15. November 2005

4. Übungsblatt Computeralgebra

Aufgabe 1: (6 Punkte)

- a) Zeigen Sie: Wenn die biquadratische Gleichung $f(x) = x^4 + ax^2 + bx + c$ mit $a, b, c \in \mathbb{R}$ zwei doppelte Nullstellen hat, sind entweder beide reell oder beide rein imaginär.
- b) f(x) hat genau dann zwei doppelte Nullstellen, wenn b = 0 und $a^2 = 4c$ ist.
- c) Welcher der Fälle aus a) tritt ein für a > 0, für a = 0 und für a < 0?
- d) Finden Sie eine Kurve $t \mapsto (a(t), b(t), c(t))$ derart, daß die Polynome f(x) mit (a, b, c) auf dieser Kurve genau die sind, für die f(x) eine mindestens dreifache Nullstelle hat!
- e) Zeichnen Sie diese Kurve!

 Hinweis: Denken Sie an den Wurzelsatz von Viète!

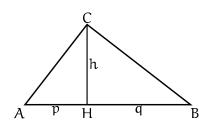
Aufgabe 2: (6 Punkte)

- a) Zeigen Sie: Die biquadratische Gleichung $f(x) = x^4 + ax^2 + bx + c$ mit $a, b, c \in \mathbb{R}$ hat genau dann eine mindestens zweifache Nullstelle in \mathbb{C} , wenn die Resultante von f(x) und seiner Ableitung f'(x) verschwindet.
- b) Stellen Sie "von Hand", d.h. über ein explizites Matrix-Kommando, die Matrix auf, deren Determinante die Resultante ist!
- c) Lassen Sie diese Determinante vom Maple berechnen!
- d) Zeichnen Sie die Menge

$$\{(a,b,c)\in[-3,\,3]^3\;\big|\;x^4+ax^2+bx+c\;\text{hat mindestens eine doppelte Nullstelle}\}\;!$$

e) Zeichnen Sie diese Menge zusammen mit der Kurve aus Aufgabe 1e)!

Aufgabe 3: (8 Punkte)



Nach dem Höhensatz ist in einem rechtwinkligen Dreieck $h^2 = pq$. Beweisen Sie diesen Satz, indem Sie die beiden Dreiecke $\triangle ACH$ und $\triangle HCB$ sowohl mit einem Rechteck mit Seiten p,q als auch mit einem Quadrat der Seitenlänge h zu einem rechtwinkligen Dreieck mit Katheten p+h und q+h ergänzen! Programmieren Sie dann eine Animation, die die beiden Figuren ineinander überführt!