1 Discrete Logarithms

Problem:
A open B
T
C
(A,m, B) — (B,m,A)

The transfer of the message has to be “secure”. I.e. we want
e Authenticity and privateness by using cryptography.
We want

e exchange keys
® sign
e authenticate

e (encrypt and decrypt)

with simple protocols

clear and easy to follow implementation rules
based on secure crypto primitives

with a well understood mathematical background.
We want to realize these aims by

applying



Arithmetic

to data security.

More precisely:

In this series of lectures we want to explain one family of public key systems
which can be used (in simple protocols) for key exchange, signature and en-
cryption by using as crypto primitives discrete logarithms.

Recall: the basic idea of

public key cryptography

is the idea of

One Way Functions and the role of MATHEMATICS is

e to construct candidates for one way functions
e to bring them in such a shape that computation is fast

e to analyze possible attacks

11 Key exchange

Assume that A C N is finite
and that B C End,e(A). Assume that the elements of B commute:
For all a and by,b, € B we have

bi(b2(a)) = ba(b1(a)).

Then we can use
A B

Y

for a key exchange system in the
following way: We fix a (publicly known)
base point Py € A.

The members of the

crypto community

Q; choose s; € B



and publish

pi ‘= Si(PO)-

Then

si(p;) = s;(pi)

is the shared secret of

Qi and @Q;. The security depends (not only) on the complexity to find from
the knowledge of randomly chosen a € A and given a;,as in B o {a} all
elements b € B with b(a) = a; modulo

Fizg(a) = {b € B;b(az) = as}.

The efficiency depends on the “size” of elements in A, B and on the com-
plexity of evaluating b € B.

1.2 Signature Scheme of El Gamal-
Type

Again we assume that B C End,e(A).
In addition we assume that there are three more structures:

h:N— B,

a hash function

p:AxA—-C

a map into a set C' in which equality of elements can be checked fast

v:B X B— D C Homyu(A,C)



with
v(b1,b2)(a) = p(bi(a), ba(a)).

Signature:
a € A is given (or introduced as part as the public key).

P chooses b and publishes b(a).

Let m be a message.

P chooses a random element k € B.
P computes

¢ :=v(h(m) o b, h(k(a)) o k)
in D.
P publishes
(¢,m, k(a)).

Verification:
V' computes

p(h(m)(b(a)), h(k(a))(k(a)))

and compares it with ¢(a).

1.3 The most popular realization

A C N a cyclic group

of prime order p

(with composition written multiplicatively.
with a numeration:

Let (G, x) be a finite group.

Definition 1.1 A numeration (A4, f) of G is a bijective map
f:G—A

where A is a finite subset of N.
A presentation of an abstract finite group G is an embedding of G into a
group with numeration.



Define
B:AxA-= A

by
a1 @ az := f(f (a1) x f ' (a2)).

Note:

We require that @ is rapidly computable without the knowledge of f~! and
the security and the efficiency of the DL-System based on & will depend
crucially on f.

From now on we assume that we have a numeration f of G and identify G
with its presentation given by f.

Choose gg, a generator of G.
B = Autz(G) = (Z/p)*
identified with {1,...,p — 1}
by b(g) := g".

C = G and p = multiplication in G

v = addition of endomorphisms
h = a hash function
from N to {1,...,p — 1}. We translate the

Signature scheme to this situation:

P chooses randomly and secretly, his private key z € {1,...,p — 1} and

publishes his public key Y := g§.

To sign a message m, P chooses a second random number k£ and computes
s := h(m)z + h(g¥)k mod p.

The signed message consists of

(m, g5, 5)



To check the authenticity of (P,m) one computes
S = g5, T =Y H = ghe0),

and checks whether
S=ToH.

The security considerations

for the crypto primitive

boil down to the complexity of the computation of the
Discrete Logarithm:

For randomly chosen g1, g2 € G compute n € N with

g2 =9r-

Challenge:

Construct

groups with numerations

of large prime order

such that the computation of the discrete discrete logarithm has the required
complexity.

Time or space needed (probabilistically) for the computation of the loga-
rithm:
polynomial in p.

Time and space needed to write down the elements and the group law of G
and execute a group composition:
polynomial in log(p).

1.4 (zeneric Systems

We use the algebraic structure “group”.
This allows “generic” attacks..



Shanks’ Baby-Step-Giant-Step

Method

(deterministic)

Take P,Q € G.

Find k with Q@ = k- P.

Principle:

Looking up an element in an ordered set is inexpensive.
Baby step: For i = 0,...,5 < \/p

compute
(i- P,i).
Giant step:
Compute
Q—i-S-P

Compare the two lists. If
iw-P=Q—14,-5-P

then
k=1+1-9.

Complexity:O(,/p)

Disadvantage:
e needs O(,/p) space

Pollard’s p-Algorithm(probabilistic)! Principle: Random walk in G closes
with high probability after

~ 1.03/p

steps.
Controlled random walk (simplest version) :

!Pollard’s method is used for the “world record” w.r.t. Certicom challenge:
Compute DL in an 109-bit elliptic curve.



The result z; of the i—th step should depend only on z; ;.
So partite G “randomly” into three sets T; of size ~ p/3 and take

;=P +x;_qifx; 1 €Ty,
T =Q+xziqifr; | €Ty,

T; = 2z, ifx;_q € T3.

There are efficient methods to detect collisions.

Security hierarchy
We measure the complexity of a DL-system by the function

Ly(a, c) := exp(C(logp)*(loglogp)' )

with 0 <a <1andc>0.

BeSt Case: o= 1:Exponential complexity.

Worst case: a = 0: Polynomial complexity

The case between...: 0 < a < 1: The complexity is subexponential.

1.5 Very special examples

Example 1:
G:=Z/p .
Numeration:
f:G%{la"'ap}
given by
f(r+pZ) = [rl

where [r], is the smallest positive representative of the class of » modulo p.
The function @ is given by

D re = [Tl + T2]p
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which is easy to compute from the knowledge of r;.
Security?
Given: b with b = [nal,.
Solve
b=na+kp

with k£ € Z.

The Euclidean algorithm solves this in O(log(p)) operations in Z/p:

a =0!

We do not get a secure Discrete Logarithm System. Example 2: G = Z/p.
Choose a prime ¢ such that p divides ¢ — 1.

Choose ¢ # 1 in Z/q with (P =1 (i.e. { is a primitive p-th root of unity).
Numeration:For 1 < 7 < p define

z:=[(", and for i =i+ pZ € G

Addition:
a; = f(z; +pZ) € {1,--+,q— 1}

a1 @ ag = [[¢],.

Security?
For fixed a and random b € A find n in N with

b=[a"],.

This means:

For one fixed p-th root of unity and one random p-th root of unity in the
multiplicative group of Z/q one has to determine the exponent needed to
transform the fixed root of unity into the random element.

The best known method to compute this discrete logarithm is subexponen-
tial in q.

It usually is compared with factorization (this is no accident). Hence its se-
curity is to be compared with RSA. Example 3:

A most important example:

Elliptic Curves

An elliptic curve F over a field K is a regular plane projective cubic with at
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least one rational point.
For simplicity we shall assume that char(K) is prime to 6. Then we find an
equation
E: Y?Z = X* + AXZ® + BZ®
with A, B € K and 4A? + 27B% # 0.
A very special property of elliptic curves is that their points form an abelian
group.
Elliptic curve with addition

This addition is easily transformed into formulas:
Given

Py = (z1,11) , P2 = (72, 92)
then

Py =(z3,y3) = P © Py

with (in general):
z3 = —(z1+z2)+ (11— 92)/ (21— 22))°

To use elliptic curves F for DL-systems we have to solve the following dio-
phantine problem:

Find F, and an elliptic curve E such that the group of F,— points has (al-
most) prime order of size ~2 10%°.

If we succeed we have to analyze attacks using the structures introduced
during construction.

The state of the art :

For “generic” elliptic curves over “generic” finite fields the complexity of the
computation of the Discrete Logarithm in the group of rational points is ex-
ponential.

But special elliptic curves are weak.

1.6 INumeration by Algebraic Groups

We generalize and systematize the examples by using numerations by alge-
braic groups over finite fields [F, where ¢ is a power of a prime /.
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We shall give a sketch of the mathematical background.
Later on we shall explain (down to earth) what can be done in practice.

161 Algebraic Groups

An algebraic group G over a field K is an algebraic reduced,
non-singular, noetherian scheme with an addition law, i.e. there
is a morphism (in the category of schemes)

m:GxG—g,
an inverse, i.e. a morphism
1:G—G,
and a neutral element, i.e. a morphism
e : Spec(K) — G,
satisfying the usual group laws:
mo (idg x m) =m o (m X idg) (associativity),
mo (e X idg) = pre
where pro is the projection of Spec(K) x G to G, and
mo (i X idg) o § = je

where ¢ is the diagonal map from G to G x G and 7. is the map
which sends G to e(Spec(K)).

Down to earth:
For all extension fields L of K the set G(L) (see below) is a group
in which the sum and the inverse of elements are computed by
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evaluating morphisms which are defined over K and in which
the neutral element is the point

0 := e(Spec(K)) € G(K).

Because of the Noether property of G it follows that it has only finitely many
connected components, and it is a fact that the set of these components
forms a finite group Z with Gy as neutral element. We see easily that the
unique connected component of G which contains 0 is a subgroup scheme of

G denoted by Gj.

There are several reasons (both security and complexity are bad) for the fact
that Z is of little interest for our cryptographic purposes, and so we shall
assume from now on that G is connected.

Now choose an affine open subvariety U of G with coordinate functions
Xi,+++,X,. The morphism m induces a morphism

my :UxU—G

and its image contains a non-empty open subset V' C U. Take W as the
inverse image of V in U x U . Then m induces a map from W to V which
can be written as:

my W —=>V

sending pairs of L-rational points (21, -, 2,) X (Y1, +,¥n) in W to
(Rl(xla T Y1, ayn)a

..7Rn(x1’...xn;y17...7yn))

with R; € K(X1q,-++,Xn,Y1,--+,Y,). This is a birational description of the
addition law which is enough for all cryptographic applications. (The set of
points where this map is not defined is of small dimension and hence with
high probability one will not run into it by chance.)

Application:

Take K and L as finite fields and use use a numeration of L to get a nume-
ration of the L—rational points of the affine parts of G

For the performance of the crypto system the choice of (W, my ) is crucial;
we require small n and low degree of R;. If we can take U = G then G is an
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affine group scheme.

The other important kind of group schemes are projective, i.e. they can be
embedded into a projective space P* /K and are closed in it.

They are called abelian varieties

If we restrict ourselves to connected commutative group schemes (there are
good reasons for this) a structure theorem tells us that for use in cryptogra-
phy we can restrict ourselves to affine schemes or abelian varieties.

1.7 Manageable Abelian Varieties

The first task to solve is to describe (birationally) abelian varieties and the
addition laws in a time and space saving way.

This seems to be hopeless as long as we work with general abelian varie-
ties A: The number of coordinate functions and the degree of the addition
formulas both grow exponentially with the dimension of the abelian variety
(cf. results of Mumford and Lange-Ruppert and so we have to use special
abelian varieties. The first specialisation is to take A as Jacobian variety Jo
of a curve C.

The big advantage is that both the coordinates and the addition can use
objects defined by C since

(Cx...xC)/Sy (g=genus(C),

Sy the symmetric group in g letters)

is birationally isomorphic to Js and the points of Jo correspond to divisor
classes of degree 0 of the function field of C'. We can assume that we have an
F,—rational point P, on C. The theorem of Riemann-Roch implies that we
find “standard ” representatives in divisor classes of the form D — g P, with
D a positive F,—rational divisor of degree g (i.e. a formal sum of ¢ points of
C).

The addition in Jg is induced by the addition of divisors and the task is to
find in the class of the sum of two divisors standard representatives either by
formulas or by an algorithm involving the coordinates of the points occurring
in the added divisors. So we need an effective (and very fast) version of the
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Riemann-Roch theorem.

Example 1 corresponds to the additive group G,

Example 2 to the multiplicative group G,,,

and Example 3 is a curve of genus 1 with rational point which is isomorphic
to its Jacobian variety.
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