Themenvorschläge für die kleinen Übungen am 6.–8. Oktober 2014

a) Richtig oder falsch: Jede konvergente Folge komplexer Zahlen ist beschränkt.

Lösung: Richtig, denn konvergiert die Folge $(z_n)_{n\in\mathbb{N}}$ gegen $a\in\mathbb{C}$, so gibt es ein $n_0\in\mathbb{N}$, so daß $|a-z_n|<1$ ist für alle $n\geq n_0$. Für $n\geq n_0$ ist daher nach der Dreiecksungleichung

$$|z_n| = |a + (z_n - a)| \le |a| + |z_n - a| < |a| + 1$$
.

Bezeichnet c das Maximum der Beträge $|z_1|, \ldots, |z_{n_0-1}|$, so ist daher $|z_n| \leq \max(c, |a|+1)$ für alle $n \in \mathbb{N}$.

b) Richtig oder falsch: Jede beschränkte Folge komplexer Zahlen konvergiert.

Lösung: Falsch; die Folge $(x_n)_{n\in\mathbb{N}}$ mit $x_n=(-1)^n$ ist zwar beschränkt, aber nicht konvergent.

c) Richtig oder falsch: Jede periodische Folge reeller Zahlen ist sowohl nach oben als auch nach unten beschränkt.

Lösung: Richtig; sie nimmt nur endlich viele Werte an; der kleinste davon ist eine untere Schranke, der größte eine obere.

d) Richtig oder falsch: Jede monoton wachsende Folge $(x_n)_{n\in\mathbb{N}}$ ist nach unten beschränkt

Lösung: Richtig; da $x_{n+1} \ge x_n$ für alle $n \in \mathbb{N}$, folgt induktiv, daß $x_n \ge x_1$ ist für alle $n \in \mathbb{N}$; x_1 ist also eine untere Schranke.

e) Richtig oder falsch: Eine Folge $(x_n)_{n\in\mathbb{N}}$ reeller Zahlen ist genau dann beschränkt, wenn sie sowohl nach oben als auch nach unten beschränkt ist.

Lösung: Richtig; ist M eine obere und N eine untere Schranke, so ist für alle positiven x_n , so es welche gibt, der Betrag kleiner oder gleich dem Betrag von M, und für alle negativen x_n ist der Betrag kleiner oder gleich dem Betrag von N. Bezeichnet S das Maximum der beiden Beträge, ist daher $|x_n| \leq S$ für alle $n \in \mathbb{N}$, die Folge ist also beschränkt.

Ist umgekehrt $(x_n)_{n\in\mathbb{N}}$ eine beschränkte Folge, so gibt es eine Schranke $M\in\mathbb{R}$, so daß $|x_n|\leq M$ für alle $n\in\mathbb{N}$. Somit ist $-M\leq x_n\leq M$, d.h. M ist eine obere und -M eine untere Schranke.

f) $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ seien drei Folgen reeller Zahlen derart, daß für alle $n\in\mathbb{N}$ gilt $x_n\leq y_n\leq z_n$. Zeigen Sie: Falls die Folgen $(x_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ beide konvergent sind und denselben Grenzwert x haben, so konvergiert auch $(y_n)_{n\in\mathbb{N}}$ gegen x!

Lösung: Wir müssen zeigen, daß es zu jedem $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, so daß $|x - y_n| < \varepsilon$ für alle $n \ge n_0$. Dies lädt sich auch umschreiben in die Ungleichungskette

$$x - \varepsilon < y_n < x + \varepsilon$$
.

Da die Folgen $(x_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ beide gegen x konvergieren, gibt es für jedes $\varepsilon>0$ ein $n_1\in\mathbb{N}$, so daß $|x-x_n|<\varepsilon$ für alle $n\geq n_1$ sowie ein $n_2\in\mathbb{N}$, so daß $|x-z_n|<\varepsilon$

für alle $n \ge n_2$. Für $n \ge n_0 = \max(n_1, n_2)$ gelten beide Ungleichungen; wenn wir sie wie oben umschreiben, haben wir also die Ungleichungskette

$$x - \varepsilon < x_n \le y_n \le z_n < x + \varepsilon$$
 für alle $n \ge n_0$.

Damit ist gezeigt, daß auch die Folge $(y_n)_{n\in\mathbb{N}}$ gegen x konvergiert.

g) Gilt auch die folgende Verallgemeinerung: $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ seien drei Folgen reeller Zahlen derart, daß für alle $n\in\mathbb{N}$ gilt $x_n\leq y_n\leq z_n$. Außerdem seien die Folgen $(x_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ beide konvergent. Dann ist auch $(y_n)_{n\in\mathbb{N}}$ eine konvergente Folge und $\lim_{n\to\infty} x_n\leq \lim_{n\to\infty} y_n\leq \lim_{n\to\infty} z_n$.

Lösung: Wenn die beiden Folgen $(x_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ verschiedene Grenzwerte haben, spricht offenbar nichts dagegen, daß sich die Folge $(y_n)_{n\in\mathbb{N}}$ im Bereich zwischen diesen Grenzwerten hin- und herbewegt ohne gegen einen Punkt zu bieten; die Behauptung sollte also falsch sein. Dies können wir am einfachsten dadurch zeigen, daß wir ein Gegenbeispiel konstruieren: Sei etwa

$$x_n = 1 - \frac{1}{n}$$
, $y_n = \begin{cases} 1 & \text{für ungerade } n \\ 2 & \text{für gerade } n \end{cases}$ und $z_n = 2 + \frac{1}{n}$.

Offensichtlich ist $x_n < y_n < z_n$ für alle $n \in \mathbb{N}$, die Folge der x_n konvergiert gegen eins und die der y_n gegen zwei, aber die Folge $(y_n)_{n \in \mathbb{N}}$ ist unbestimmt divergent.

h) Entscheiden Sie für jede der hier definierten reellen Zahlenfolgen $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ und so weiter, ob sie konvergent, bestimmt divergent oder unbestimmt divergent ist! Was können Sie im konvergenten Fall über den Grenzwert sagen?

$$x_n = \sqrt{n}, \quad y_n = \frac{n-1}{n+1}, \quad z_n = \frac{3(n+2)}{(n+1)^2}, \quad u_n = 1 + (-1)^n, \quad v_n = (-1)^n (2n+1)$$

Lösung: Die Folge mit $x_n = \sqrt{n}$ wächst offensichtlich unbegrenzt und divergiert daher bestimmt gegen ∞ . Um das exakt zu beweisen, wählen wir eine reelle Zahl M und müssen zeigen, daß es dazu ein $n_0 \in \mathbb{N}$ gibt, so daß $\sqrt{n} > M$ ist für alle $n \geq n_0$. Definieren wir n_0 als die kleinste natürliche Zahl größer M^2 , gilt diese Ungleichung für alle $n \geq n_0$. y_n können wir umschreiben als

$$y_n = \frac{n-1}{n+1} = \frac{(n+1)-2}{n+1} = 1 - \frac{2}{n+1}$$
.

Da die Folge der Zahlen 1/n eine Nullfolge ist, gilt dasselbe auch für die um eins verschobene Folge mit Gliedern 1/(n+1) sowie deren Doppeltes $\left(2/(n+1)\right)_{n\in\mathbb{N}}$; subtrahieren wir diese Folge von der konstanten Folge aus lauter Einsen, erhalten wir die Folge $(y_n)_{n\in\mathbb{N}}$, die somit gegen eins konvergiert.

Auch bei der Folge $(z_n)_{n\in\mathbb{N}}$ wird die Situation klarer durch Umschreiben:

$$z_n = \frac{3(n+2)}{(n+1)^2} = \frac{3(n+1)+3}{(n+1)^2} = \frac{3}{n+1} + \frac{3}{(n+1)^2}$$

Die Folge ist also die Summe zweier Nullfolgen und damit selbst eine Nullfolge.

 $u_n = 1 + (-1)^n = \begin{cases} 0 & \text{für ungerade } n \\ 2 & \text{für gerade } n \end{cases}$ definiert keine konvergente Folge: Würde sie

nämlich gegen $x \in \mathbb{R}$ konvergieren, gäbe es zu $\varepsilon = \frac{1}{2}$ ein $n_0 \in \mathbb{N}$, so daß $|x - u_n|$ für alle $n \ge n_0$ kleiner wäre als ε . Unter den $n \ge n_0$ gibt es aber sowohl gerade als auch ungerade, also wäre

$$|x| < \frac{1}{2}$$
 d.h. $-\frac{1}{2} < x < \frac{1}{2}$ und $|x-2| < \frac{1}{2}$ d.h. $\frac{3}{2} < x < \frac{5}{2}$.

Diese beiden Ungleichungen kann aber keine reelle Zahl gleichzeitig erfüllen. Somit ist die Folge nicht konvergent, und da sie nur die Werte 0 und 2 annimmt, kann sie auch nicht bestimmt divergent sein. Also ist sie unbestimmt divergent.

Auch die Folge $(\nu_n)_{n\in\mathbb{N}}$ ist unbestimmt divergent: Sie kann nicht gegen ein $x\in\mathbb{R}$ konvergieren, weil sonst z.B. ein n_0 geben müßte, so daß im offenen Intervall (x-1,x+1) alle Zahlen der Form $(-1)^n(2n+1)$ mit $n\geq n_0$ liegen müßten, und sie ist auch nicht bestimmt divergent gegen ∞ oder $-\infty$, da es auch nur für beliebig große Indizes sowohl positive als auch negative Folgenglieder gibt.

i) Welche der hier definierten komplexen Zahlenfolgen ist konvergent, und wohin konvergiert sie gegebenenfalls?

$$x_n = \frac{1-i}{n} + \left(\frac{1}{1+i}\right)^n, \quad y_n = 1+i^n, \quad z_n = \left(\frac{3-i}{2+i}\right)^n$$

Lösung: x_n ist aus zwei Termen zusammengesetzt, die wir am besten zunächst getrennt betrachten. Der erste Summand (1-i)/n definiert offensichtlich eine Nullfolge, denn das ist ja einfach unser Standardbeispiel 1/n multipliziert mit der Konstanten 1-i. Für den zweiten Term berechnen wir zunächst den Betrag der Basis:

$$\left| \frac{1}{1+i} \right| = \sqrt{\frac{1}{1+i} \cdot \frac{1}{1-i}} = \sqrt{\frac{1}{1+1}} = \sqrt{\frac{1}{2}} < 1.$$

Somit ist die Folge der Potenzen von 1/(1+i) eine Nullfolge, $(x_n)_{n\in\mathbb{N}}$ ist also eine Summe zweier Nullfolgen und damit selbst eine Nullfolge.

Da iⁿ abwechselnd die Werte i, -1, -i und 1 annimmt, ist auch die Folge $(y_n)_{n\in\mathbb{N}}$ periodisch mit Periode vier; sie nimmt nacheinander jeweils die Werte 1+i,0,1-1 und 2 an. Daß sie unbestimmt divergent ist, folgt genauso wie im Falle der Folge $(u_n)_{n\in\mathbb{N}}$ der vorigen Aufgabe.

Die Folge $(z_n)_{n\in\mathbb{N}}$ schließlich ist eine Folge von Potenzen einer festen Zahl; wir müssen also deren Betrag berechnen:

$$\left| \frac{3-i}{2+i} \right| = \sqrt{\frac{3-i}{2+i} \cdot \frac{3+i}{2-i}} = \sqrt{\frac{9+1}{4+1}} = \sqrt{2} > 1.$$

Damit divergiert die Folge.

j) Welche der Folgen aus den beiden vorigen Aufgaben sind beschränkt? Welche der reellen Folgen sind monoton wachsend, welche monoton fallend?

Lösung: Beginnen wir mit den reellen Folgen! Wie wir gesehen haben divergiert die Folge $(\sqrt{n})_{n\in\mathbb{N}}$ gegen ∞ , ist also nicht beschränkt. Sie ist allerdings (sogar streng) monoton wachsend, denn ist n>m, so ist auch $\sqrt{n}>sqrtm$.

 y_n hatten wir geschrieben als 1-2/(n+1); auch diese Folge ist streng monoton wachsend, denn ist n > m, so ist 2/(n+1) < 2/(m+1), also 1-2/(n+1) > 1-2/(m+1). Somit ist $y_1 = 0$ eine untere Schranke und der Grenzwert eins eine obere.

 $(z_n)_{n\in\mathbb{N}}$ ist die Summe zweier monoton fallender Nullfolgen, also selbst monoton fallend. Die Folge ist auch beschränkt mit $z_1 = \frac{9}{4}$ als oberer und der Null als unterer Schranke.

 $(u_n)_{n\in\mathbb{N}}$ pendelt ständig zwischen 0 und 2 hin- und her; damit ist 0 eine untere und 2 eine obere Schranke. Monotonie haben wir hier natürlich keine.

Auch die Folge $(\nu_n)_{n\in\mathbb{N}}$ ist nicht monoton, da sie ja ständig zwischen positiven und negativen Zahlen hin- und herspringt; sie ist auch offensichtlich nicht beschränkt.

Bei den komplexen Folgen ist $(x_n)_{n\in\mathbb{N}}$ als Nullfolge natürlich beschränkt; da |1-i| gleich $\sqrt{2} < 2$ und damit |1/(1-i)| < 1 ist, wäre zum Beispiel drei eine Schranke für den Betrag.

 y_n kann nur vier Werte annehmen, also ist die Folge beschränkt mit z.B. der Zwei als Schranke. Die Folge $(z_n)_{n\in\mathbb{N}}$ schließlich ist unbeschränkt.

k) Die Folgen $(x_n)_{n\in\mathbb{N}}$ und $(y_n)_{n\in\mathbb{N}}$ seien gegeben durch

$$x_n = \sqrt{n + 1000} - \sqrt{n}$$
 und $y_n = \sqrt{n + \frac{n}{1000}} - \sqrt{n}$.

Zeigen Sie, daß $x_n > y_n$ für alle $n < 1\,000\,000$, daß aber trotzdem $(x_n)_{n \in \mathbb{N}}$ eine Nullfolge ist, während $(y_n)_{n \in \mathbb{N}}$ bestimmt divergiert gegen $+\infty$!

Lösung: Für n < 1000000 ist

$$\frac{n}{1000} < 1000$$
, also $n + \frac{n}{1000} < n + 1000$, also $\sqrt{n + \frac{n}{1000}} < \sqrt{n + 1000}$

und damit $y_n < x_n$.

Die Folge (x_n) ist eine Nullfolge, denn nach der dritten binomischen Formel ist

$$(\sqrt{n+1000}-\sqrt{n})(\sqrt{n+1000}+\sqrt{n})=1000$$
,

also ist

$$\sqrt{n+1000} - \sqrt{n} = \frac{1000}{\sqrt{n+1000} + \sqrt{n}} < \frac{1000}{\sqrt{n}}$$

Für ein vorgegebenes $\varepsilon > 0$ und eine natürliche Zahl $n_0 > 1\,000\,000/\varepsilon^2$ ist daher

$$|x_n| = x_n = \sqrt{n + 1000} - \sqrt{n} < \frac{1000}{\sqrt{n}} \le \frac{1000}{\sqrt{n}_0} < \frac{1000\varepsilon}{1000} = \varepsilon$$

für alle $n \geq n_0,$ womit gezeigt ist, daß $\lim_{n \to \infty} x_n = 0$ ist.

Die Folge $(y_n)_{n\in\mathbb{N}}$ dagegen divergiert bestimmt gegen $+\infty$, denn für eine vorgegebene Schranke M>0 und alle $n>M^2$ ist

$$y_n = \sqrt{n + \frac{n}{1000}} > \sqrt{n} > \sqrt{M^2} = M$$
.

l) Die Folge $(x_n)_{n\in\mathbb{N}}$ sei rekursiv definiert durch $x_1=a$ für eine reelle Zahl a>0 und

$$x_{n+1} = \frac{1}{3} \left(2x_n + \frac{\alpha}{x_n^2} \right) \qquad \text{für } n > 1.$$

Zeigen Sie: Falls die Folge konvergiert, konvergiert sie gegen $\sqrt[3]{a}$!

Lösung: Falls die Folge gegen eine Zahl $x \in \mathbb{R}$ konvergiert, ist

$$\begin{split} x &= \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \frac{1}{3} \left(2x_n + \frac{a}{x_n^2} \right) = \frac{1}{3} \left(2\lim_{n \to \infty} x_n + \frac{a}{\lim_{n \to \infty} x_n^2} \right) \\ &= \frac{1}{3} \left(2\lim_{n \to \infty} x_n + \frac{a}{\left(\lim_{n \to \infty} x_n\right)^2} \right) = \frac{1}{3} \left(2x + \frac{a}{x^2} \right) \;. \end{split}$$

Durch Multiplikation dieser Gleichung mit $3x^2$ erhalten wir $3x^3 = 2x^3 + a$, d.h. $x^3 = a$.

 $m)(x_n)_{n\in\mathbb{N}}$ sei eine konvergente Folge nichtnegativer reeller Zahlen mit Grenzwert x. Zeigen Sie, daß dann die Folge $(y_n)_{n\in\mathbb{N}}$ mit $y_n=\sqrt{x_n}$ gegen \sqrt{x} konvergiert!

Lösung: Wir betrachten zunächst den Fall x=0. Dann gibt es für jedes $\epsilon>0$ ein $n_0\in\mathbb{N}$. so daß $|x_n|<\epsilon^2$ für alle $n\geq n_0$. Damit ist auch $|y_n|=|\sqrt{x_n}|=\sqrt{x_n}<\epsilon$ für alle $n\geq n_0$, also konvergiert auch die Folge der Wurzeln gegen Null.

Um die beiden Folgen auch für x > 0 miteinander in Zusammenhang zu bringen, verwenden wir – wie so oft bei Wurzeln – die dritte binomische Formel:

$$\left(\sqrt{x} - \sqrt{x_n}\right)\left(\sqrt{x} + \sqrt{x_n}\right) = x - x_n.$$

Damit ist

$$\left|\sqrt{x}-y_{n}\right|=\left|\sqrt{x}-\sqrt{x_{n}}\right|=\frac{\left|x-x_{n}\right|}{\left|\sqrt{x}+\sqrt{x_{n}}\right|}\leq\frac{\left|x-x_{n}\right|}{\sqrt{x}}.$$

Für ein vorgegebenes $\varepsilon > 0$ verwenden wir nun zunächst die vorausgesetzte Konvergenz der Folge $(x_n)_{n \in \mathbb{N}}$; danach gibt es ein $n_0 \in \mathbb{N}$, so daß $|x - x_n| < \sqrt{x} \cdot \varepsilon$ für alle $n \ge n_0$. Damit ist nach obiger Formel für diese n auch $|\sqrt{x} - y_n| < \varepsilon$.

n) Zeigen Sie: Ist $(z_n)_{n\in\mathbb{N}}$ eine konvergente Folge komplexer Zahlen $z_n=x_n+iy_n$ mit $x_n,y_n\in\mathbb{R}$, so konvergieren auch die reellen Folgen $(x_n)_{n\in\mathbb{N}}$ und $(y_n)_{n\in\mathbb{N}}$! Ist

$$\lim_{n\to\infty} z_n = \lim_{n\to\infty} x_n + i \lim_{n\to\infty} y_n ?$$

Lösung: Das sollte eigentlich so sein, also versuchen wir, es zu beweisen. Der Grenzwert der Folge $(z_n)_{n\in\mathbb{N}}$ sei z=x+iy; es gibt also zu jedem $\varepsilon>0$ ein $n_0\in\mathbb{N}$, so daß

$$|z-z_n| = \sqrt{(x-x_n)^2 + (y-y_n)^2} < \epsilon \quad \text{für alle } n \geq n_0 \;.$$

Da $(x-x_n)^2$ und $(y-y^n)^2$ beide größer oder gleich null sind, folgt dann auch

$$\begin{split} |x-x_n| &= \sqrt{(x-x_n)^2} \leq \sqrt{(x-x_n)^2 + (y-y_n)^2} < \epsilon \quad \text{und} \\ |y-y_n| &= \sqrt{(y-y_n)^2} \leq \sqrt{(x-x_n)^2 + (y-y_n)^2} < \epsilon \end{split}$$

für alle $n \ge n_0$. Also konvergiert die Folge der Realteile gegen den Realteil von z und die der Imaginärteile gegen den Imaginärteil.