1 DL-systems and orders

1.1 Ideal class groups of orders

Remark:
Everything could be done much more general, and for some (few) theoretical
and (even fewer) practical considerations this has to be done.

Let O be a (commutative) ring with unit 1 without zero divisors.

Two ideals ! A, B of O different from 0 can be multiplied:
A-B= {Eazbz,az € A,bz € B}

Clearly - is associative. How to compute A* with
a numeration?

In general this will be not possible.
Here are some minimal assumptions:

I) O is noetherian:

Every A is a finitely generated O—module.

A generating system of the product of two ideals can be computed in finitely
many steps from generators of the factors.

But these systems become longer and longer.
IT)O can be embedded into a

finitely generated algebra O

over an euclidean ring B

such that the transition 3
A—A-0O

preserves “enough” information. ~
Then ideals A have a base over B (as O-modules), and by linear algebra over

LA C O is an ideal of O if it is an O—module




B one can compute a base in products of ideals.

But there are infinitely many possible choices of bases. So assume

IIT) There is a canonical basis for each ideal and B has a numeration. Then
one can numerate ideals in O.

Severe disadvantages:

The system is much too large.

It is insecure.

We have infinite sets.

(We have no group structure.)

Advantage and disadvantage:

We are near to the arithmetic of B and we can compute with ideals if we can
compute in B. Abstract Algebraic Geometry resp.

Commutative Algebra tells us:

There are more reasonable objects than ideals (= rank-1-projective modules)
over O:

Isomorphy classes of projective rank-1-modules
or, in fancy language,

Pic(O)

and factor- resp. subgroups.
Definition:
Let Ay, A; be two O—modules in
Quot(0).
Ay ~ A, if there is an element
f € Quot(0)* with
Al = f . AQ.
Let A be an ideal of O:
A is invertible iff there is an ideal A of O such that

A-A~O.

Pic(0) is the set of equivalence classes of invertible ideals of O, it is an abe-
lian group.



Try Pic(O) as groups into which Z/p is to be embedded.

Immediate problem: The equivalence classes contain infinitely many ideals.
How to describe the elements in Pic(O) for the computer?

So

1. Find a distinguished element in each class (resp. a finite (small) subset
of such elements).

2. or: Find “coordinates” and addition formulas directly for elements of

Pic(0).

We need:

I)There has to be a very fast algorithm to find these distinguished elements.
Possible if

e we have “reduction algorithms”, or

e we can use the geometric background of Pic(O) which leads to group
schemes resp. abelian varieties (link to the first lecture.

Most interesting cases are those for which both methods can be used!

IT)We want to embed Z/p into Pic(O) in a bit-efficient way:
We need

e a fast method for the computation of the order of Pic(O)

e (at least) a heuristic that with reasonable probability this order is al-
most a prime.



I1I) Discuss and, above all, exclude attacks.

”Generic attack” for DL-systems based on Pic(O):
We have distinguished ideals: Prime ideals.
We have the arithmetic structure of B.

Since we have to be able to define reduced elements (i.e. ideals) in classes
we have in all known cases a “size” of classes which behaves reasonable with
respect to addition.

This cries for ... Index-Calculus.

Principle:

We work in a group G .

Find a “factor base” consisting of relatively few elements and compute G as
a Z—module given by the free abelian group generated by the base elements
modulo relations.

Prove that with reasonable high probability every element of G can be written
(fast and explicitly) as a sum of elements in the factor base. The important
task in this method is to balance the number of elements in the factor base to
make the linear algebra over Z manageable and to “ guarantee” smoothness
of enough elements with respect to this base.

The expected complexity of this attack is subexponential, i.e estimated by
Ly (a,c) == exp(c(logN)*(loglogN)*~*)

mit 0 < @ < 1 und ¢ > 0 for a number N closely related to | G | . Digression:
Factorization of numbers

1.2 Existing Systems

What is used today?
Only two examples:



e B =7, and O is an order or a localization of an order in a number field

e B =TF ,[X], and O is the ring of holomorphic functions of a curve
defined over a finite extension field of .

122 Number field case

Orders O in number fields were proposed very early in the history of
public key cryptography (Buchmann-

Williams 1988).

We restrict ourselves to the ring of integers Ok of Z in number fields K.
Ok is a Dedekind domain, its class group Pic(Of) is finite.

The size of ideals is given by their norm.

The Theorem of Minkowski states that in every ideal class there are
ideals of “small” norm depending on

(Ak the discriminant of Og/Z), ckx depending on the real and complex
embeddings of K.

The background is the “Geometry of numbers” (Minkowski).
By lattice techniques it is possible to compute ideals of small norms in clas-
ses, and in these ideals one finds “small” bases.

Most difficult part: To compute the order of Pic(Ok):
Uses analytic methods (L-series) in connection with most powerful tools from
computational number theory.

There is a (probabilistic) estimate:

The order of Pic(Ok) behaves like exp(gxk ).

Disadvantage: For given g there are not many fields, and to have Pic(Of)
large the genus of K has to be large.

The parameter “genus” can be splitted into two components:
n = [K : Q] and ramification locus of K/Q.



If n is large the arithmetic in Ok is complicated (fundamental units, lattice
dimension ...)

Most practical example :
K is an imaginary quadratic field of discriminant —D.
So K = Q(v/=D. The expected size of Pic(O) is ~ v/D.

Theory of Gauf3:
Pic(Og) corresponds to classes of
binary quadratic forms with discriminant D.

Multiplication of ideals corresponds to composition of quadratic forms.
Reduction of ideals corresponds to the (unique) reduction of quadratic forms:
In each class we find (by using Euclid‘s algorithm) a uniquely determined
reduced quadratic form

aX?+ 26XY + cY?

with ac — 0> =D, —a/2<b<a/2,a<cand 0<b<a/2ifa=c.

The great disadvantage:
The index-calculus-attack works very efficiently:
(Under GRH:) The complexity to compute the DL in Pic(Ok) is

O(Lp(1/2,V2 + o(1))).

1.3 The geometric case

B =T ,[X], and O is the ring of holomorphic functions of a curve defined
over a finite extension field F, of IF,,.

Intrinsically behind this situation is a regular projective absolutely irreduci-
ble curve C defined over F, whose field of meromorphic functions F(C) is
given by Quot(O).

C is the desingularisation of the projective closure of the curve corresponding
to O.



This relates Pic(O) closely with the points of the Jacobian variety Jo of
C and explains the role of abelian varieties in crypto systems used today.
Singularities

We assume that O is not integrally closed.

The generalized Jacobian variety of C,, is an extension of J¢ by linear groups.
Examples:

1. Pic(F,[X,Y]/(Y? — X?3) corresponds to the additive group.

2. Pic(F X, Y]/(Y?+ XY — X?)
corresponds to G,,
and (for a non-square d)

3. Pic(F [X,Y]/(Y? +dXY — X3)
corresponds to a non split one-dimensional torus.

4. More generally we apply scalar restriction (se next lecture) to Gy, /IF,
and get higher dimension tori.
Example:
XTR uses an irreducible two-dimensional piece of the scalar restriction
of G /Fys to Fy.
Though there is an algebraic group (torus) in the background the sy-
stem XTR seems not to use it: It uses traces of elements instead of
elements in the multiplicative group of of extension fields.

131 Work of Rubin-Silverberg

To understand what is going on Silverberg and Rubin analyse rational para-
metrisations of (non-)split tori, are able to explain related systems like LUC
and give a new system CEILIDH.

In addition they come to interesting questions (conjectures) about tori (Vro-
skresenskii).

They also show limits of the method.



132 Security?

We can get tori by two different methods: By scalar restriction and by the
Generalized Jacobian of curves of geometric genus 0 and arithmetic genus
larger than 0.

Question:
Can this structure be used (as in the case of elliptic curves, see below ) for
attacks?

Curves without singularities
The corresponding curve C, is an affine part of C), = C.
The inclusion

F,[X] — O
corresponds to a morphism
Co — Al
which extends to a map
7:C =P

where P! = A! U {c0}. The canonical map

¢: Jo(F ;) = Pic(O)

is surjective but not always injective:

Its kernel is generated by formal combinations of degree 0 of points in 7 1(00).
More precisely: F ,—rational divisors of C' are formal sums of points (over F
q) of C which are Galois invariant.

Two divisors are in the same class iff their difference consists of the zeroes
and poles (with multiplicity) of a function on C.

The points of Jg are the divisor classes of degree 0 of C.

The theorem of Riemann-Roch implies that

(Cx...xC)/Sy (g=genus(C),

S,y the symmetric group in g letters)

is birationally isomorphic to J¢:



We find a representative D’ in divisor classes c¢ of the form
D'=D — g P, with D =%,_;..4a;P; with a; > 0. Now map
c— [HPiECO MI%:]

Most interesting case: The kernel of ¢ is trivial.

Then we can use the ideal interpretation for computations and the abelian
varieties for the structural background:

e Addition is done by ideal multiplication

e Reduction is done by Riemann-Roch theorem (replacing Minkowski’s
theorem in number field) on curves

but

the computation of the order of Pic(O) and the construction of suitable
curves is done by using properties of abelian varieties resp. Jacobians of
curves. Example

Assume that there is a cover

0:C — P degyp =d,

in which one point (P,) is totally ramified and induces the place (X = o0)
in the function field F ,(X) of P'.

Let O be the normal closure of F ,[X] in the function field of C.
Then ¢ is an isomorphism.

Examples for curves having such covers are all curves with a rational Weier-
straf} point, especially Cy,-curves and most prominently hyperelliptic cur-
ves including elliptic curves
as well as superelliptic curves.

Compared with the number theory case we have won a lot of freedom:
The parameters are:

1. p = characteristic of the base field

9



2. n = degree of the ground field of Z/p

3. gc = g = the genus of the curve C resp. the function field Quot(O).

There are about p3™ curves of genus g over Fn.

Structural relation: Hasse-Weil
| Jo(Fpn | ~ p™.

The key length is nlog(p) - g.

2 Hyperelliptic curves

Definition?

Assume that C is a projective irreducible non singular curve of genus > 1
with a generically étale morphism ¢ of degree 2 to P!.

Then C' is a hyperelliptic curve.

In terms of function fields this means:

The function field F(C) of C is a separable extension of degree 2 of the
rational function field F ,(X). Let w denote the non trivial automorphism of
this extension. It induces an involution w on C with quotient IP.

The fixed points of w are called

Weierstrafl points.

Assume that we have a IF ;,-rational Weierstrafl point Py,.

We choose oo on P! as ¢(P,,). Then the ring of holomorphic functions O on
C'\ Py is equal to the integral closure of F ,[X] in F/(C):

0= IFQ[X’ Y]/fC(Xa Y)
where fo(X,Y) is a polynomial of degree 2 in Y and of degree 2¢g + 1 in X.

Theorem: Jo(F ,) = Pic(0O).

2Elliptic curves (g = 1) are included.

10



From the algebraic point of view we are in a very similar situation as in the
case of class groups of imaginary quadratic fields.

In fact: Artin has generalized Gaufl ’s theory of ideal classes of imaginary
quadratic number fields to hyperelliptic function fields connecting ideal clas-
ses of O with reduced quadratic forms of discriminant D(f) and the addition
@ with the composition of such forms. This is the basis for the Cantor al-
gorithm which can be written down “formally” and then leads to addition
formulas or can be implemented as algorithm. Explicit formulas by T.
Lange

Addition, degu; = deguy =2

Input | [u1,v1], [ug, v2], ui = * + uax + wio, vi = vi1T + vio
Output | [v/,v'] = [u1,v1] + [ug, v2]

Step Expression Operations

1 compute resultant 7 of uy, us: 1S, 3M
Z1 = U11 — U21, 22 = U20 — U10, 23 = U1121 + 22;
T = 2323 + 2} U10;

2 compute almost inverse of us modulo u; (inv = r/uy mod u1):
iUy = 21, NV = 23;

3 compute s’ = rs = (v; — vg)inv mod u;: 5M
W = V1p — V20, W1 = V11 — V21, W2 = INUWo, W3 = INVIW1;
st = (invg + inv1) (wo + w1) — wa — w3(l + u11), s§ = w2 — UrWs;
if s§ = 0 see below

4 compute s =z + so/s1 =z + s/s] and s1: I, 2S, 5M
wy = (rsh) (= 1/r%51), we = rwy (= 1/8}), ws = s’fwl(z $1);
wy = rwa(=1/51), ws = wi, s§ = shwa;

5 compute I = s"uz = z3 + lha? + iz + 1f): 2M
1'2 = U21 + 86’, lll = UQ156’ + u20, l(’] = UQ()SBI

6 compute v’ = (s(l + h + 2v2) — k) /u1 = 2* + vz + ufy: 3M
uy = (s — u11)(sy — 21 + howa) — u1o + 1§ + (b1 + 2v21)wa + (2u21 + 21 — fa)ws;
u) = 25§ — z1 + hawy — ws;

7 compute v = —h — (I + v2) mod v’ = viz + v): aM
wy =l —uf, wy = wjwr +upy — 1}, v] = waws — va1 — hy + houl;
we = ugwy — lf, v = waws — vag — ho + haug;

| total I, 3S, 22M |
Special case s = sg

4 compute s: LM
inv =1/r, so = syinv;

5 compute v’ = (k — s(l + h + 2v2)) /u1 = = + ug: S
U6 = fa—uo1 —u11 — 8(2) — soha;

6’ compute v' = —h — (I + v2) mod v’ = v|: 2M
wy = so(u21 + ug) + h1 + v21 + haug, w2 = s + vao + ho;
Uy = upwi — Wa;

| total I, 25, 11M |
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Doubling, degu = 2

Input | [u,v],u =2 + w1z + up,v = V1T + o
Output | [v/,v'] = 2[u, ]
Step Expression odd even

1 compute ¥ = (h + 2v) mod u = 01z + Up:
U1 = hy + 2v; — houy, Ug = ho + 2vp — hauo;

2 compute resultant r =res(7, u): 2S, 3M 2S, 3M
wo = V3, wy = ul, wy = Vs, wy = ugdy, r = upws + Vo (T — w3);; (we = 4wyp) | (see below)

3 compute almost inverse inv’ = invr:
inv] = —01, inv) = ¥y — ws;

4 compute k' = (f — hv — v%)/u mod u = kiz + kj: M 2M
ws = f3+ wi, wg = 2ug, k] = 2(wy — fau1) + w3 — wy — viho; (see below)
k) = u1(2ws — w3 + faus +vihe) + fo — wo — 2faup — vihy — vohe;

5 compute s’ = k'inv’ mod u: 5M 5M
wo = kinvg, wi = kjinv;
st = (invy + invh) (k) + k1) — wo — w1 (1l + w1), 5§ = wo — UowWr;
If s; = 0 see below

6 compute s” =z + s9/s; and s1: I, 2S, 5M I, 2S, 5M
wy = 1/(rs})(= 1/r%s1), we = rwi(= 1/s}), wz = s’fwl(: $1);
wq = rwa(=1/s1), ws = w3, 8§ = sywa;

7 compute I’ = s"u = z3 + l4z% + iz + I 2M 2M
5 =wu1+ sy, I§ = u1sy + uo, Iy = upsy;

8 compute v’ = s + (h + 2v)s/u + (v* + hv — f) /u*: S, 2M S, M
uh = s +wa(ha(s§ — ur) + 2v1 + h1) +ws(2u1 — fa);
uwp = 28y + waho — ws;

9 compute v = —h — (I + v) mod v’ = vjz + v{: M aM
wy =l —ul, we = wjwy + uy — I}, v} = wews — v1 — hy + houl;
wy = ugwy — Ly, vG = waws — v — ho + hauy;

| total | | 1,5S,22M | I, 55,22 M |
Special case s = sg

6’ compute s and precomputations: I,2M I,2M
wy = 1/r, so = sywi, wa = ugso + Vo + ho;

7 compute v’ = (f — hv — v?)/u® — (h + 2v)s/u — s*: S S
uy = f1 — 82 — soha — 2uy;

8 compute v/ = —h — (su + v) mod u': 2M 2M
w1 = So(u1 — uh) — h3uh + vy + h1, vy = uhw; — wa;

[ total | [ 1,35, 13M | T, 35, 14M |
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21 INon hyperelliptic curves of ge-
nus 3

Picard curves
or more generally
plane curves of genus 3
given by
Y2+ fi(X)Y = f(X)
with deg(f) = 4
have an efficient arithmetic too! (cf. e.g. work of Flon-Oyono).

2.2 Index-Calculus

As in the analogous situation in number theory there exists a subexponential
attack based on the index-calculus principle.

But there is one essential difference: Recall: In the number field case the
subexponential function was a function in | D | and so of the order of the
class group.

Due to Weil the analogue would be ¢9.

But in the known index-calculus algorithm one cannot look at ¢ and g as
independent variables.

For instance: If g = 1 fixed then we do not get a subexponential attack for
q — oo!l. The attack:

The ideal classes of S can be represented by two polynomials of degrees boun-
ded by g.

Choose as factor base for the index-calculus attack the ideal classes which
can be represented by polynomials of small degrees.

Enge-Stein:
For g/log(q) > t the discrete logarithm in the divisor class group of a hype-
relliptic curve of genus g defined over F , can be computed with complexity

bounded by L1/2,qg[%((1 + 2it)1/2 + (%)1/2)]-

This is for large genus a strong result.
Gaudry has a result much more serious for practical use: For hyperelliptic
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curves of relatively small genus (in practice: g < 9) there is an index-calculus
attack of complexity

O(q*(log(q))")
with “reasonable small” constants.

Principle:

Use prime divisors of small degree (e.g. 1) as factor base.

A refinement is due to recent work of Theriault:

The complexity of the DL in hyperelliptic curves of genus g is bounded by

O(g® - >~ 51 +)

. For g = 4 we get a bound 4° - ¢'%% (instead of ¢ generically).

For g = 3 we get 3° - ¢'*3 instead of ¢'.

“Result”: Orders related to curves with rational Weierstraf3 points
of genus > 4 or closely related abelian varieties should be avoided!

State of the art: We have only three types of rings O which avoid serious
index-calculus attacks and for which Pic(O) in manageable:

MAXIMAL ORDERS BELONGING TO CURVES OF GENUS 1,2,3 (and
even g = 3 is a little bit in danger)!
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