31. Januar 2015

Modulklausur Analysis I

• • •	Schreiben Sie bitte auf jedes Blatt Ihren Namen!	• • •
• • •	Die Aufgaben müssen nicht in der angegebenen Reihenfolge	• • •
• • •	bearbeitet werden; konzentrieren sie sich zunächst	• • •
• • •	auf das, womit sie schnell Punkte holen können!	• • •

Fragen: (je zwei Punkte)

Die Antworten auf die nachfolgenden Fragen sollten nicht länger als etwa zwei Zeilen sein und lediglich eine kurze Begründung enthalten. Antworten ohne Begründung werden nicht gewertet.

- 1) Richtig oder falsch: $\sqrt[7]{4} \in \mathbb{Q}$
- 2) Richtig oder falsch: \mathbb{N} und \mathbb{N}_0 sind gleichmächtig.
- 3) Richtig oder falsch: Jede Folge $(a_n)_{n\in\mathbb{N}}$, die eine konvergente Teilfolge hat, ist beschränkt.
- 4) Richtig oder falsch: Jede strikt monoton wachsende stetige Funktion $f: \mathbb{R} \to \mathbb{R}$ ist surjektiv.
- 5) Richtig oder falsch: Zu jeder stetigen Funktion $f: \mathbb{R} \to [-1, 1]$ gibt es ein $x_0 \in \mathbb{R}$, so daß $f(x_0) \leq f(x)$ für alle $x \in \mathbb{R}$.
- 6) Richtig oder falsch: Die beiden reellen Zahlen x, y sind genau dann beide ganz, wenn $\cos^2 \pi x \cdot \cos^2 \pi y = 1$ ist.
- 7) Finden Sie eine Stammfunktion von $f(x) = (\sin x \cos x)^2$!

Aufgabe 1: (6 Punkte)

Stellen Sie die Zahlen
$$a$$
) $(\sqrt{3}-i)^3$ b) $\left(\frac{\sqrt{3}-i}{2}\right)^{3015}$ und c) $\left|\frac{5+3i}{5-3i}\right|$ möglichst einfach dar!

d) Finden Sie alle Lösungen der quadratischen Gleichung $z^2 + 4iz - 4 = 0$!

Aufgabe 2: (5 Punkte)

Zeigen Sie:

- a) Für jede natürliche Zahl n ist $\sum_{j=1}^n (j^2-j) = \frac{n^3-n}{3}$
- b) Zu jeder natürlichen Zahl n, die weder durch zwei noch durch drei teilbar ist, gibt es ein $k \in \mathbb{N}_0$, so daß n = 6k + 1 oder n = 6k 1 ist.

Aufgabe 3: (5 Punkte)

- a) Wie ist die Konvergenz einer Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen definiert?
- b) Zeigen Sie: Ist $(a_n)_{n\in\mathbb{N}}$ eine konvergente Folge reeller Zahlen, so konvergiert auch die Folge $(\sin a_n)_{n\in\mathbb{N}}$
- c) Was besagt das CAUCHYsche Konvergenzkriterium für Reihen?

Aufgabe 4: (6 Punkte)

Entscheiden Sie, welche der folgenden Reihen konvergieren, und bestimmen Sie, wenn möglich, den Grenzwert:

a)
$$\sum_{k=2}^{\infty} \frac{k}{k^2 - 1}$$
 b) $\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1} \right)$ und c) $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$

Aufgabe 5: (9 Punkte)

a) In welchen Punkten $x \in \mathbb{R}$ ist die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} \sin \pi x & \text{für } x < -1\\ \frac{1}{2}(x^3 - x) & \text{für } -1 \le x \le 0\\ \frac{\cos x - 1}{e^x - 1} & \text{für } x > 0 \end{cases}$$

stetig, in welchen differenzierbar?

b) Berechnen Sie
$$\int_{-2}^{-1} f(x) dx$$
, $\int_{-1}^{0} f(x) dx$ und $\int_{-2}^{0} f(x) dx$!

Aufgabe 6: (8 Punkte)

- a) Wo ist die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^3 3x 1$ monoton wachsend, wo monoton fallend?
- b) Wo ist f konvex, wo konkav?
- c) Hat f in \mathbb{R} ein absolutes Maximum und/oder Minimum?
- d) Wo liegen relative Maxima und Minima, und welche Werte werden dort angenommen?
- e) Zeigen Sie, daß f genau drei Nullstellen hat, und geben Sie für jede dieser Nullstellen ein Intervall der Form [n, n+1] mit $n \in \mathbb{Z}$ an, das diese Nullstelle enthält!

Aufgabe 7: (8 Punkte)

- a) Bestimmen Sie das Taylor-Polynom zweiten Grades der Funktion $f(x) = \frac{1}{\cos 2x}$ um den Nullpunkt!
- b) Bestimmen Sie das TAYLOR-Polynom vierten Grades der Funktion $f(x) = \sin 3x \cdot \cos x$ um den Nullpunkt!