fact there a quite efficient implementations of this algorithm (Vercauteren)
and generalizations to more general varieties (Lauder, Wan), see thesis of R.
Gerkmann (Essen 2003).

1.2.3 Global lifting

Remaining open case: We want to count the element of Pic(O) for underlying
curves of genus larger than 1 in large characteristics.

The only working method today is a lifting to global fields in very special
cases:

C is such that its Jacobian has a lifting to a number field of small degree
over Q with a ring of endomorphism which contains either a lifting of II or
is at least not for away from it.



8 KAPITEL 1. GALOIS OPERATION

This means: C (resp. J¢) is the reduction mod p of a curve (an abelian
variety) which has real or complex multiplication with an order in a number
field of small class number. F ; so following an idea of Atkin one

begins with an appropriate endomorphism ring, construct a corresponding
global curve and the uses for C the reduction of this curve. This idea can be
applied to Jacobians of curves of genus 2,3

(A. Weng). g=1:

Class field theory of imaginary fields applied to elliptic curves is used till
today. It works very efficiently, the hardest computational problem is the
factorization of polynomials of degree < 1000 over F ,. g = 2 :

This is implemented by A.Weng (Preprint IEM Essen 2000) in a very efficient
way and uses

1. class field theory of fields of degree 2 over real quadratic fields (non-
Galois over Q), !

Y

2. Invariant theory which is explicit and “easy” and

3. Mestre’s method intersecting invariant forms

Example (Weng):
(g=2) Consider the CM-field

=)~ [iyf7+27 5

It has class number two and two
polarizations.
The class polynomials are given by

H,(X) = w + 125426939904w* + 206483140868310761472w>
—3777735852531193527889035264w
+4880287864430944225048694259449856,

H,(X) = w* + 660000960w> + 106952268616185600w>
+27255466149375338496000w

to avoid non-necessary automorphisms




1.2. LIFTING STRATEGIES 9

+837300145473346170101760000,
H3(X) = w* + 189766368w* + 7505309625975360w”
+434631556065843035136w — 45329807190376508829696.

For

p = 5900018603715467611181989109202421

the corresponding curve is
C :y* =15 + 2251831303237605767657618195346350t*

+1395987570926578077980910550381755¢>
+3449986084090239803090552184527208t>
+107170423469627799375107316893595t
+2770857204236068378720416405312357.
with
| Jo(Fp) |=
is

= 34810219524188617853906269808542764315413963371023671004263947730632

= 8 - Gprime (67 digits).
3.) For g > 3 invariant theory becomes more complicated.
A.Weng is able to find curves with CM with 4 automorphisms.

Example (g=3)
For
p = 123456776543211236173

the Jacobian of the curve
C:y?=a" +72°+ 142 + Tz
has complex multiplication by

K =Q(i)Ky
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where K| is generated by w® — w? — 2w + 1.

The group order is

n = 1881675801864379891114339535564538805274692594768590688211848
= 8! with [ a prime with 60 digits.

1.3 Pairings

1.3.1 Bilinear Structures

We shall use properties of abelian varieties with Galois action to build up a
bilinear structure related to our DL-system in special cases.

Assume that the DL-system A,o is given and that there is a group A’ in
which we can compute “as fast“ as in A.
Assume moreover that (B, o) is another DL system and that a map

Q(al,a2) :Ax A - B

is computable in polynomial time (this includes that the elements in B need
only O(log | A |) space

with
e for all ny,ny € N and random elements ay,a), € A x A’ we have
Q(n1 0 a1,n2 0 a3) = 1 - mz 0 Qa1 a3)

e ()(.,.) is non degenerate and hence for random a' € A’ we have
Qa1,d) = Q(az,d) iff a; = az .

Then we call (4, Q) a DL-system with bilinear structure.
There are two immediate consequences:

e The DL-system (A, o) is at most as secure as the system (B, o).
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e Assume moreover that A = A’
Given a (random) element a
and aj,az2,a3 € Noa one can decide in polynomial time (in log | B |)
whether (simultaneously)

a; =njoa,as =ngoa,a3 = (n;-ny)oa

holds.

This are negative aspects of bilinear DL-systems but very interesting pro-
tocols due to Joux (tripartite key exchange) and Boneh-Franklin use such
structures in a positive way.

1.4 Tate Duality of Abelian Varieties

In this section we shall discuss a bilinear structure on points of order p inside
of the rational points of the Jacobian variety of a curve C with a rational
point P, defined over a finite field k£ of characteristic /[y with values in the
Brauer group of a local field which can weaken our system in some cases.

We distinguish now two cases:

1) p= lo and

2)p#l

and begin our discussion with the first case. We follow closely a paper of
Riick.

1.4.1 The Artin-Schreier case

We use the following result about algebraic function fields with positive cha-
racteristic( Serre 1956):

Proposition 1 Let k be a field of characteristic p, C a projective curve
of genus g defined over k and Q'(C) the k—wvector space of holomorphic
differentials on C. Then there is an isomorphismus from Pico(C)[p] into
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QY(C) given by the following rule:

Choose a divisor D with p- D = (f) where f is a function on C. Then the
divisor class D of D is mapped to the holomorphic differential df / f.(We have
to use that char(K )= p!)

Next we describe differentials by their power series expansion at F.
Let t be a local parameter of C' at Py. Let (ao, a1, ..., azg—2)(f) be the tupel
whose coordinates are first coefficients of the power series expansion of

@f/0t)/f

at Py. Hence we have to evaluate a function at a point. The problem is that
the degree of f is very large.
The Riemann-Roch theorem implies that (ao, a1, ..., a2g—2)(f) determines df / f

completely . Hence
® : Pico(C)[p] — k*!

given by

D — (a'Oa ai, .- a2g72)(f)
is an injective map.
Hence: ® transfers the DL- problem from Picy(C)[p] into k%91 with its ad-
ditive group structure. As remarked in example 1 this means that the DL-

system is broken if the computation of & can be done in polynomial time.
We leave this as an open problem for a moment and go to the second case:

1.4.2 The Kummer case

We begin by discussing a more general situation.

Let K be a field with absolute Galois group G and A a principally polarized
abelian variety over K, p prime to char(K).

By p, we denote the group of p-th roots of unity in the separable closure K
of K (regarded as G module).

We have the exact sequence of Gx—modules (Kummer sequence)

0 — A(K,)[p] = A(K,) B A(K,) — 0.
Application of Galois cohomology gives the exact sequence

0 — A(K)/pA(K) % H'(Gk, A(K,)[p))
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= H'(Gk, A(K,))[p] — 0.

Next we use that A(K,)[p| is as G x—module self dual (since A is principally
polarized) and so we can use the cup product to get the Tate-pairing

<,>x: A(K)/pA(K) x H'(Gk, A(K,))[p]
- HQ(GK;NP)

given by
< P+pA(K),y >x=§(P +pA(K)) Ua ().

H%*(Gkg, up) is a very important group for the arithmetic of K, it is isomor-
phic to H*(Gg, K?)[p] and hence consists of the elements of order dividing
p of the Brauer group Br(K) of K.

The information we can get out of the Tate-pairing depends on the informa-
tion given by the Brauer group and on its degree of non-degeneracy.

For instance if K = k is a finite field the Brauer group is {0}.
The situation changes if we take K as an [—adic field with residue field k.

Theorem 1 (Tate)
<, >k 1S non-degenerate.

Hence for principally polarized abelian varieties over [-adic fields we have
transferred the DL- problem in A(K)[p] to the corresponding problem in
Br(K)[p] provided that we can evaluate the pairing in polynomial time. This
means especially that we can describe and compute in H(G g, A(K,))[p] and
Br(K)[p).

Let us assume that K contains the p—th root of unity (,,, i.e.
pl(g—1).

Standard calculations with cohomology groups yield:

Let L, be a ramified extension of K of degree p.

Corollary 1 There is a non-degenerate pairing <, >:
A(K) [p - A(K) x Hom(G(L,/K), A(K)[p))
— Br(K)[p]
induced by the Tate pairing.
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1.4.3  Application to Jacobian Varieties over Finite
Fields

We continue to assume that k is a finite field of order ¢ = l(’; and thatp is a
prime dividing ¢ — 1. Let C be a projective curve defined over k and let A
be its Jacobian. We lift (C, A) to (C, A) over an [-adic field K with residue
field k and apply Corollary 1 to A.

Now we invest what is known about the Brauer group of K and get

Proposition 2 (Lichtenbaum) Let 7 be a generator of G(L,/K). Let Py, Py
be points of A(K) with Py a point of order p. Let ¢ be the homomorphism of
G(L,/K) to Jo(k)[p] mapping T to Ps. Represent P,— Py by coprime divisors
D; in the divisor class group, and let f» be a function on C with divisor p-Ds.
Then 3

< P1 +p- A(K), p >= f2(D1) : NLP/K/(L*)-

A(K)[p] is isomorphic to A(k)[p], A(K)/p-A(K) is isomorphic to A(k)/p-A(k)
and K x /N(L,/K)(Ly) is isomorphic to k*/k*?, so:

Corollary 2 There is a non-degenerate pairing
<,>k: A(k)/p - A(k) x A(k)[p]) — k*/k™

given by the the following rule:
Let Py, P, be points of A(k‘) with Py a point of order p. Represent P; — Py by
coprime divisors D; in the divisor class group of C, and let fo be a function
on C with divisor p - Ds.
Then

< P +p- J(j(k),Pz >= fQ(Dl) . k*/k*?

As in the additive case we can transfer the DL-problem in Jo(k)[p| to the
discrete logarithm in a group related to k provided that we can compute
f1(D2) fast enough.

But there are two crucial differences: In the multiplicative case we end up in
the multiplicative group of k, and in this group only sub exponential attacks
are known, and secondly we can transform the original Tate duality pairing
into a computable version only under the condition that k& contains the p—th
roots of unity. This last condition is rather difficult to satisfy (or easy to
avoid).



1.4. TATE DUALITY OF ABELIAN VARIETIES 15

1.4.4 Computation of the duality pairing

In both cases the computation of the Tate-Lichtenbaum pairing boils down
to the evaluation of a function f on C' at a divisor E of C. The problem
is that the degree of the zero- resp. pole divisor of f and the degree of the
negative (and positive ) part of D are very large (about p) and so a direct
approach to do this evaluation is not possible. The way out was found by
V. Miller for elliptic curves (applied to the Weil pairing). We use the theory
of Mumford‘s Theta groups which explicitly describes extensions of (finite
subgroups of ) abelian varieties by linear groups.

We restrict ourselves to the multiplicative case.

The basic step for the computation is:

For given positive divisors Ay, As of degree g find a positive divisor Ag of
degree g and a function A on C' such that

A1+A2—A3—gP0:(h)

We can assume that this step can be done fast for otherwise we could not
use J¢ for DL-systems.

As measure for the complexity of our algorithm we shall take the needed
amount of such steps.

We recall that we have a canonical birational morphism, ¢4, between the
g-fold symmetric product of C and J¢.

Let S be a subset of Jo(k). A divisor F of C is called prime to S if it is prime
to all divisors in ¢~!(s);s € S.

Now assume that S is a finite subgroup of J¢, and that E is prime to S.
Define the following group law on

S xk*:

(81,01) 0 (82, 02) == (dg(A3),a1a2 - h(E))

where A3, h are computed as above with A; = ¢~1(s;).
The assumption for E guarantees that h(E) € k*. The degree of h is at most
g, and so the evaluation is polynomial in g - log | k |.

We apply this in the following situation: B
D is an element of order p in Jg(k) and D € D is a divisor of the form



16 KAPITEL 1. GALOIS OPERATION

D = A — gPy where A is a positive divisor of degree g on C. Furthermore F
is a divisor of degree 0 on C' which is prime to the group generated by D in
Jo(k).

Then the p—fold application of o gives the result

0, f(E))

where f is a function on C with (f) = pD.
This is easily seen by induction for evaluating the application of o [ times
gives

(9g(Ai-1), i-1(E))

with a positive divisor A;_; of degree g and a function h;_; whose divisor is
equal to
A — Al—l - (l - ]_)gPO

Since D is a p—torsion point A, ; equals gFPy and so h, ; has the divisor
pA —lgP,.

Now we can use the group structure on < D > xk* and apply the square-
and multiply algorithm to evaluate f at E in O(log(p)) addition steps.
CONSEQUENCE:

We can reduce the discrete logarithm in A(K)/pA(K) to the discrete loga-
rithm in Br(K), with the costs O(log(| F 4(1p) |)-

Remark:

In general the conditions that K and hence the residue field ' , contains
p—th roots of unity and that A has points of order p rational over IF , which
are cryptographically interesting will not be satisfied at the same time.

For elliptic curves we can formulate this more precisely:

Proposition 3 Let E be an elliptic curve defined over F , and p a prime.
Let w be the Frobenius automorphismus of F .

Then Z/p can be embedded into E(F,s) iff the trace of /' is congruent to
g’ + 1 modulo p and the corresponding discrete logarithm in E(F,s) can be
reduced to the discrete logarithm in p, in the field Fysm where m is the smallest
integer such that the trace of ™™ becomes congruent to 2 modulo p.

Sometimes one can enforce these conditions (after a small extension).
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Corollary 3 Assume that there is an endomorphism n of A with

< P+ pA(k),n(Po) >= G

e 1 can be computed in polynomial time.

Then the decision problem related to P,(Q), R reduces in polynomial time to
the equality test of < R+ pA(k),n(Po) > and < P + pA(k),n(Q) > in k.

Example 1 Let E be a supersingular elliptic curve and assume that F
has odd degree over Z/p. Assume moreover that there is an endomorphism
of E which is not contained in Z - idg and whose restriction to the points
of order p can be computed in polynomial time (e.g. E : Y? = X3 — X and
n: X — —X,Y — /=1Y ). Then the conditions of the corollary are satisfied.

1.5 Classical Discrete Logarithms: Compu-
ting in Brauer groups

Cyclic Algebras

¢ € Br(K), can be identified with algebras C' over K which become isomor-
phic to the p X p—matrices after tensorizing with some cyclic extension field
L of degree p, i.e. we can determine ¢ by a pair

(0,a)

with < ¢ >= G(L/K) and a € K*/Ny/xL* :
c is the class of f,, : G x G — L*, with

i y_Ja  itiz2p
Joald"07) {1 i+j<p.
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1.5.1 Local fields

Notation

Let K be complete with a discrete valuation v, a finite residue field k£ with
q = I¢ elements and with Galois group Gg. For instance: K = Q, and
Let m be the Frobenius automorphism of k.

Let L, be the unique unramified extension of K of degree p. We can lift 7 in
a canonical way to an element of the Galois group of L, /K.

Invariants

The key results of local class field theory are:

1. Every element of ¢ in Br(K)[p|] is equivalent to a cyclic algebra with
respect to L, /K.

2. Let ¢ be given by (m,a). Then c is uniquely determined by v(a) modulo
P.

v(a) € Z/pZ is the

invariant inv(c)

of c.

Hence the computing in Br(K)[p] would be trivial if we could compute inva-
riants since then we transfer it to Z/p. For cyclic algebras two cases occur:
1)c is given by a pair (7,a) and 7 is another generator of G(L,)/K. We have
to determine n with

T =T.

2)c is given by (0, a) with o a generator of a ramified extension of degree p.
We have to find an equivalent pair of the form (r,b).

(This is the case coming out of the Tate pairing.)

For both cases we have to solve discrete logarithms in finite fields.
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1.5.2 Global fields

The Hasse-Brauer-Noether sequence

Let K be a global field (number field) with
localisations K, and
with decomposition groups G,.

We get the most important exact sequence

ZUIGEK MU,

0= Br(K)p 5" @@ Brkp S z/p -0,

U’EEK

where Y is the set of equivalence classes of valuations of K.

1.5.3 Index-Calculus in Brauer groups

Assume that A, is a cyclic algebra corresponding to ¢, € Br(K,),.
Lift A, to a cyclic algebra A defined over K and use the equation

—Yyeng\v MUy (P (A)) = inv,(4,).

to get relations.

For the lifting we need

existence theorems

for cyclic extensions of K with prescribed ramification delivered by
global class field theory

(in an explicit way e.g. by CM theory).

1.5.4 Example:K =Q

The global class field theory of Q is completely determined by the theorem
by Kronecker and Weber:
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Theorem 2 (Kronecker—Weber) Fuvery abelian extension K/Q of Q is
contained in a easily determined cyclotomic extension Q((,)/Q.

There exists an extension K/Q of degree | ramified exactly at p iff ljp — 1
holds. If it exists it is uniquely determined.

We have a complete control of the decomposition laws of primes.

1.5.5 The Algorithm

Consider a global algebra A of the form A = (K/Q, 0,a). If a can be factored
in the form a = [[p™ the theorem by Hasse-Brauer—Noether leads to a
relation of the form

invp(a) + Z fqng = 0 mod L. (1.1)
q7p

Here the factors f, are defined as follows:

Let K,/Q, denote the extension of local fields belonging to K/Q. We can
identify G(K,, Q,) with the decomposition group G,. Since G has prime or-
der [, it is obvious that G, is either trivial (if ¢ splits completely in K) or
is equal to G (if ¢ is inert in K). If K,/Q, is unramified (i.e. ¢ # p) we
can identify G(K,/Q,) with the Galois group G(k,/F,) of the extensions of
residue class fields.

Let o denote the fixed generator of G.
Define f, by m, = o/¢ (m, the Frobenius at q) modulo I.

(1.1) can be seen as a linear equation relating the indeterminates { f,, inv,(a).
Hence we have to produce enough equations of this form in order to apply
linear algebra modulo / to compute “enough” factors f,.

Definition 1.5.1 A natural number n € N is M—-smooth iff the following
holds:
g prime,qln = q < M.

Let (z,y) denote the number of natural numbers n < x which are y—smooth.
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Theorem 3 Let ¢ be an arbitrary positive constant, then we have uniformly
for £ > 10 and y > (logx)'*¢:
—u+o(u)

Y(z,y) = zu firz — oo (1.2)

where u = (logz)/(logy).

One algorithm for K =Q

Choose a smoothness bound M and compute the factor basis S consisting of
the primes less or equal to M.

Let d be the smallest number > ,/p.

For § € L :=0,...,1] take

ai(6) :==d+29.

as(0) :==co + 20 - d + §?)

(= a* modulo p)

with cg = d? — p.

Assume that for § € L both a;(d) and ay(d) are M —smooth. Then we get
a relation for the f, for ¢ in the factor base.

To find such § € L we can use sieves.

Having enough relations for a large enough factor base we can proceed as
usual: For random a we take small powers of a and hope that modulo p such
a power yields a smooth number. Then we can compute the invariant of the
corresponding algebra and so the invariant of @ and use this for computing
discrete logarithms.

This approach unifies methods and results obtained by various authors
(Coppersmith, ElGamal,

Schirokauer,Adleman-Huang)

using different and quite complicated methods for different cases. The most
advanced amongst them are called number field sieve and function field sieve.
All these methods can be explained by Brauer groups and so class field theory
of global fields is the right background for the DL in finite fields. That point
of view could open new possibilities for more advanced attacks for instance by
lifting from local Brauer groups to global Brauer groups in a more intelligent
way.
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1.6 Scalar Restriction

Another example to use the

extra structure:

Frobenius endomorphism

is the scalar restriction.

It is applied to curves which are not defined over prime fields.

It can be used to transfer DL.’s in many elliptic curves to DL’s in Jacobians
of curves for which the index-calculus method works.

1.6.1 Descent

In a lecture at the ECC 1998 I proposed to look at the following well known
fact:

An abelian variety of dimension d over IF ; corresponds to an abelian variety
of dimension f - d over I, .

Mathematical procedure: Take a field K and a finite separable field extension
L/K. Let V be a quasi-projective variety (i.e. V can be embedded into a
projective space) defined over L.

Then there is a quasi-projective variety Wy defined over K with

Wy (K) = V(L) and Wy x L ~ VIEE] Recipe:

Choose coordinate functions X, -+, X,, of V over L and a basis (u1, "+, up)
of L/K. Define the n - m variables Y; ; by

Xi=wYi;+ -+ UnYm,

Plug these expressions into the relations defining V. Next express the coeffi-

cients of the resulting relations as linear combinations of the basis (u1, - -, Uy,)
and order these relations according to this basis to get the relations of the
coordinate functions Y7 1,---,Y,,, of Wy over K.

For quasi-projective varieties one has to choose an appropriate cover of V' by
affine varieties, apply the descent recipe to them and then glue together the
resulting affine varieties over K.
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The Case of Finite Fields

Take K = F, and L = Fgm and let A be an abelian variety of dimension d
defined over Fgm.

The Weil restriction Wy is an abelian variety defined over F, and its group
of F ,-rational points is in a natural way isomorphic to A(F,m ).

So the DL-problem on A/F,m is equivalent with the DL-problem on the
m X d—dimensional abelian variety W, over FF,. But W4 has more geometric
structure: We find [F,-rational subvarieties like curves and hypersurfaces on
W4 which are not on A.

It seems that “in general” these subvarieties are rather complicated. For
instance take an elliptic curve E. Then “in general” one expects that the mi-
nimal genus of curves on W is & 2™ and so at least till now we cannot apply
this additional information (positively or negatively) to the DL-problem if
m is large. But for small m or special fields FF , one has to expect a different
picture.

It seems to be clear that it does not work for random curves or for extensions
of large prime degree (which is not a Mersenne prime). How to use it...:
Variant 1: Let L be a finite Galois extension of the field K.

Assume that C is a curve defined over L, D a curve defined over K and

p:DxL—C

a non constant morphism defined over L.
Then we have a correspondence map

¢ : Pic®(C) — Pic®(D)

¢ := Normp ko ¢*.

Assumption: ker(¢) is small.

Then the (cryptographically relevant) part of Pic’(C) is mapped injectively
into Pic’(D) and we have a transfer of the DL-problem in Pic’(C) into a
(possibly easier) DL-problem.
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It seems that this variant works

surprisingly well if C is a (hyper-)elliptic curve not defined over K in cha-
racteristic 2.

cf. work of Galbraith, Smart, Hess, Gaudry,Diem,...

Key word: GHS attack

It relates the DL-problem to the highly interesting theory of fundamental
groups of curves over non algebraically closed ground fields.

It certainly would be worth while to study this approach for non projective
curves like curves of genus 0 with singularities. Variant 2:

Again assume that C is defined over L.

We apply scalar restriction from L to K to the (generalized) Jacobian variety
of C and get a [L : K|—dimensional (group scheme) Abelian variety A over
K.

Now we look for curves D in K—simple factors B of A.

As B is a factor of Jac(D) we can hope to transfer the DL-problem from
Jac(C) to Jac(D).

It is not clear whether this variant can be used in practise.
But it leads to interesting mathematical questions:

e Which group schemes have curves of small genus as sub schemes?
e Investigate the Jacobian of modular curves!

e Which curves have the scalar restriction of an abelian variety (e.g. an
elliptic curve) as Jacobian?

To the last question: Bouw, Diem and Scholten have found families of such
curves!

1.6.2 Trace 0

As always one can find positive aspects, too.
Scalar restriction can be used for constructing abelian varieties as parts of
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Jacobians on which one can compute fast.

One begins with a curve over F ., extends the scalars to IF;» and takes the
part A of the Weil restriction to F ;, on which the trace of II is equal to 0.
Examples:

1.)Take C = E and n = 3.

Then dim(A) = 2.

2.)Take C = E and n = 5.

Then dim(A) = 4

3.) Take C' as curve of genus 2 and n = 3.

Then dim(A) = 4.

In all cases (and the appropriate environments) we get systems which are
more efficient than similar systems with elliptic curves.

And, most important: The examples 2.) and 3.) are more resistant against
the index-calculus attack and hence more secure than Jacobians of curves of
genus 4.



